1
|
Zhang Z, Chaudhuri K, Kaefer F, Malanoski AP, Page KA, Smieska LM, Pham JT, Ober CK. Controlling Anti-Penetration Performance by Post-Grafting of Fluorinated Alkyl Chains onto Polystyrene- block-poly(vinyl methyl siloxane). ACS APPLIED MATERIALS & INTERFACES 2024; 16:19594-19604. [PMID: 38588386 DOI: 10.1021/acsami.4c01905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Polydimethylsiloxane (PDMS) has been widely used as a surface coating material, which has been reported to possess dynamic omniphobicity to a wide range of both polar and nonpolar solvents due to its high segmental flexibility and mobility. However, such high flexibility and mobility also enable penetration of small molecules into PDMS coatings, which alter the chemical and physical properties of the coating layers. To improve the anti-penetration properties of PDMS, a series of fluorinated alkyl segments are grafted to a diblock copolymer of polystyrene-block-poly(vinyl methyl siloxane) (PS-b-PVMS) using thiol-ene click reactions. This article reports the chemical characterization of these model fluorosilicone block copolymers and uses fluorescence measurements to investigate the dye penetration characteristics of polymer thin films. The introduction of longer fluorinated alkyl chains can gradually increase the anti-penetration properties as the time to reach the maximum fluorescence intensity (tpeak) gradually increases from 11 s of PS-b-PVMS to more than 1000 s of PS-b-P(n-C6F13-VMS). The improvement of anti-penetration properties is attributed to stronger inter-/intrachain interactions, phase segregation of ordered fluorinated side chains, and enhanced hydrophobicity caused by the grafting of fluorinated alkyl chains.
Collapse
Affiliation(s)
- Zhenglin Zhang
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Krishnaroop Chaudhuri
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Florian Kaefer
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Anthony P Malanoski
- United States Naval Research Laboratory, Center for Biomolecular Science and Engineering, Washington, District of Columbia 20375, United States
| | - Kirt A Page
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
- Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Dayton, Ohio 45433, United States
- UES Inc., Dayton, Ohio 45432, United States
| | - Louisa M Smieska
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York 14853, United States
| | - Jonathan T Pham
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Christopher K Ober
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
2
|
Ntetsikas K, Ladelta V, Bhaumik S, Hadjichristidis N. Quo Vadis Carbanionic Polymerization? ACS POLYMERS AU 2023; 3:158-181. [PMID: 37065716 PMCID: PMC10103213 DOI: 10.1021/acspolymersau.2c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022]
Abstract
Living anionic polymerization will soon celebrate 70 years of existence. This living polymerization is considered the mother of all living and controlled/living polymerizations since it paved the way for their discovery. It provides methodologies for synthesizing polymers with absolute control of the essential parameters that affect polymer properties, including molecular weight, molecular weight distribution, composition and microstructure, chain-end/in-chain functionality, and architecture. This precise control of living anionic polymerization generated tremendous fundamental and industrial research activities, developing numerous important commodity and specialty polymers. In this Perspective, we present the high importance of living anionic polymerization of vinyl monomers by providing some examples of its significant achievements, presenting its current status, giving several insights into where it is going (Quo Vadis) and what the future holds for this powerful synthetic method. Furthermore, we attempt to explore its advantages and disadvantages compared to controlled/living radical polymerizations, the main competitors of living carbanionic polymerization.
Collapse
Affiliation(s)
- Konstantinos Ntetsikas
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Viko Ladelta
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Saibal Bhaumik
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, KAUST
Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Kingdom of Saudi Arabia
| |
Collapse
|
3
|
Pula P, Leniart A, Majewski PW. Solvent-assisted self-assembly of block copolymer thin films. SOFT MATTER 2022; 18:4042-4066. [PMID: 35608282 DOI: 10.1039/d2sm00439a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solvent-assisted block copolymer self-assembly is a compelling method for processing and advancing practical applications of these materials due to the exceptional level of the control of BCP morphology and significant acceleration of ordering kinetics. Despite substantial experimental and theoretical efforts devoted to understanding of solvent-assisted BCP film ordering, the development of a universal BCP patterning protocol remains elusive; possibly due to a multitude of factors which dictate the self-assembly scenario. The aim of this review is to aggregate both seminal reports and the latest progress in solvent-assisted directed self-assembly and to provide the reader with theoretical background, including the outline of BCP ordering thermodynamics and kinetics phenomena. We also indicate significant BCP research areas and emerging high-tech applications where solvent-assisted processing might play a dominant role.
