1
|
Drozdovitch V, Kryuchkov V, Bakhanova E, Bondarenko P, Chizhov K, Golovanov I, Chumak V. Dose Reconstruction for Epidemiological Studies among Ukrainian Chernobyl Cleanup Workers. Radiat Res 2024; 202:626-638. [PMID: 39142649 PMCID: PMC11481421 DOI: 10.1667/rade-23-00117.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/26/2024] [Indexed: 08/16/2024]
Abstract
The present paper provides an overview of the methods and summarizes the results of estimating radiation doses and their uncertainties for Ukrainian-American epidemiological studies among the Chernobyl (Chornobyl) cleanup workers. After the Chernobyl accident occurred on April 26, 1986, more than 300,000 Ukrainian cleanup workers took part between 1986 and 1990 in decontamination and recovery activities at the site of the Chernobyl Nuclear Power Plant. The U.S. National Cancer Institute in collaboration with the Ukrainian National Research Center for Radiation Medicine conducted several epidemiological studies in this population. An important part of these studies was the reconstruction of the study participants' radiation doses and the assessment of uncertainties in doses. A method called realistic analytical dose reconstruction with uncertainty estimation (RADRUE) was used to calculate the doses from external irradiation during cleanup missions, which was the main exposure pathway for most study participants. At the initial phase of the accident during the atmospheric releases of radioactivity from the destroyed reactor, the cleanup workers also received doses from inhalation of radionuclides. In addition, study participants received doses at their places of residence, especially those who lived in highly contaminated areas. The radiation doses estimated for 2,048 male cleanup workers included in the Ukrainian-American epidemiological studies varied widely: (i) bone-marrow doses from external irradiation in the case-control study of leukemia of 1,000 cleanup workers ranged from 3.7 × 10-5 mGy to 3.3 Gy (mean = 92 mGy); (ii) thyroid doses in the case-control study of thyroid cancer in 607 persons from all exposure pathways combined were from 0.15 mGy to 9.0 Gy (mean = 199 mGy); (iii) gonadal doses in 183 cleanup workers from all exposure pathways combined in the study of germline mutations in the offspring after parental irradiation (trio study) ranged from 0.58 mGy to 4.1 Gy (mean = 392 mGy); (iv) thyroid doses in the human factor uncertainties study among 47 persons were from 20 mGy to 2.1 Gy (mean = 295 mGy); and (v) lung doses in the study of germline genetic variants associated with host susceptibility to COVID-19 estimated for 211 cleanup workers were from 0.024 mGy to 2.5 Gy (mean = 249 mGy). Doses of female cleanup workers were much lower than those of male cleanup workers: the mean doses for female cleanup workers were 27 mGy for 34 women included in the trio study and 56 mGy for 48 women participated in the study of germline genetic variants associated with host susceptibility to COVID-19. Uncertainties in dose estimates included two components: (i) inherent uncertainties arising from the stochastic random variability of the parameters used in exposure assessment and from a lack of knowledge about the true values of the parameters; and (ii) human factor uncertainties due to poor memory recall resulting in incomplete, inaccurate, or missing responses during personal interviews with cleanup workers conducted long after exposure. This paper also discusses possible developments and improvements in the methods to assess the radiation doses and associated uncertainties for cleanup workers.
