1
|
DeLongchamp DM. Resonant Soft X-ray Scattering for Organic Photovoltaics. J Phys Chem B 2025; 129:3529-3545. [PMID: 40135759 PMCID: PMC11973879 DOI: 10.1021/acs.jpcb.5c00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/09/2025] [Accepted: 03/14/2025] [Indexed: 03/27/2025]
Abstract
Resonant Soft X-ray Scattering (RSoXS) has emerged as a powerful technique for probing the morphology in organic bulk heterojunction (BHJ) solar cells, frequently employed as a measurement of phase purity and compositional length scales. Here we use the National Institute of Standards and Technology RSoXS Simulation Suite to systematically examine how structural features common to BHJs would contribute to RSoXS patterns in the PM6:Y6 BHJ system. Starting from experimentally determined anisotropic optical constants, we simulate scattering from controlled morphological variations including compositional heterogeneity, interfacial sharpness, surface roughness, and molecular orientation. Our results demonstrate that noncompositional features can cause increases in scattering intensity exceeding those from compositional phase separation. Surface roughness of just a few nanometers produces substantial scattering due to the high contrast between organic materials and vacuum, and molecular orientation effects─whether random, interface-aligned, or independently correlated─can dramatically influence pattern intensity and shape. However, each structural feature exhibits a distinct energy-dependent scattering signature across the carbon K-edge, suggesting that careful analysis of the complete spectral response could enable deconvolution of multiple contributions. These findings provide a broader interpretation of the excellent correlations between RSoXS measurements and BHJ solar cell device performance, while highlighting the potential of forward simulation approaches to leverage the full information content of energy-dependent RSoXS measurements.
Collapse
|
2
|
Nguyen PH, Callan D, Plunkett E, Gruschka M, Alizadeh N, Landsman MR, Su GM, Gann E, Bates CM, DeLongchamp DM, Chabinyc ML. Resonant Soft X-ray Scattering Reveals the Distribution of Dopants in Semicrystalline Conjugated Polymers. J Phys Chem B 2024; 128:12597-12611. [PMID: 39637190 DOI: 10.1021/acs.jpcb.4c05774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The distribution of counterions and dopants within electrically doped semicrystalline conjugated polymers, such as poly(3-hexylthiophene-2,5-diyl) (P3HT), plays a pivotal role in charge transport. The distribution of counterions in doped films of P3HT with controlled crystallinity was examined using polarized resonant soft X-ray scattering (P-RSoXS). The changes in scattering of doped P3HT films containing trifluoromethanesulfonimide (TFSI-) and 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ•-) as counterions to the charge carriers revealed distinct differences in their nanostructure. The scattering anisotropy of P-RSoXS from doped blends of P3HT was examined as a function of the soft X-ray absorption edge and found to vary systematically with the composition of crystalline and amorphous domains and by the identity of the counterion. A computational methodology was developed and used to simulate the soft X-ray scattering as a function of morphology and molecular orientation of the counterions. Modeling of the P-RSoXS at N and F K-edges was consistent with a structure where the conjugated plane of F4TCNQ•- aligns perpendicularly to that of the P3HT backbone in ordered domains. In contrast, TFSI- was distributed more uniformly between domains with no significant molecular alignment. The approach developed here demonstrates the capabilities of P-RSoXS in identifying orientation, structural, and compositional distributions within doped conjugated polymers using a computational workflow that is broadly extendable to other soft matter systems.
Collapse
Affiliation(s)
- Phong H Nguyen
- Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93117, United States
| | - Devon Callan
- Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93117, United States
| | - Evan Plunkett
- Materials Department, University of California at Santa Barbara, Santa Barbara, California 93117, United States
| | - Max Gruschka
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93117, United States
| | - Nima Alizadeh
- Materials Department, University of California at Santa Barbara, Santa Barbara, California 93117, United States
| | - Matthew R Landsman
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Gregory M Su
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 92720, United States
| | - Eliot Gann
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Christopher M Bates
- Department of Chemical Engineering, University of California at Santa Barbara, Santa Barbara, California 93117, United States
- Materials Department, University of California at Santa Barbara, Santa Barbara, California 93117, United States
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California 93117, United States
| | - Dean M DeLongchamp
- Materials Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Michael L Chabinyc
- Materials Department, University of California at Santa Barbara, Santa Barbara, California 93117, United States
| |
Collapse
|
3
|
Patel BB, Feng H, Loo WS, Snyder CR, Eom C, Murphy J, Sunday DF, Nealey PF, DeLongchamp DM. Self-Assembly of Hierarchical High-χ Fluorinated Block Copolymers with an Orthogonal Smectic-within-Lamellae 3 nm Sublattice and Vertical Surface Orientation. ACS NANO 2024; 18:11311-11322. [PMID: 38623826 DOI: 10.1021/acsnano.4c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Hierarchical structure-within-structure assemblies offer a route toward increasingly complex and multifunctional materials while pushing the limits of block copolymer self-assembly. We present a detailed study of the self-assembly of a series of fluorinated high-χ block copolymers (BCPs) prepared via postmodification of a single poly(styrene)-block-poly(glycidyl methacrylate) (S-b-G) parent polymer with the fluorinated alkylthiol pendent groups containing 1, 6, or 8 fluorinated carbons (termed trifluoro-ethanethiol (TFET), perfluoro-octylthiol (PFOT), and perfluoro-decylthiol (PFDT), respectively). Bulk X-ray scattering of thermally annealed samples demonstrates hierarchical molecular assembly with phase separation between the two blocks and within the fluorinated block. The degree of ordering within the fluorinated block is highly sensitive to synthetic variation; a lamellar sublattice was formed for S-b-GPFOT and S-b-GPFDT. Thermal analyses of S-b-GPFOT reveal that the fluorinated block exhibits liquid crystal-like ordering. The complex thin-film self-assembly behavior of an S-b-GPFOT polymer was investigated using real-space (atomic force microscopy and scanning electron microscopy) and reciprocal-space (resonant soft X-ray scattering (RSoXS), grazing incidence small- and wide-angle scattering) measurements. After thermal annealing in nitrogen or vacuum, films thicker than 1.5 times the primary lattice spacing exhibit a 90-degree grain boundary, exposing a thin layer of vertical lamellae at the free interface, while exhibiting horizontal lamellae on the preferential (polystyrene brush) substrate. RSoXS measurements reveal the near-perfect orthogonality between the primary and sublattice orientations, demonstrating hierarchical patterning at the nanoscale.
