1
|
Corro-Hernández R, Aguila-Torres O, Rios A, Escalante B, Santana-Solano J. Computer-assisted image analysis of agonist-mediated microvascular constriction response in mouse cremaster muscle. PLoS One 2022; 17:e0277851. [PMID: 36395282 PMCID: PMC9671433 DOI: 10.1371/journal.pone.0277851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022] Open
Abstract
In this work, we implemented an automated method using a correlation coefficient to select a time interval with a minimum movement or rest interval, together with analysis of variance for measurement of blood vessel diameter in the cremaster muscle. Video images binarization using analysis of variance resulted in an enhanced and a clearly defined vessel wall. Histamine (1 mM) induced a marked reduction in vascular diameter (vasoconstriction) in the cremaster muscle from mice fed with standard (SD) and high fat diet (HFD). However, the effect of histamine was reduced in HFD mice compared to SD mice. Thus, the change in vascular diameter was 87.14% ± 7.44% and 52.63% ± 16.27% in SD and HFD mice, respectively. In conclusion, determination of a rest interval with minimal movement and the use of analysis of variance resulted useful to evaluate vascular diameter in small arteries. We suggest this method to streamline experiments facilitating cardiovascular research.
Collapse
Affiliation(s)
- Ricardo Corro-Hernández
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Apodaca, Nuevo León, México
| | - Oscar Aguila-Torres
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Apodaca, Nuevo León, México
| | - Amelia Rios
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Apodaca, Nuevo León, México
- * E-mail:
| | - Bruno Escalante
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Apodaca, Nuevo León, México
| | - Jesús Santana-Solano
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Monterrey, Apodaca, Nuevo León, México
| |
Collapse
|
2
|
Duan L, Huang H, Sun F, Zhao Z, Wang M, Xing M, Zang Y, Xiu X, Wang M, Yu H, Cui J, Zhang H. Comparing the blood oxygen level–dependent fluctuation power of benign and malignant musculoskeletal tumors using functional magnetic resonance imaging. Front Oncol 2022; 12:794555. [PMID: 36059651 PMCID: PMC9434553 DOI: 10.3389/fonc.2022.794555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose The aim of this study is to compare the blood oxygen level–dependent (BOLD) fluctuation power in 96 frequency points ranging from 0 to 0.25 Hz between benign and malignant musculoskeletal (MSK) tumors via power spectrum analyses using functional magnetic resonance imaging (fMRI). Materials and methods BOLD-fMRI and T1-weighted imaging (T1WI) of 92 patients with benign or malignant MSK tumors were acquired by 1.5-T magnetic resonance scanner. For each patient, the tumor-related BOLD time series were extracted, and then, the power spectrum of BOLD time series was calculated and was then divided into 96 frequency points. A two-sample t-test was used to assess whether there was a significant difference in the powers (the “power” is the square of the BOLD fluctuation amplitude with arbitrary unit) of each frequency point between benign and malignant MSK tumors. The receiver operator characteristic (ROC) analysis was used to assess the diagnostic capability of distinguishing between benign and malignant MSK tumors. Results The result of the two-sample t-test showed that there was significant difference in the power between benign and malignant MSK tumor at frequency points of 58 (0.1508 Hz, P = 0.036), 59 (0.1534 Hz, P = 0.032), and 95 (0.247 Hz, P = 0.014), respectively. The ROC analysis of mean power of three frequency points showed that the area of under curve is 0.706 (P = 0.009), and the cutoff value is 0.73130. If the power of the tumor greater than or equal to 0.73130 is considered the possibility of benign tumor, then the diagnostic sensitivity and specificity values are 83% and 59%, respectively. The post hoc analysis showed that the merged power of 0.1508 and 0.1534 Hz in benign MSK tumors was significantly higher than that in malignant ones (P = 0.014). The ROC analysis showed that, if the benign MSK tumor was diagnosed with the power greater than or equal to the cutoff value of 1.41241, then the sensitivity and specificity were 67% and 68%, respectively. Conclusion The mean power of three frequency points at 0.1508, 0.1534, and 0.247 Hz may potentially be a biomarker to differentiate benign from malignant MSK tumors. By combining the power of 0.1508 and 0.1534 Hz, we could better detect the difference between benign and malignant MSK tumors with higher specificity.
