1
|
Kasai K, Nojima T, Wang Y, Xu T, Hirakata H, Shimada T. Mechanical Writing of Polar Skyrmionic Topological States via Extrinsic Dzyaloshinskii-Moriya-like Flexoelectricity in Ferroelectric Thin Films. ACS NANO 2024; 18:32451-32457. [PMID: 39542645 DOI: 10.1021/acsnano.4c06137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Exploring complex topological structures in condensed matter has shown promising applications in nanotechnology. Although polar topologies such as chiral vortices and skyrmions have been observed in ferroelectric heterostructures, their existence in simple systems has posed challenges due to the absence of intrinsic noncollinear interaction (like Dzyaloshinskii-Moriya interaction in ferromagnetics). Here, we demonstrate that a nanoindentation mechanically switches local polarizations to stable polar topologies, including skyrmions, within a room-temperature PbTiO3 thin film via the flexoelectric effect as a noncollinear (Dzyaloshinskii-Moriya-like) driving force using phase-field simulations. In addition, by moving the indenter, the continuous polarization switching leads to the "writing" of arbitrary polar patterns (such as donut-like skyrmionium). Furthermore, the written topologies can be "erased" by applying a voltage with the same conducted indenter. Therefore, this study shows the writing and erasing process of room-temperature polar topologies in a ferroelectric thin film, which significantly advances their potential applications.
Collapse
Affiliation(s)
- Kohta Kasai
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto Daigaku-katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Takashi Nojima
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto Daigaku-katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Yu Wang
- Department of Mechanics, School of Civil Engineering, Central South University, Changsha 410083, China
| | - Tao Xu
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto Daigaku-katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Hiroyuki Hirakata
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto Daigaku-katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Takahiro Shimada
- Department of Mechanical Engineering and Science, Kyoto University, Kyoto Daigaku-katsura, Nishikyo-ku, Kyoto 615-8540, Japan
| |
Collapse
|
2
|
Xu T, Wu C, Zheng S, Wang Y, Wang J, Hirakata H, Kitamura T, Shimada T. Mechanical Rippling for Diverse Ferroelectric Topologies in Otherwise Nonferroelectric SrTiO_{3} Nanofilms. PHYSICAL REVIEW LETTERS 2024; 132:086801. [PMID: 38457703 DOI: 10.1103/physrevlett.132.086801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/18/2023] [Accepted: 01/12/2024] [Indexed: 03/10/2024]
Abstract
Polar topological structures such as skyrmions and merons have become an emerging research field due to their rich functionalities and promising applications in information storage. Up to now, the obtained polar topological structures are restricted to a few limited ferroelectrics with complex heterostructures, limiting their large-scale practical applications. Here, we circumvent this limitation by utilizing a nanoscale ripple-generated flexoelectric field as a universal means to create rich polar topological configurations in nonpolar nanofilms in a controllable fashion. Our extensive phase-field simulations show that a rippled SrTiO_{3} nanofilm with a single bulge activates polarizations that are stabilized in meron configurations, which further undergo topological transitions to Néel-type and Bloch-type skyrmions upon varying the geometries. The formation of these topologies originates from the curvature-dependent flexoelectric field, which extends beyond the common mechanism of geometric confinement that requires harsh energy conditions and strict temperature ranges. We further demonstrate that the rippled nanofilm with three-dimensional ripple patterns can accommodate other unreported modulated phases of ferroelectric topologies, which provide ferroelectric analogs to the complex spin topologies in magnets. The present study not only unveils the intriguing nanoscale electromechanical properties but also opens exciting opportunities to design various functional topological phenomena in flexible materials.