Collapse
Affiliation(s)
- Bijal B Patel
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Hongbo Feng
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Whitney S Loo
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Chad R Snyder
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Christopher Eom
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Julia Murphy
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Daniel F Sunday
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Paul F Nealey
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Dean M DeLongchamp
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
4
|
Barbour A, Cai YQ, Fluerasu A, Freychet G, Fukuto M, Gang O, Gann E, Laasch R, Li R, Ocko BM, Tsai EHR, Wąsik P, Wiegart L, Yager KG, Yang L, Zhang H, Zhang Y. X-ray Scattering for Soft Matter Research at NSLS-II. SYNCHROTRON RADIATION NEWS 2023; 36:24-30. [PMID: 38046894 PMCID: PMC10688614 DOI: 10.1080/08940886.2023.2207449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Affiliation(s)
- Andi Barbour
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Yong Q Cai
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Andrei Fluerasu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | | | - Masafumi Fukuto
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Oleg Gang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, USA
- Department of Chemical Engineering and Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York, USA
| | - Eliot Gann
- Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Ricarda Laasch
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Benjamin M Ocko
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Esther H R Tsai
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, USA
| | - Patryk Wąsik
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Lutz Wiegart
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Kevin G Yager
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, USA
| | - Lin Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Honghu Zhang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Yugang Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, USA
| |
Collapse
|
5
|
Freychet G, Zhernenkov M. Flatfielding of hybrid pixel detectors in tender x-ray scattering. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:2888612. [PMID: 37144942 DOI: 10.1063/5.0139377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/23/2023] [Indexed: 05/06/2023]
Abstract
The ability of the soft matter interfaces beamline at National Synchrotron Light Source II to access x-ray energy in the tender x-ray regime, i.e., from 2.1 to 5 keV, enables new resonant x-ray scattering studies at the sulfur K-edge and others. We present a new approach to correct data acquired in the tender x-ray regime with a Pilatus3 detector in order to improve the data quality and to correct the various artifacts inherent to hybrid pixel detectors, such as variations in modules' efficiency or noisy detector module junctions. This new flatfielding significantly enhances the data quality and enables detection of weak scattering signals.
Collapse
Affiliation(s)
- Guillaume Freychet
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, New York 11973, USA
- Univ. Grenoble Alpes, CEA, Leti, F-38000 Grenoble, France
| | - Mikhail Zhernenkov
- National Synchrotron Light Source-II, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
6
|
Affiliation(s)
- Brian A. Collins
- Physics and Astronomy Washington State University Pullman Washington USA
| | - Eliot Gann
- Material Measurement Laboratory National Institute of Standards and Technology Gaithersburg Maryland USA
| |
Collapse
|
7
|
Zhong W, Liu F, Wang C. Probing morphology and chemistry in complex soft materials with in situresonant soft x-ray scattering. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:313001. [PMID: 34140434 DOI: 10.1088/1361-648x/ac0194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Small angle scattering methodologies have been evolving at fast pace over the past few decades due to the ever-increasing demands for more details on the complex nanostructures of multiphase and multicomponent soft materials like polymer assemblies and biomaterials. Currently, element-specific and contrast variation techniques such as resonant (elastic) soft/tender x-ray scattering, anomalous small angle x-ray scattering, and contrast-matching small angle neutron scattering, or combinations of above are routinely used to extract the chemical composition and spatial arrangement of constituent elements at multiple length scales and examine electronic ordering phenomena. Here we present some recent advances in selectively characterizing structural architectures of complex soft materials, which often contain multi-components with a wide range of length scales and multiple functionalities, where novel resonant scattering approaches have been demonstrated to decipher a higher level of structural complexity that correlates to functionality. With the advancement of machine learning and artificial intelligence assisted correlative analysis, high-throughput and autonomous experiments would open a new paradigm of material research. Further development of resonant x-ray scattering instrumentation with crossplatform sample environments will enable multimodalin situ/operando characterization of the system dynamics with much improved spatial and temporal resolution.
Collapse
Affiliation(s)
- Wenkai Zhong
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| | - Feng Liu
- Frontiers Science Center for Transformative Molecules, In-situ Center for Physical Science, and Center of Hydrogen Science, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Cheng Wang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
| |
Collapse
|