Collapse
Affiliation(s)
- Lisha Duan
- Department of Radiology, the Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, China
| | - Huiyuan Huang
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Feng Sun
- Department of Radiology, the Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, China
| | - Zhenjiang Zhao
- Department of Radiology, the Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, China
| | - Mengjun Wang
- Department of Radiology, the Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, China
| | - Mei Xing
- Department of Radiology, the Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, China
| | - Yufeng Zang
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, China
| | - Xiaofei Xiu
- Department of Pathology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meng Wang
- Department of Radiology, the First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong Yu
- Department of Radiology, the Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jianling Cui
- Department of Radiology, the Third Hospital of Hebei Medical University, Shijiazhuang, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, China
- *Correspondence: Jianling Cui, ; Han Zhang,
| | - Han Zhang
- Center for Cognition and Brain Disorders, Hangzhou Normal University, Hangzhou, China
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
- *Correspondence: Jianling Cui, ; Han Zhang,
| |
Collapse
|
3
|
Belcher DA, Williams AT, Palmer AF, Cabrales P. Polymerized albumin restores impaired hemodynamics in endotoxemia and polymicrobial sepsis. Sci Rep 2021; 11:10834. [PMID: 34035380 PMCID: PMC8149844 DOI: 10.1038/s41598-021-90431-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/28/2021] [Indexed: 12/29/2022] Open
Abstract
Fluid resuscitation following severe inflammation-induced hypoperfusion is critical for the restoration of hemodynamics and the prevention of multiorgan dysfunction syndrome during septic shock. Fluid resuscitation with commercially available crystalloid and colloid solutions only provides transient benefits, followed by fluid extravasation and tissue edema through the inflamed endothelium. The increased molecular weight (M.W.) of polymerized human serum albumin (PolyHSA) can limit fluid extravasation, leading to restoration of hemodynamics. In this prospective study, we evaluated how fluid resuscitation with PolyHSA impacts the hemodynamic and immune response in a lipopolysaccharide (LPS) induced endotoxemia mouse model. Additionally, we evaluated fluid resuscitation with PolyHSA in a model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). Resuscitation with PolyHSA attenuated the immune response and improved the maintenance of systemic hemodynamics and restoration of microcirculatory hemodynamics. This decrease in inflammatory immune response and maintenance of vascular wall shear stress likely contributes to the maintenance of vascular integrity following fluid resuscitation with PolyHSA. The sustained restoration of perfusion, decrease in pro-inflammatory immune response, and improved vascular integrity that results from the high M.W. of PolyHSA indicates that a PolyHSA based solution is a potential resuscitation fluid for endotoxic and septic shock.
Collapse
Affiliation(s)
- Donald A Belcher
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Alexander T Williams
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA.
| | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
4
|
Williams AT, Muller CR, Govender K, Navati MS, Friedman AJ, Friedman JM, Cabrales P. Control of systemic inflammation through early nitric oxide supplementation with nitric oxide releasing nanoparticles. Free Radic Biol Med 2020; 161:15-22. [PMID: 33011274 PMCID: PMC7529593 DOI: 10.1016/j.freeradbiomed.2020.09.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022]
Abstract
Amelioration of immune overactivity during sepsis is key to restoring hemodynamics, microvascular blood flow, and tissue oxygenation, and in preventing multi-organ dysfunction syndrome. The systemic inflammatory response syndrome that results from sepsis ultimately leads to degradation of the endothelial glycocalyx and subsequently increased vascular leakage. Current fluid resuscitation techniques only transiently improve outcomes in sepsis, and can cause edema. Nitric oxide (NO) treatment for sepsis has shown promise in the past, but implementation is difficult due to the challenges associated with delivery and the transient nature of NO. To address this, we tested the anti-inflammatory efficacy of sustained delivery of exogenous NO using i.v. infused NO releasing nanoparticles (NO-np). The impact of NO-np on microhemodynamics and immune response in a lipopolysaccharide (LPS) induced endotoxemia mouse model was evaluated. NO-np treatment significantly attenuated the pro-inflammatory response by promoting M2 macrophage repolarization, which reduced the presence of pro-inflammatory cytokines in the serum and slowed vascular extravasation. Combined, this resulted in significantly improved microvascular blood flow and 72-h survival of animals treated with NO-np. The results from this study suggest that sustained supplementation of endogenous NO ameliorates and may prevent the morbidities of acute systemic inflammatory conditions. Given that endothelial dysfunction is a common denominator in many acute inflammatory conditions, it is likely that NO enhancement strategies may be useful for the treatment of sepsis and other acute inflammatory insults that trigger severe systemic pro-inflammatory responses and often result in a cytokine storm, as seen in COVID-19.