Collapse
Affiliation(s)
- Przemyslaw Pula
- Department of Chemistry, University of Warsaw, Warsaw 02089, Poland.
| | - Arkadiusz Leniart
- Department of Chemistry, University of Warsaw, Warsaw 02089, Poland.
| | - Pawel W Majewski
- Department of Chemistry, University of Warsaw, Warsaw 02089, Poland.
| |
Collapse
|
4
|
Barick BK, Shomrat N, Green U, Katzman Z, Segal-Peretz T. Fabrication of Nanoscale Oxide Textured Surfaces on Polymers. Polymers (Basel) 2021; 13:polym13132209. [PMID: 34279353 PMCID: PMC8271387 DOI: 10.3390/polym13132209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Nanoscale textured surfaces play an important role in creating antibacterial surfaces, broadband anti-reflective properties, and super-hydrophobicity in many technological systems. Creating nanoscale oxide textures on polymer substrates for applications such as ophthalmic lenses and flexible electronics imposes additional challenges over conventional nanofabrication processes since polymer substrates are typically temperature-sensitive and chemically reactive. In this study, we investigated and developed nanofabrication methodologies to create highly ordered oxide nanostructures on top of polymer substrates without any lithography process. We developed suitable block copolymer self-assembly, sequential infiltration synthesis (SIS), and reactive ion etching (RIE) for processes on polymer substrates. Importantly, to prevent damage to the temperature-sensitive polymer and polymer/oxide interface, we developed the process to be entirely performed at low temperatures, that is, below 80 °C, using a combination of UV crosslinking, solvent annealing, and modified SIS and RIE processes. In addition, we developed a substrate passivation process to overcome reactivity between the polymer substrate and the SIS precursors as well as a high precision RIE process to enable deep etching into the thermally insulated substrate. These methodologies widen the possibilities of nanofabrication on polymers.
Collapse
Affiliation(s)
- Barun K. Barick
- Department of Chemical Engineering, Technion, Haifa 3200003, Israel; (B.K.B.); (N.S.)
| | - Neta Shomrat
- Department of Chemical Engineering, Technion, Haifa 3200003, Israel; (B.K.B.); (N.S.)
| | - Uri Green
- Shamir Optical Industry Ltd., Kibbutz Shamir, Upper Galilee 1213500, Israel; (U.G.); (Z.K.)
| | - Zohar Katzman
- Shamir Optical Industry Ltd., Kibbutz Shamir, Upper Galilee 1213500, Israel; (U.G.); (Z.K.)
| | - Tamar Segal-Peretz
- Department of Chemical Engineering, Technion, Haifa 3200003, Israel; (B.K.B.); (N.S.)
- Correspondence:
| |
Collapse
|
5
|
Miskaki C, Moutsios I, Manesi GM, Artopoiadis K, Chang CY, Bersenev EA, Moschovas D, Ivanov DA, Ho RM, Avgeropoulos A. Self-Assembly of Low-Molecular-Weight Asymmetric Linear Triblock Terpolymers: How Low Can We Go? Molecules 2020; 25:E5527. [PMID: 33255708 PMCID: PMC7728154 DOI: 10.3390/molecules25235527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 01/25/2023] Open
Abstract
The synthesis of two (2) novel triblock terpolymers of the ABC type and one (1) of the BAC type, where A, B and C are chemically different segments, such as polystyrene (PS), poly(butadiene) (PB1,4) and poly(dimethylsiloxane) (PDMS), is reported; moreover, their corresponding molecular and bulk characterizations were performed. Very low dimensions are evident from the characterization in bulk from transmission electron microscopy studies, verified by small-angle X-ray data, since sub-16 nm domains are evident in all three cases. The self-assembly results justify the assumptions that the high Flory-Huggins parameter, χ, even in low molecular weights, leads to significantly well-ordered structures, despite the complexity of the systems studied. Furthermore, it is the first time that a structure/properties relationship was studied for such systems in bulk, potentially leading to prominent applications in nanotechnology and nanopatterning, for as low as sub-10 nm thin-film manipulations.