Collapse
Affiliation(s)
- Tao Xu
- Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Chengsheng Wu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Sizheng Zheng
- Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
| | - Yu Wang
- Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Jie Wang
- Department of Engineering Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
- Zhejiang Laboratory, Hangzhou 311100, Zhejiang, China
| | - Hiroyuki Hirakata
- Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Takayuki Kitamura
- Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan
| | - Takahiro Shimada
- Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan
| |
Collapse
|
3
|
Guo X, Zhou L, Roul B, Wu Y, Huang Y, Das S, Hong Z. Theoretical Understanding of Polar Topological Phase Transitions in Functional Oxide Heterostructures: A Review. SMALL METHODS 2022; 6:e2200486. [PMID: 35900067 DOI: 10.1002/smtd.202200486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The exotic topological phase is attracting considerable attention in condensed matter physics and materials science over the past few decades due to intriguing physical insights. As a combination of "topology" and "ferroelectricity," the ferroelectric (polar) topological structures are a fertile playground for emergent phenomena and functionalities with various potential applications. Herein, the review starts with the universal concept of the polar topological phase and goes on to briefly discuss the important role of computational tools such as phase-field simulations in designing polar topological phases in oxide heterostructures. In particular, the history of the development of phase-field simulations for ferroelectric oxide heterostructures is highlighted. Then, the current research progress of polar topological phases and their emergent phenomena in ferroelectric functional oxide heterostructures is reviewed from a theoretical perspective, including the topological polar structures, the establishment of phase diagrams, their switching kinetics and interconnections, phonon dynamics, and various macroscopic properties. Finally, this review offers a perspective on the future directions for the discovery of novel topological phases in other ferroelectric systems and device design for next-generation electronic device applications.
Collapse
Affiliation(s)
- Xiangwei Guo
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Institute of Advanced Semiconductors and Zhejiang Provincial Key Laboratory of Power Semiconductor Materials and Devices, Hangzhou Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311200, China
- Cyrus Tang Center for Sensor Materials and Applications, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Linming Zhou
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Basanta Roul
- Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
- Central Research Laboratory, Bharat Electronics Limited, Bangalore, 560013, India
| | - Yongjun Wu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Cyrus Tang Center for Sensor Materials and Applications, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yuhui Huang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Sujit Das
- Materials Research Centre, Indian Institute of Science, Bangalore, 560012, India
| | - Zijian Hong
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- Cyrus Tang Center for Sensor Materials and Applications, State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
4
|
Kavle P, Zorn JA, Dasgupta A, Wang B, Ramesh M, Chen LQ, Martin LW. Strain-Driven Mixed-Phase Domain Architectures and Topological Transitions in Pb 1- x Sr x TiO 3 Thin Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203469. [PMID: 35917499 DOI: 10.1002/adma.202203469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/08/2022] [Indexed: 06/15/2023]
Abstract
The potential for creating hierarchical domain structures, or mixtures of energetically degenerate phases with distinct patterns that can be modified continually, in ferroelectric thin films offers a pathway to control their mesoscale structure beyond lattice-mismatch strain with a substrate. Here, it is demonstrated that varying the strontium content provides deterministic strain-driven control of hierarchical domain structures in Pb1- x Srx TiO3 solid-solution thin films wherein two types, c/a and a1 /a2 , of nanodomains can coexist. Combining phase-field simulations, epitaxial thin-film growth, detailed structural, domain, and physical-property characterization, it is observed that the system undergoes a gradual transformation (with increasing strontium content) from droplet-like a1 /a2 domains in a c/a domain matrix, to a connected-labyrinth geometry of c/a domains, to a disconnected labyrinth structure of the same, and, finally, to droplet-like c/a domains in an a1 /a2 domain matrix. A relationship between the different mixed-phase modulation patterns and its topological nature is established. Annealing the connected-labyrinth structure leads to domain coarsening forming distinctive regions of parallel c/a and a1 /a2 domain stripes, offering additional design flexibility. Finally, it is found that the connected-labyrinth domain patterns exhibit the highest dielectric permittivity.
Collapse
Affiliation(s)
- Pravin Kavle
- Department of Materials Science and Engineering, University of California, Berkeley and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jacob A Zorn
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Arvind Dasgupta
- Department of Materials Science and Engineering, University of California, Berkeley and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bo Wang
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Maya Ramesh
- Department of Materials Science and Engineering, University of California, Berkeley and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Long-Qing Chen
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lane W Martin
- Department of Materials Science and Engineering, University of California, Berkeley and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|