Collapse
Affiliation(s)
- Alexander T Williams
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Cynthia R Muller
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Krianthan Govender
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Mahantesh S Navati
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Adam J Friedman
- Department of Dermatology, George Washington University School of Medicine, Washington DC, USA
| | - Joel M Friedman
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
Polymerized human hemoglobin facilitated modulation of tumor oxygenation is dependent on tumor oxygenation status and oxygen affinity of the hemoglobin-based oxygen carrier. Sci Rep 2020; 10:11372. [PMID: 32647211 PMCID: PMC7347553 DOI: 10.1038/s41598-020-68190-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022] Open
Abstract
Administration of hemoglobin-based oxygen carriers (HBOCs) into the systemic circulation is a potential strategy to relieve solid tumor hypoxia in order to increase the effectiveness of chemotherapeutics. Previous computational analysis indicated that the oxygen (O2) status of the tumor and HBOC O2 affinity may play a role in increased O2 delivery to the tumor. However, no study has experimentally investigated how low- and high-affinity HBOCs would perform in normoxic and hypoxic tumors. In this study, we examined how the HBOC, polymerized human hemoglobin (PolyhHb), in the relaxed (R) or tense (T) quaternary state modulates O2 delivery to hypoxic (FME) and normoxic (LOX) human melanoma xenografts in a murine window chamber model. We examined microcirculatory fluid flow via video shearing optical microscopy, and O2 distributions via phosphorescence quenching microscopy. Additionally, we examined how weekly infusion of a 20% top-load dose of PolyhHb influences growth rate, vascularization, and regional blood flow in the FME and LOX tumor xenografts. Infusion of low-affinity T-state PolyhHb led to increased tissue oxygenation, decreased blood flow, decreased tumor growth, and decreased vascularization in hypoxic tumors. However, infusion of both T-state and R-state PolyhHbs led to worse outcomes in normoxic tumors. Of particular concern was the high-affinity R-state PolyhHb, which led to no improvement in hypoxic tumors and significantly worsened outcomes in normoxic tumors. Taken together, the results of this study indicate that the tumor O2 status is a primary determinant of the potency and outcomes of infused PolyhHb.
