1
|
Jonker D, Srivastava K, Lafuente M, Susarrey-Arce A, van der Stam W, van den Berg A, Odijk M, Gardeniers HJ. Low-Variance Surface-Enhanced Raman Spectroscopy Using Confined Gold Nanoparticles over Silicon Nanocones. ACS APPLIED NANO MATERIALS 2023; 6:9657-9669. [PMID: 37325012 PMCID: PMC10262153 DOI: 10.1021/acsanm.3c01249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) substrates are of utmost interest in the analyte detection of biological and chemical diagnostics. This is primarily due to the ability of SERS to sensitively measure analytes present in localized hot spots of the SERS nanostructures. In this work, we present the formation of 67 ± 6 nm diameter gold nanoparticles supported by vertically aligned shell-insulated silicon nanocones for ultralow variance SERS. The nanoparticles are obtained through discrete rotation glancing angle deposition of gold in an e-beam evaporating system. The morphology is assessed through focused ion beam tomography, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. The optical properties are discussed and evaluated through reflectance measurements and finite-difference time-domain simulations. Lastly, the SERS activity is measured by benzenethiol functionalization and subsequent Raman spectroscopy in the surface scanning mode. We report a homogeneous analytical enhancement factor of 2.2 ± 0.1 × 107 (99% confidence interval for N = 400 grid spots) and made a comparison to other lithographically derived assemblies used in SERS. The strikingly low variance (4%) of our substrates facilitates its use for many potential SERS applications.
Collapse
Affiliation(s)
- Dirk Jonker
- Mesoscale
Chemical Systems, MESA+ Institute, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ketki Srivastava
- BIOS,
MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Marta Lafuente
- Mesoscale
Chemical Systems, MESA+ Institute, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Arturo Susarrey-Arce
- Mesoscale
Chemical Systems, MESA+ Institute, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Ward van der Stam
- Inorganic
Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry
and Debye Institute for Nanomaterial Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Albert van den Berg
- BIOS,
MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Mathieu Odijk
- BIOS,
MESA+ Institute, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Han J.G.E Gardeniers
- Mesoscale
Chemical Systems, MESA+ Institute, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
2
|
Jonker D, Berenschot EJW, Tas NR, Tiggelaar RM, van Houselt A, Gardeniers HJGE. Large Dense Periodic Arrays of Vertically Aligned Sharp Silicon Nanocones. NANOSCALE RESEARCH LETTERS 2022; 17:100. [PMID: 36245035 PMCID: PMC9573847 DOI: 10.1186/s11671-022-03735-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Convex cylindrical silicon nanostructures, also referred to as silicon nanocones, find their value in many applications ranging from photovoltaics to nanofluidics, nanophotonics, and nanoelectronic applications. To fabricate silicon nanocones, both bottom-up and top-down methods can be used. The top-down method presented in this work relies on pre-shaping of silicon nanowires by ion beam etching followed by self-limited thermal oxidation. The combination of pre-shaping and oxidation obtains high-density, high aspect ratio, periodic, and vertically aligned sharp single-crystalline silicon nanocones at the wafer-scale. The homogeneity of the presented nanocones is unprecedented and may give rise to applications where numerical modeling and experiments are combined without assumptions about morphology of the nanocone. The silicon nanocones are organized in a square periodic lattice, with 250 nm pitch giving arrays containing 1.6 billion structures per square centimeter. The nanocone arrays were several mm2 in size and located centimeters apart across a 100-mm-diameter single-crystalline silicon (100) substrate. For single nanocones, tip radii of curvature < 3 nm were measured. The silicon nanocones were vertically aligned, baring a height variation of < 5 nm (< 1%) for seven adjacent nanocones, whereas the height inhomogeneity is < 80 nm (< 16%) across the full wafer scale. The height inhomogeneity can be explained by inhomogeneity present in the radii of the initial columnar polymer mask. The presented method might also be applicable to silicon micro- and nanowires derived through other top-down or bottom-up methods because of the combination of ion beam etching pre-shaping and thermal oxidation sharpening. A novel method is presented where argon ion beam etching and thermal oxidation sharpening are combined to tailor a high-density single-crystalline silicon nanowire array into a vertically aligned single-crystalline silicon nanocones array with < 3 nm apex radius of curvature tips, at the wafer scale.