Collapse
Affiliation(s)
- Vladimir Drozdovitch
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, Maryland
| | | | - Elena Bakhanova
- State Institution–National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| | | | | | | | - Vadim Chumak
- State Institution–National Research Center for Radiation Medicine of the National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
2
|
Little MP, Bazyka D, de Gonzalez AB, Brenner AV, Chumak VV, Cullings HM, Daniels RD, French B, Grant E, Hamada N, Hauptmann M, Kendall GM, Laurier D, Lee C, Lee WJ, Linet MS, Mabuchi K, Morton LM, Muirhead CR, Preston DL, Rajaraman P, Richardson DB, Sakata R, Samet JM, Simon SL, Sugiyama H, Wakeford R, Zablotska LB. A Historical Survey of Key Epidemiological Studies of Ionizing Radiation Exposure. Radiat Res 2024; 202:432-487. [PMID: 39021204 PMCID: PMC11316622 DOI: 10.1667/rade-24-00021.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/23/2024] [Indexed: 07/20/2024]
Abstract
In this article we review the history of key epidemiological studies of populations exposed to ionizing radiation. We highlight historical and recent findings regarding radiation-associated risks for incidence and mortality of cancer and non-cancer outcomes with emphasis on study design and methods of exposure assessment and dose estimation along with brief consideration of sources of bias for a few of the more important studies. We examine the findings from the epidemiological studies of the Japanese atomic bomb survivors, persons exposed to radiation for diagnostic or therapeutic purposes, those exposed to environmental sources including Chornobyl and other reactor accidents, and occupationally exposed cohorts. We also summarize results of pooled studies. These summaries are necessarily brief, but we provide references to more detailed information. We discuss possible future directions of study, to include assessment of susceptible populations, and possible new populations, data sources, study designs and methods of analysis.
Collapse
Affiliation(s)
- Mark P. Little
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
- Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, UK
| | - Dimitry Bazyka
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | | | - Alina V. Brenner
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Vadim V. Chumak
- National Research Center for Radiation Medicine, Hematology and Oncology, 53 Melnikov Street, Kyiv 04050, Ukraine
| | - Harry M. Cullings
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Robert D. Daniels
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | - Benjamin French
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Eric Grant
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), 1646 Abiko, Chiba 270-1194, Japan
| | - Michael Hauptmann
- Institute of Biostatistics and Registry Research, Brandenburg Medical School Theodor Fontane, 16816 Neuruppin, Germany
| | - Gerald M. Kendall
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Headington, Oxford, OX3 7LF, UK
| | - Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety, Fontenay aux Roses France
| | - Choonsik Lee
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Won Jin Lee
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, South Korea
| | - Martha S. Linet
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Kiyohiko Mabuchi
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Lindsay M. Morton
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | | | | | - Preetha Rajaraman
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - David B. Richardson
- Environmental and Occupational Health, 653 East Peltason, University California, Irvine, Irvine, CA 92697-3957 USA
| | - Ritsu Sakata
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Jonathan M. Samet
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | - Steven L. Simon
- Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD 20892-9778, USA
| | - Hiromi Sugiyama
- Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima 732-0815, Japan
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, Ellen Wilkinson Building, Oxford Road, Manchester, M13 9PL, UK
| | - Lydia B. Zablotska
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, 550 16 Street, 2 floor, San Francisco, CA 94143, USA
| |
Collapse
|
3
|
Guo C, Wang Q, Shuai P, Wang T, Wu W, Li Y, Huang S, Yu J, Yi L. Radiation and male reproductive system: Damage and protection. CHEMOSPHERE 2024; 357:142030. [PMID: 38626814 DOI: 10.1016/j.chemosphere.2024.142030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/10/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Male fertility has been declining in recent decades, and a growing body of research points to environmental and lifestyle factors as the cause. The widespread use of radiation technology may result in more people affected by male infertility, as it is well established that radiation can cause reproductive impairment in men. This article provides a review of radiation-induced damage to male reproduction, and the effects of damage mechanisms and pharmacotherapy. It is hoped that this review will contribute to the understanding of the effects of radiation on male reproduction, and provide information for research into drugs that can protect the reproductive health of males.