Collapse
|
6
|
Mignemi NA, McClatchey PM, Kilchrist KV, Williams IM, Millis BA, Syring KE, Duvall CL, Wasserman DH, McGuinness OP. Rapid changes in the microvascular circulation of skeletal muscle impair insulin delivery during sepsis. Am J Physiol Endocrinol Metab 2019; 316:E1012-E1023. [PMID: 30860883 PMCID: PMC6620574 DOI: 10.1152/ajpendo.00501.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/21/2019] [Accepted: 03/07/2019] [Indexed: 01/07/2023]
Abstract
Sepsis costs the healthcare system $23 billion annually and has a mortality rate between 10 and 40%. An early indication of sepsis is the onset of hyperglycemia, which is the result of sepsis-induced insulin resistance in skeletal muscle. Previous investigations have focused on events in the myocyte (e.g., insulin signaling and glucose transport and subsequent metabolism) as the causes for this insulin-resistant state. However, the delivery of insulin to the skeletal muscle is also an important determinant of insulin action. Skeletal muscle microvascular blood flow, which delivers the insulin to the muscle, is known to be decreased during sepsis. Here we test whether the reduced capillary blood flow to skeletal muscle belies the sepsis-induced insulin resistance by reducing insulin delivery to the myocyte. We hypothesize that decreased capillary flow and consequent decrease in insulin delivery is an early event that precedes gross cardiovascular alterations seen with sepsis. This hypothesis was examined in mice treated with either lipopolysaccharide (LPS) or polymicrobial sepsis followed by intravital microscopy of the skeletal muscle microcirculation. We calculated insulin delivery to the myocyte using two independent methods and found that LPS and sepsis rapidly reduce insulin delivery to the skeletal muscle by ~50%; this was driven by decreases in capillary flow velocity and the number of perfused capillaries. Furthermore, the changes in skeletal muscle microcirculation occur before changes in both cardiac output and arterial blood pressure. These data suggest that a rapid reduction in skeletal muscle insulin delivery contributes to the induction of insulin resistance during sepsis.
Collapse
Affiliation(s)
- Nicholas A Mignemi
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - P Mason McClatchey
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Kameron V Kilchrist
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - Ian M Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Bryan A Millis
- Department of Cell and Developmental Biology, Vanderbilt University , Nashville, Tennessee
- Vanderbilt Biophotonics Center, Vanderbilt University , Nashville, Tennessee
| | - Kristen E Syring
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
- Vanderbilt Mouse Metabolic Phenotyping Center , Nashville, Tennessee
| | - Owen P McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University , Nashville, Tennessee
- Vanderbilt Mouse Metabolic Phenotyping Center , Nashville, Tennessee
| |
Collapse
|
7
|
Sarimollaoglu M, Stolarz AJ, Nedosekin DA, Garner BR, Fletcher TW, Galanzha EI, Rusch NJ, Zharov VP. High-speed microscopy for in vivo monitoring of lymph dynamics. JOURNAL OF BIOPHOTONICS 2018; 11:e201700126. [PMID: 29232054 PMCID: PMC6314807 DOI: 10.1002/jbio.201700126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/29/2017] [Accepted: 12/08/2017] [Indexed: 06/07/2023]
Abstract
The lymphatic system contributes to body homeostasis by clearing fluid, lipids, plasma proteins and immune cells from the interstitial space. Many studies have been performed to understand lymphatic function under normal conditions and during disease. Nevertheless, a further improvement in quantification of lymphatic behavior is needed. Here, we present advanced bright-field microscopy for in vivo imaging of lymph vessels (LVs) and automated quantification of lymphatic function at a temporal resolution of 2 milliseconds. Full frame videos were compressed and recorded continuously at up to 540 frames per second. A new edge detection algorithm was used to monitor vessel diameter changes across multiple cross sections, while individual cells in the LVs were tracked to estimate flow velocity. The system performance initially was verified in vitro using 6- and 10-μm microspheres as cell phantoms on slides and in 90-μm diameter tubes at flow velocities up to 4 cm/second. Using an in vivo rat model, we explored the mechanisms of lymphedema after surgical lymphadenectomy of the mesentery. The system revealed reductions of mesenteric LV contraction and flow rate. Thus, the described imaging system may be applicable to the study of lymphatic behavior during therapeutic and surgical interventions, and potentially during lymphatic system diseases.