Collapse
Affiliation(s)
- Christina Miskaki
- Department of Materials Science Engineering, University of Ioannina, University Campus-Dourouti, 45110 Ioannina, Greece; (C.M.); (I.M.); (G.-M.M.); (K.A.); (D.M.)
| | - Ioannis Moutsios
- Department of Materials Science Engineering, University of Ioannina, University Campus-Dourouti, 45110 Ioannina, Greece; (C.M.); (I.M.); (G.-M.M.); (K.A.); (D.M.)
| | - Gkreti-Maria Manesi
- Department of Materials Science Engineering, University of Ioannina, University Campus-Dourouti, 45110 Ioannina, Greece; (C.M.); (I.M.); (G.-M.M.); (K.A.); (D.M.)
| | - Konstantinos Artopoiadis
- Department of Materials Science Engineering, University of Ioannina, University Campus-Dourouti, 45110 Ioannina, Greece; (C.M.); (I.M.); (G.-M.M.); (K.A.); (D.M.)
| | - Cheng-Yen Chang
- Department of Chemical Engineering, National TsingHua University, Hsinchu 30013, Taiwan; (C.-Y.C.); (R.-M.H.)
| | - Egor A. Bersenev
- Faculty of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia; (E.A.B.); (D.A.I.)
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia
| | - Dimitrios Moschovas
- Department of Materials Science Engineering, University of Ioannina, University Campus-Dourouti, 45110 Ioannina, Greece; (C.M.); (I.M.); (G.-M.M.); (K.A.); (D.M.)
- Faculty of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia; (E.A.B.); (D.A.I.)
| | - Dimitri A. Ivanov
- Faculty of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia; (E.A.B.); (D.A.I.)
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 142432 Moscow, Russia
- Institut de Sciences des Matériaux de Mulhouse–IS2M, CNRS UMR7361, 15 Jean Starcky, 68057 Mulhouse, France
| | - Rong-Ming Ho
- Department of Chemical Engineering, National TsingHua University, Hsinchu 30013, Taiwan; (C.-Y.C.); (R.-M.H.)
| | - Apostolos Avgeropoulos
- Department of Materials Science Engineering, University of Ioannina, University Campus-Dourouti, 45110 Ioannina, Greece; (C.M.); (I.M.); (G.-M.M.); (K.A.); (D.M.)
- Faculty of Chemistry, Lomonosov Moscow State University (MSU), GSP-1, 1-3 Leninskiye Gory, 119991 Moscow, Russia; (E.A.B.); (D.A.I.)