Collapse
Affiliation(s)
- Dirk Jonker
- Mesoscale Chemical Systems, University of Twente, MESA+ Institute, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
- Physics of Interfaces and Nanomaterials, University of Twente, MESA+ Institute, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | - Erwin J W Berenschot
- Mesoscale Chemical Systems, University of Twente, MESA+ Institute, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Niels R Tas
- Mesoscale Chemical Systems, University of Twente, MESA+ Institute, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Roald M Tiggelaar
- NanoLab Cleanroom, University of Twente, MESA+ Institute, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Arie van Houselt
- Physics of Interfaces and Nanomaterials, University of Twente, MESA+ Institute, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Han J G E Gardeniers
- Mesoscale Chemical Systems, University of Twente, MESA+ Institute, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
3
|
MoS 2-based absorbers with whole visible spectrum coverage and high efficiency. Sci Rep 2022; 12:6313. [PMID: 35428852 PMCID: PMC9022136 DOI: 10.1038/s41598-022-10280-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 04/04/2022] [Indexed: 11/09/2022] Open
Abstract
To design highly efficient and broadband nanometer-sized absorbers based on the atomically thin transition metal dichalcogenides (TMDCs), we propose utilizing inclined gold gratings on MoS2 monolayer. In the case of gold gratings with zero inclination, coverage of the absorption spectrum in the entire visible range occurs between the values of 42% to 73%. Considerable increase in the absorbed light occurs by introducing 13 nm inclination to the gold gratings with equal values of the grating's period and width as 60 nm. With the application of this grating, maximum absorption of 88% is reached and the absorption bandwidth covers the entire visible spectrum with only 12% variation of the absorption value relative to this maximum (88%). Footprints of resonant excitation of two different modes in the absorber structure are evident: the named "reflection" mode and localized surface plasmons (LSPs). Inclination of the gratings leads the LSP modes to slide toward the MoS2 and causes a remarkable increment in the absorption efficiency. An impressive absorption value of 56% in MoS2 monolayer is gained by the gold grating's inclination of 17 nm. The designed absorber paves a new way in designing TMDC-based absorbers with extended bandwidths and higher efficiencies.
Collapse
|
4
|
Jonker D, Jafari Z, Winczewski JP, Eyovge C, Berenschot JW, Tas NR, Gardeniers JGE, De Leon I, Susarrey-Arce A. A wafer-scale fabrication method for three-dimensional plasmonic hollow nanopillars. NANOSCALE ADVANCES 2021; 3:4926-4939. [PMID: 34485816 PMCID: PMC8386417 DOI: 10.1039/d1na00316j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Access to nanofabrication strategies for crafting three-dimensional plasmonic structures is limited. In this work, a fabrication strategy to produce 3D plasmonic hollow nanopillars (HNPs) using Talbot lithography and I-line photolithography is introduced. This method is named subtractive hybrid lithography (SHL), and permits intermixed usage of nano-and-macroscale patterns. Sputter-redeposition of gold (Au) on the SHL resist pattern yields large areas of dense periodic Au-HNPs. These Au-HNPs are arranged in a square unit cell with a 250 nm pitch. The carefully controlled fabrication process resulted in Au-HNPs with nanoscale dimensions over the Au-HNP dimensions such as an 80 ± 2 nm thick solid base with a 133 ± 4 nm diameter, and a 170 ± 10 nm high nano-rim with a 14 ± 3 nm sidewall rim-thickness. The plasmonic optical response is assessed with FDTD-modeling and reveals that the highest field enhancement is at the top of the hollow nanopillar rim. The modeled field enhancement factor (EF) is compared to the experimental analytical field enhancement factor, which shows to pair up with ca. 103 < EF < 104 and ca. 103 < EF < 105 for excitation wavelengths of 633 and 785 nm. From a broader perspective, our results can stimulate the use of Au-HNPs in the fields of plasmonic sensors and spectroscopy.
Collapse
Affiliation(s)
- D Jonker
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217 Enschede 7500AE The Netherlands
| | - Z Jafari
- School of Engineering and Sciences, Tecnologico de Monterrey Monterrey Nuevo Leon 64849 Mexico
| | - J P Winczewski
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217 Enschede 7500AE The Netherlands
| | - C Eyovge
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217 Enschede 7500AE The Netherlands
| | - J W Berenschot
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217 Enschede 7500AE The Netherlands
| | - N R Tas
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217 Enschede 7500AE The Netherlands
| | - J G E Gardeniers
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217 Enschede 7500AE The Netherlands
| | - I De Leon
- School of Engineering and Sciences, Tecnologico de Monterrey Monterrey Nuevo Leon 64849 Mexico
| | - A Susarrey-Arce
- Mesoscale Chemical Systems, MESA+ Institute, University of Twente PO. Box 217 Enschede 7500AE The Netherlands
| |
Collapse
|