Collapse
Affiliation(s)
- Mustafa Sarimollaoglu
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Amanda J. Stolarz
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Dmitry A. Nedosekin
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Brittney R. Garner
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Terry W. Fletcher
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Ekaterina I. Galanzha
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nancy J. Rusch
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Vladimir P. Zharov
- Arkansas Nanomedicine Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
8
|
McClatchey PM, Mignemi NA, Xu Z, Williams IM, Reusch JEB, McGuinness OP, Wasserman DH. Automated quantification of microvascular perfusion. Microcirculation 2018; 25:e12482. [PMID: 29908041 DOI: 10.1111/micc.12482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 06/11/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Changes in microvascular perfusion have been reported in many diseases, yet the functional significance of altered perfusion is often difficult to determine. This is partly because commonly used techniques for perfusion measurement often rely on either indirect or by-hand approaches. METHODS We developed and validated a fully automated software technique to measure microvascular perfusion in videos acquired by fluorescence microscopy in the mouse gastrocnemius. Acute perfusion responses were recorded following intravenous injections with phenylephrine, SNP, or saline. RESULTS Software-measured capillary flow velocity closely correlated with by-hand measured flow velocity (R2 = 0.91, P < 0.0001). Software estimates of capillary hematocrit also generally agreed with by-hand measurements (R2 = 0.64, P < 0.0001). Detection limits range from 0 to 2000 μm/s, as compared to an average flow velocity of 326 ± 102 μm/s (mean ± SD) at rest. SNP injection transiently increased capillary flow velocity and hematocrit and made capillary perfusion more steady and homogenous. Phenylephrine injection had the opposite effect in all metrics. Saline injection transiently decreased capillary flow velocity and hematocrit without influencing flow distribution or stability. All perfusion metrics were temporally stable without intervention. CONCLUSIONS These results demonstrate a novel and sensitive technique for reproducible, user-independent quantification of microvascular perfusion.
Collapse
Affiliation(s)
- Penn Mason McClatchey
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Nicholas A Mignemi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Zhengang Xu
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Ian M Williams
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Jane E B Reusch
- Division of Endocrinology, University of Colorado Medical School, Aurora, Colorado.,Department of Bioengineering, University of Colorado Denver, Denver, Colorado.,Department of Veterans Affairs, Aurora, Colorado
| | - Owen P McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee.,Mouse Metabolic Phenotyping Center, Nashville, Tennessee
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee.,Mouse Metabolic Phenotyping Center, Nashville, Tennessee
| |
Collapse
|
9
|
Yalcin O, Jani VP, Johnson PC, Cabrales P. Implications Enzymatic Degradation of the Endothelial Glycocalyx on the Microvascular Hemodynamics and the Arteriolar Red Cell Free Layer of the Rat Cremaster Muscle. Front Physiol 2018; 9:168. [PMID: 29615916 PMCID: PMC5864934 DOI: 10.3389/fphys.2018.00168] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/20/2018] [Indexed: 12/12/2022] Open
Abstract
The endothelial glycocalyx is a complex network of glycoproteins, proteoglycans, and glycosaminoglycans; it lines the vascular endothelial cells facing the lumen of blood vessels forming the endothelial glycocalyx layer (EGL). This study aims to investigate the microvascular hemodynamics implications of the EGL by quantifying changes in blood flow hydrodynamics post-enzymatic degradation of the glycocalyx layer. High-speed intravital microscopy videos of small arteries (around 35 μm) of the rat cremaster muscle were recorded at various time points after enzymatic degradation of the EGL. The thickness of the cell free layer (CFL), blood flow velocity profiles, and volumetric flow rates were quantified. Hydrodynamic effects of the presence of the EGL were observed in the differences between the thickness of CFL in microvessels with an intact EGL and glass tubes of similar diameters. Maximal changes in the thickness of CFL were observed 40 min post-enzymatic degradation of the EGL. Analysis of the frequency distribution of the thickness of CFL allows for estimation of the thickness of the endothelial surface layer (ESL), the plasma layer, and the glycocalyx. Peak flow, maximum velocity, and mean velocity were found to statistically increase by 24, 27, and 25%, respectively, after enzymatic degradation of the glycocalyx. The change in peak-to-peak maximum velocity and mean velocity were found to statistically increase by 39 and 32%, respectively, after 40 min post-enzymatic degradation of the EGL. The bluntness of blood flow velocity profiles was found to be reduced post-degradation of the EGL, as the exclusion volume occupied by the EGL increased the effective volume impermeable to RBCs in microvessels. This study presents the effects of the EGL on microvascular hemodynamics. Enzymatic degradation of the EGL resulted in a decrease in the thickness of CFL, an increase in blood velocity, blood flow, and decrease of the bluntness of the blood flow velocity profile in small arterioles. In summary, the EGL functions as a molecular sieve to solute transport and as a lubrication layer to protect the endothelium from red blood cell (RBC) motion near the vessel wall, determining wall shear stress.