Collapse
Affiliation(s)
- Caimao Guo
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qingyu Wang
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Peimeng Shuai
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Tiantian Wang
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Wenyu Wu
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuanyuan Li
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuqi Huang
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jia Yu
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Lan Yi
- Institute of Pharmacy and Pharmacology, Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
4
|
Amrenova A, Baudin C, Ostroumova E, Stephens J, Anderson R, Laurier D. Intergenerational effects of ionizing radiation: review of recent studies from human data (2018-2021). Int J Radiat Biol 2024; 100:1253-1263. [PMID: 38319708 DOI: 10.1080/09553002.2024.2309917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
PURPOSE The purpose of this paper was to conduct a review of the studies published between 2018 and 2022 to investigate radiation-related effects in the offspring of human individuals exposed to ionizing radiation. METHODS The search identified 807 publications, from which 9 studies were selected for detailed analysis to examine for effects in children whose parents were exposed to various types and doses of radiation. RESULTS The review does not yield substantial evidence supporting intergenerational effects of radiation exposure in humans. However, caution is required when interpreting the results due to limitations in the majority of the published articles. CONCLUSION This review, covering the period 2018-2022, serves as an extension of the previous systematic review conducted by Stephens et al. (2024), which encompassed the years 1988-2018. Together, these two papers offer a comprehensive overview of the available evidence regarding the intergenerational effects of parental pre-conceptional exposure to ionizing radiation. Overall, the findings do not provide strong evidence supporting a significant association between adverse (or other) outcomes in unexposed children and parental preconception radiation exposure.
Collapse
Affiliation(s)
- A Amrenova
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay aux Roses, France
| | - C Baudin
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay aux Roses, France
| | - E Ostroumova
- International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - J Stephens
- Centre for Health Effects of Radiological and Chemical Agents, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - R Anderson
- Centre for Health Effects of Radiological and Chemical Agents, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - D Laurier
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay aux Roses, France
| |
Collapse
|
5
|
Degenhardt Ä, Sreetharan S, Amrenova A, Adam-Guillermin C, Dekkers F, Dumit S, Frelon S, Horemans N, Laurier D, Liutsko L, Salomaa S, Schneider T, Hande MP, Wakeford R, Applegate KE. The ICRP, MELODI, and ALLIANCE workshop on effects of ionizing radiation exposure in offspring and next generations: a summary of discussions. Int J Radiat Biol 2024; 100:1382-1392. [PMID: 38284800 DOI: 10.1080/09553002.2024.2306335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/19/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
PURPOSE Task Group 121 - Effects of ionizing radiation exposure in offspring and next generations - is a task group under the Committee 1 of the International Commission on Radiological Protection (ICRP), approved by the Main Commission on 18th November 2021. The main goals of Task Group 121 are to (1) review and update the scientific literature of relevance to radiation-related effects in the offspring of parent(s) exposed to ionizing radiation in both human and non-human biota; (2) to assess preconceptional and intrauterine effects of radiation exposure and related morbidity and mortality; and, (3) to provide advice about the level of evidence and how to consider these preconceptional and postconceptional effects in the system of radiological protection for humans and non-human biota. METHODS The Task Group is reviewing relevant literature since Publication 90 'Biological effects after prenatal irradiation (embryo and fetus)' (2003) and will include radiation-related effects on future generations in humans, animals, and plants. This review will be conducted to account for the health effects on offspring and subsequent generations in the current system of radiological protection. Radiation detriment calculation will also be reviewed. Finally, preliminary recommendations will be made to update the integration of health effects in offspring and next generations in the system of radiological protection. RESULTS A Workshop, jointly organized by ICRP Task Group 121 and European Radiation Protection Research Platforms MELODI and ALLIANCE was held in Budapest, Hungary, from 31st May to 2nd June 2022. Participants discussed four important topics: (1) hereditary and epigenetic effects due to exposure of the germ cell line (preconceptional exposure), (2) effects arising from exposure of the embryo and fetus (intrauterine exposure), (3) transgenerational effects on biota, and (4) its potential impact on the system of radiological protection. CONCLUSIONS Based on the discussions and presentations during the breakout sessions, newer publications, and gaps on the current scientific literature were identified. For instance, there are some ongoing systematic reviews and radiation epidemiology reviews of intrauterine effects. There are newer methods of Monte Carlo simulation for fetal dosimetry, and advances in radiation genetics, epigenetics, and radiobiology studies. While the current impact of hereditary effects on the global detriment was reported as small, the questions surrounding the effects of radiation exposure on offspring and the next generation are crucial, recurring, and with a major focus on exposed populations. This article summarizes the workshop discussions, presentations, and conclusions of each topic and introduces the special issue of the International Journal of Radiation Biology resulting from the discussions of the meeting.