| |
Collapse
|
6
|
Jung FA, Berezkin AV, Tejsner TB, Posselt D, Smilgies D, Papadakis CM. Solvent Vapor Annealing of a Diblock Copolymer Thin Film with a Nonselective and a Selective Solvent: Importance of Pathway for the Morphological Changes. Macromol Rapid Commun 2020; 41:e2000150. [DOI: 10.1002/marc.202000150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/15/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Florian A. Jung
- Technische Universität München Physik‐Department Physik der weichen Materie James‐Franck‐Str. 1 Garching 85748 Germany
| | - Anatoly V. Berezkin
- Technische Universität München Physik‐Department Physik der weichen Materie James‐Franck‐Str. 1 Garching 85748 Germany
| | - Tim B. Tejsner
- IMFUFA Department of Science and Environment Roskilde University P.O. Box 260 Roskilde 4000 Denmark
| | - Dorthe Posselt
- IMFUFA Department of Science and Environment Roskilde University P.O. Box 260 Roskilde 4000 Denmark
| | - Detlef‐M. Smilgies
- Cornell High Energy Synchrotron Source (CHESS) Wilson Laboratory Cornell University Ithaca NY 14853 USA
| | - Christine M. Papadakis
- Technische Universität München Physik‐Department Physik der weichen Materie James‐Franck‐Str. 1 Garching 85748 Germany
| |
Collapse
|
7
|
Qiang Z, Akolawala SA, Wang M. Simultaneous In-Film Polymer Synthesis and Self-Assembly for Hierarchical Nanopatterns. ACS Macro Lett 2018; 7:566-571. [PMID: 35632932 DOI: 10.1021/acsmacrolett.8b00119] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A key requirement for practical applications of nanostructured block copolymer (BCP) self-assembly is the ability to generate complex geometries including different shapes and diverse sizes across one substrate surface. This has been difficult because spatial control over the underlying chemistry of the BCP has been limited. Here, we demonstrate a photocontrolled in-film polymerization process in the presence of monomer vapor for synthesizing homopolymers in self-assembled BCP films. The homopolymers blend with BCPs and alter the nanopatterns by changing the underlying polymer chemistry and composition. We apply this technique to a variety of BCPs including polystyrene-b-polyisoprene-b-polystyrene, polystyrene-b-poly(methyl methacrylate), and polystyrene-b-poly(4-vinylpyridine). The region of in-film polymerization can be modulated by the location of irradiation using photomasks for obtaining distinct morphologies on one substrate, providing a new platform for hierarchically manipulating nanopatterns within the self-assembled BCP thin film as well as opening up a new area for radical polymerizations of monomers within such geometrically confined, swollen films.
Collapse
Affiliation(s)
- Zhe Qiang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sahil A. Akolawala
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Muzhou Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Abstract
Polymers have the obvious advantages of flexibility in design and cost effectiveness to fabricate a lab-on-a-chip (LOC) device. Polyether ether ketone (PEEK) in particular is very attractive choice as it adds biocompatibility in addition to the possibility of hematic sealing in a 3D design. Hereby, we extend our previous successful technology of autohesive hermetic bonding of medical implants into lab-on-a-chip devices. We explore a conceptual 3D micro channels design with hermetic potential using PEEK and PS sheets. A hermetic and mechanically strong (through tensile test) 3D multilayer device was obtained using plasma treatment with oxygen and methane as precursors followed by pressing at temperature near of Tg + 20 of the polymer with the lowest Tg (PS). This nanotexturing technique is also used to facilitate thermal and mechanical stability of the microchannels for microfluidic applications. X-ray tomography measurements showed that 3D polymer made chips, at certain plasma and press bonding conditions, have structural integrity and no deformation were detected in channels shape post thermal pressing process. The dimension stability of channels and reservoirs and the rigid interfacial region at PEEK-PS make this chip design attractive and feasible for advanced lab-on-a-chip applications.
Collapse
|
9
|
Georgopanos P, Lo TY, Ho RM, Avgeropoulos A. Synthesis, molecular characterization and self-assembly of (PS-b-PDMS)n type linear (n = 1, 2) and star (n = 3, 4) block copolymers. Polym Chem 2017. [DOI: 10.1039/c6py01768a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Well-defined linear (n = 1, 2) and star (n = 3, 4) architecture (PS-b-PDMS)n block copolymers were synthesized by anionic polymerization in combination with chlorosilane chemistry. The self-assembly is significantly influenced by entropy constraints for the star samples due to overcrowding.
Collapse
Affiliation(s)
- Prokopios Georgopanos
- Department of Materials Science Engineering
- University of Ioannina
- Ioannina 45110
- Greece
- Institute of Polymer Research
| | - Ting-Ya Lo
- Department of Chemical Engineering
- National Tsing Hua University
- Hsinchu 30013
- Republic of China
| | - Rong-Ming Ho
- Department of Chemical Engineering
- National Tsing Hua University
- Hsinchu 30013
- Republic of China
| | | |
Collapse
|