Collapse
Affiliation(s)
- Ozlem Yalcin
- Koç University School of Medicine, Sariyer, Istanbul, Turkey.,Department of Bioengineering, University of California, San Diego, San Diego, La Jolla, CA, United States
| | - Vivek P Jani
- Department of Bioengineering, University of California, San Diego, San Diego, La Jolla, CA, United States
| | - Paul C Johnson
- Department of Bioengineering, University of California, San Diego, San Diego, La Jolla, CA, United States
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, San Diego, La Jolla, CA, United States
| |
Collapse
|
10
|
Miller MA, Weissleder R. Imaging the pharmacology of nanomaterials by intravital microscopy: Toward understanding their biological behavior. Adv Drug Deliv Rev 2017; 113:61-86. [PMID: 27266447 PMCID: PMC5136524 DOI: 10.1016/j.addr.2016.05.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 05/25/2016] [Indexed: 12/15/2022]
Abstract
Therapeutic nanoparticles (NPs) can deliver cytotoxic chemotherapeutics and other drugs more safely and efficiently to patients; furthermore, selective delivery to target tissues can theoretically be accomplished actively through coating NPs with molecular ligands, and passively through exploiting physiological "enhanced permeability and retention" features. However, clinical trial results have been mixed in showing improved efficacy with drug nanoencapsulation, largely due to heterogeneous NP accumulation at target sites across patients. Thus, a clear need exists to better understand why many NP strategies fail in vivo and not result in significantly improved tumor uptake or therapeutic response. Multicolor in vivo confocal fluorescence imaging (intravital microscopy; IVM) enables integrated pharmacokinetic and pharmacodynamic (PK/PD) measurement at the single-cell level, and has helped answer key questions regarding the biological mechanisms of in vivo NP behavior. This review summarizes progress to date and also describes useful technical strategies for successful IVM experimentation.
Collapse
Affiliation(s)
- Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Damestani Y, Galan-Hoffman DE, Ortiz D, Cabrales P, Aguilar G. Inflammatory response to implantation of transparent nanocrystalline yttria-stabilized zirconia using a dorsal window chamber model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1757-1763. [PMID: 27133190 DOI: 10.1016/j.nano.2016.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 03/10/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
The long-range goal of the windows to the brain (WttB) is to improve patient care by providing a technique for delivery and/or collection of light into/from the brain, on demand, over large areas, and on a chronically-recurring basis without the need for repeated craniotomies. To evaluate the potential of nanocrystalline yttria-stabilized-zirconia (nc-YSZ) cranial implant for optical therapy and imaging, in vivo biocompatibility was studied using the dorsal window chamber model in comparison with control (no implant) and commercially available cranial implant materials (PEEK and PEKK). The host tissue response to implant was characterized by using transillumination and fluorescent microscopy to measure leukocyte adhesion, blood vessel diameter, blood flow rate, and vascular permeability over two weeks. The results indicated the lack of inflammatory reaction of the host tissue to nc-YSZ at the microscopic level, suggesting that nc-YSZ is a good alternative material for cranial implants.