Collapse
Affiliation(s)
- Ämilie Degenhardt
- Division of Medical and Occupational Radiation Protection, German Federal Office for Radiation Protections (BfS), Neuherberg, Germany
| | | | - Aidana Amrenova
- French Institute for Radiological Protection and Nuclear Safety (IRSN), France
| | | | - Fieke Dekkers
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Sara Dumit
- Los Alamos National Laboratory, Radiation Protection Division, Los Alamos, NM, USA
| | - Sandrine Frelon
- French Institute for Radiological Protection and Nuclear Safety (IRSN), France
| | - Nele Horemans
- Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Dominique Laurier
- French Institute for Radiological Protection and Nuclear Safety (IRSN), France
| | | | - Sisko Salomaa
- Radiation and Nuclear Safety Authority (STUK), Finland
| | - Thierry Schneider
- Nuclear Protection Evaluation Centre (CEPN), Fontenay-aux-Roses, France
| | - Manoor P Hande
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Richard Wakeford
- Centre for Occupational and Environmental Health, The University of Manchester, UK
| | - Kimberly E Applegate
- Department of Radiology (retired), University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
6
|
Drozdovitch V, Chizhov K, Chumak V, Bakhanova E, Trotsyuk N, Bondarenko P, Golovanov I, Kryuchkov V. Reliability of Questionnaire-Based Dose Reconstruction: Human Factor Uncertainties in the Radiation Dosimetry of Chernobyl Cleanup Workers. Radiat Res 2022; 198:172-180. [PMID: 35604875 PMCID: PMC9384793 DOI: 10.1667/rade-21-00207.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/10/2022] [Indexed: 11/03/2022]
Abstract
This original study aims to quantify the human factor uncertainties in radiation doses for Chernobyl cleanup workers that are associated with errors in direct or proxy personal interviews due to poor memory recall a long time after exposure. Two types of doses due to external irradiation during cleanup mission were calculated independently. First, a "reference" dose, that was calculated using the historical description of cleanup activities reported by 47 cleanup workers shortly after the completion of the cleanup mission. Second, a "current" dose that was calculated using information reported by 47 cleanup workers and respective 24 proxies (colleagues) nominated by cleanup workers during a personal interview conducted more recently, as part of this study, i.e., 25-30 years after their cleanup missions. The Jaccard similarity coefficient for reference and current doses was moderate: the arithmetic mean ± standard deviation was 0.29 ± 0.18 (median = 0.31) and 0.23 ± 0.18 (median = 0.22) for the cleanup worker's and proxy's interviews, respectively. The agreement between two doses was better if the cleanup worker was interviewed rather than his proxy: the median ratio of current to reference dose was 1.0 and 0.56 for cleanup workers and proxies, respectively. The present study has shown that human factor uncertainties lead to underestimation or overestimation of the "true" reference dose for most cleanup workers up to 3 times. In turn, the potential impact of these errors on radiation-related risk estimates should be assessed.
Collapse
Affiliation(s)
- Vladimir Drozdovitch
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, Maryland
| | - Konstantin Chizhov
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, Bethesda, Maryland
| | - Vadim Chumak
- National Research Centre for Radiation Medicine, Kyiv, Ukraine
| | - Elena Bakhanova
- National Research Centre for Radiation Medicine, Kyiv, Ukraine
| | | | | | - Ivan Golovanov
- State Research Center – Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | - Victor Kryuchkov
- State Research Center – Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
7
|
Thorne MC. Special issues and computational techniques: the Bernard Wheatley Award for 2021. JOURNAL OF RADIOLOGICAL PROTECTION : OFFICIAL JOURNAL OF THE SOCIETY FOR RADIOLOGICAL PROTECTION 2022; 42:030201. [PMID: 35815731 DOI: 10.1088/1361-6498/ac7e03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Affiliation(s)
- M C Thorne
- Quarry Cottage, Hamsterley, Bishop Auckland, County Durham, DL13 3NJ, United Kingdom
| |
Collapse
|
8
|
Chizhov K, Drozdovitch V, Bragin Y, Mark NK, Szőke I, Golovanov I, Chumak V, Kryuchkov V. 3D simulations for evaluation of location factors in an urban environment: application of a novel methodology to calculate external exposure doses for evacuees from Pripyat. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2021; 60:611-629. [PMID: 34537881 PMCID: PMC8637943 DOI: 10.1007/s00411-021-00940-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
This article presents a methodology for assessing the radiation doses in an urban environment due to external irradiation from radionuclides deposited on the ground and other surfaces as well as from a passing radioactive cloud. The approach was developed and applied to assess individual doses of residents of the town of Pripyat who were evacuated shortly after the Chernobyl accident. Typically, the so-called location factor is defined as the ratio of the dose rate at a point of exposure and the dose rate at an undisturbed lawn far from any buildings. The present study used a new definition of the location factor as a regular four-dimensional grid of ratios of air kerma rates indoors and outdoors distributed in space and time. The location factors were calculated for two scenarios: outdoor and indoor values for typical apartments and buildings in Pripyat. Indoor location factors varied within two orders of magnitude depending on the floor of residence and place of staying inside the apartment. Values of the indoor location factor differed during the daytime and night by a factor of 30-40 depending on the behaviour of an individual within the apartment. Both, outdoor and indoor location factors decreased with decreasing distances between buildings. It was shown that during the first 4 days after the accident, air kerma rates in Pripyat were governed by the radionuclides deposited on the ground surface, and not by radionuclides in the cloud. Specifically, the contribution of the radioactive cloud to air kerma rate was maximal (i.e., 2.3%) on the morning of 28 April 1986. The methodology and results of this study are currently being used to reconstruct the radiation gonadal dose for the subjects of the American-Ukrainian study of parental irradiation in Chernobyl cleanup workers and evacuees for investigating germline mutations in their offspring.
Collapse
Affiliation(s)
- Konstantin Chizhov
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS 9609 Medical Center Drive, Room 7E548 MSC 9778, Bethesda, MD, 20892-9778, USA
| | - Vladimir Drozdovitch
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS 9609 Medical Center Drive, Room 7E548 MSC 9778, Bethesda, MD, 20892-9778, USA.
| | - Yuri Bragin
- State Research Center, Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | | | | | - Ivan Golovanov
- State Research Center, Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| | - Vadim Chumak
- National Research Centre for Radiation Medicine, Kyiv, Ukraine
| | - Victor Kryuchkov
- State Research Center, Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
9
|
Abstract
Transgenerational effects have long been expected in children from parents exposed to radiation from atomic bombs in Japan in 1945 or from the Chernobyl disaster in 1986. These effects have in fact proven hard to detect. A new large-scale study based on high-quality whole genome sequencing of father/mother/child trios in which the parental radiation dose is known now demonstrates that the rate of new mutations (50/70 per generation) is not detectably increased when comparing irradiated and non-irradiated parents. This solid data shows conclusively that transgenerational effects of irradiation from the Chernobyl disaster are absent or undetectable.