Collapse
Affiliation(s)
- Yasaman Damestani
- Department of Bioengineering, University of California Riverside, Riverside, CA, USA
| | | | - Daniel Ortiz
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Pedro Cabrales
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Guillermo Aguilar
- Department of Mechanical Engineering, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
12
|
Al-Khazraji BK, Jackson DN, Goldman D. A Microvascular Wall Shear Rate Function Derived From In Vivo Hemodynamic and Geometric Parameters in Continuously Branching Arterioles. Microcirculation 2016; 23:311-9. [PMID: 27018869 DOI: 10.1111/micc.12279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/26/2016] [Indexed: 12/26/2022]
Abstract
OBJECTIVES Conventional approaches to WSR estimation in the microcirculation involve assumptions that may result in under-/over-estimation of WSR. Therefore, our objectives were: (i) calculate WSR from RBC velocity profiles for a wide range of arteriolar diameters, (ii) provide an experimentally derived and straightforward WSR estimation function, and (iii) compare calculated to conventional WSR estimations. METHODS We characterized RBC velocity profiles in arterioles (n = 39) of branching networks (21-115 μm) in the rat gluteus maximus muscle (n = 6). Measures included mean and maximum velocities, CFL thickness, and RBC column edge velocity, and an experiment-based WSR function was derived. RESULTS CFL thickness (1-4.3 μm) positively correlated with arteriolar diameter (r(2) = 0.64). Results from the WSR equation were similar to values from edge RBC velocities/CFL. Experimental WSRs (1317-4334/sec) were independent of arteriolar diameter, and were greater than pseudoshear rates (for VRatio of 1.6, 2, or diameter-dependent VRatio function) (p < 0.05). CONCLUSION A WSR equation was derived from experimental hemodynamic parameters, and is adaptable to other velocity measurement techniques in order to obtain WSR and stress (when plasma viscosity is known). These findings provide insight on the nature of conventional WSR calculation methods in underestimating microvascular WSR values.
Collapse
Affiliation(s)
- Baraa K Al-Khazraji
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Dwayne N Jackson
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada.,Biomedical Engineering Graduate Program, The University of Western Ontario, London, Ontario, Canada
| | - Daniel Goldman
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada.,Biomedical Engineering Graduate Program, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
13
|
Abstract
Blood flow is a useful indicator of the metabolic state of the retina. However, accurate measurement of retinal blood flow is difficult to achieve in practice. Most existing optical techniques used for measuring blood flow require complex assumptions and calculations. We describe here a simple and direct method for calculating absolute blood flow in vessels of all sizes in the rat retina. The method relies on ultrafast confocal line scans to track the passage of fluorescently labeled red blood cells (fRBCs). The accuracy of the blood flow measurements was verified by (1) comparing blood flow calculated independently using either flux or velocity combined with diameter measurements, (2) measuring total retinal blood flow in arterioles and venules, (3) measuring blood flow at vessel branch points, and (4) measuring changes in blood flow in response to hyperoxic and hypercapnic challenge. Confocal line scans oriented parallel and diagonal to vessels were used to compute fRBC velocity and to examine velocity profiles across the width of vessels. We demonstrate that these methods provide accurate measures of absolute blood flow and velocity in retinal vessels of all sizes.
Collapse
|
14
|
Zuidema MY, Korthuis RJ. Intravital microscopic methods to evaluate anti-inflammatory effects and signaling mechanisms evoked by hydrogen sulfide. Methods Enzymol 2015; 555:93-125. [PMID: 25747477 PMCID: PMC4722536 DOI: 10.1016/bs.mie.2014.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) is an endogenous gaseous signaling molecule with potent anti-inflammatory properties. Exogenous application of H2S donors, administered either acutely during an inflammatory response or as an antecedent preconditioning intervention that invokes the activation of anti-inflammatory cell survival programs, effectively limits leukocyte rolling, adhesion and emigration, generation of reactive oxygen species, chemokine and cell adhesion molecule expression, endothelial barrier disruption, capillary perfusion deficits, and parenchymal cell dysfunction and injury. This chapter focuses on intravital microscopic methods that can be used to assess the anti-inflammatory effects exerted by H2S, as well as to explore the cellular signaling mechanisms by which this gaseous molecule limits the aforementioned inflammatory responses. Recent advances include use of intravital multiphoton microscopy and optical biosensor technology to explore signaling mechanisms in vivo.
Collapse
Affiliation(s)
- Mozow Y Zuidema
- Harry S. Truman Veterans Administration Hospital, Cardiology, Columbia, Missouri, USA
| | - Ronald J Korthuis
- Department of Medical Pharmacology and Physiology, School of Medicine, One Hospital Drive, University of Missouri, Columbia, Missouri, USA; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.
| |
Collapse
|