Collapse
Affiliation(s)
- Bertrand Jordan
- UMR 7268 ADÉS, Aix-Marseille, Université /EFS/CNRS ; CoReBio PACA, case 901, Parc scientifique de Luminy, 13288 Marseille Cedex 09, France
| |
Collapse
|
10
|
Yeager M, Machiela MJ, Kothiyal P, Dean M, Bodelon C, Suman S, Wang M, Mirabello L, Nelson CW, Zhou W, Palmer C, Ballew B, Colli LM, Freedman ND, Dagnall C, Hutchinson A, Vij V, Maruvka Y, Hatch M, Illienko I, Belayev Y, Nakamura N, Chumak V, Bakhanova E, Belyi D, Kryuchkov V, Golovanov I, Gudzenko N, Cahoon EK, Albert P, Drozdovitch V, Little MP, Mabuchi K, Stewart C, Getz G, Bazyka D, Berrington de Gonzalez A, Chanock SJ. Lack of transgenerational effects of ionizing radiation exposure from the Chernobyl accident. Science 2021; 372:725-729. [PMID: 33888597 DOI: 10.1126/science.abg2365] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/12/2021] [Indexed: 12/15/2022]
Abstract
Effects of radiation exposure from the Chernobyl nuclear accident remain a topic of interest. We investigated germline de novo mutations (DNMs) in children born to parents employed as cleanup workers or exposed to occupational and environmental ionizing radiation after the accident. Whole-genome sequencing of 130 children (born 1987-2002) and their parents did not reveal an increase in the rates, distributions, or types of DNMs relative to the results of previous studies. We find no elevation in total DNMs, regardless of cumulative preconception gonadal paternal [mean = 365 milligrays (mGy), range = 0 to 4080 mGy] or maternal (mean = 19 mGy, range = 0 to 550 mGy) exposure to ionizing radiation. Thus, we conclude that, over this exposure range, evidence is lacking for a substantial effect on germline DNMs in humans, suggesting minimal impact from transgenerational genetic effects.
Collapse
Affiliation(s)
- Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA. .,Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA
| | - Prachi Kothiyal
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA.,SymbioSeq LLC, Arlington, VA 20148, USA
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA.,Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Clara Bodelon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA
| | - Shalabh Suman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA.,Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Mingyi Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA.,Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Lisa Mirabello
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA
| | - Chase W Nelson
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan.,Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA.,Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Cameron Palmer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA.,Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Bari Ballew
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA.,Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Leandro M Colli
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA.,Department of Medical Imaging, Hematology, and Oncology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| | - Neal D Freedman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA
| | - Casey Dagnall
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA.,Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA.,Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Vibha Vij
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA
| | - Yosi Maruvka
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Maureen Hatch
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA
| | - Iryna Illienko
- National Research Centre for Radiation Medicine, 53 Yu. Illienka Street, Kyiv, 04050, Ukraine
| | - Yuri Belayev
- National Research Centre for Radiation Medicine, 53 Yu. Illienka Street, Kyiv, 04050, Ukraine
| | - Nori Nakamura
- Department of Molecular Biosciences, Radiation Effects Research Foundation, 5-2 Hijiyama Park, Minami-ku, Hiroshima, 732-0815, Japan
| | - Vadim Chumak
- National Research Centre for Radiation Medicine, 53 Yu. Illienka Street, Kyiv, 04050, Ukraine
| | - Elena Bakhanova
- National Research Centre for Radiation Medicine, 53 Yu. Illienka Street, Kyiv, 04050, Ukraine
| | - David Belyi
- National Research Centre for Radiation Medicine, 53 Yu. Illienka Street, Kyiv, 04050, Ukraine
| | - Victor Kryuchkov
- Burnasyan Federal Medical and Biophysical Centre, 46 Zhivopisnaya Street, Moscow, 123182, Russia
| | - Ivan Golovanov
- Burnasyan Federal Medical and Biophysical Centre, 46 Zhivopisnaya Street, Moscow, 123182, Russia
| | - Natalia Gudzenko
- National Research Centre for Radiation Medicine, 53 Yu. Illienka Street, Kyiv, 04050, Ukraine
| | - Elizabeth K Cahoon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA
| | - Paul Albert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA
| | - Vladimir Drozdovitch
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA
| | - Mark P Little
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA
| | - Kiyohiko Mabuchi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA
| | - Chip Stewart
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Gad Getz
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA.,Harvard Medical School, Boston, MA 02115, USA
| | - Dimitry Bazyka
- National Research Centre for Radiation Medicine, 53 Yu. Illienka Street, Kyiv, 04050, Ukraine
| | | | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD 20892, USA.
| |
Collapse
|