1
|
Sjökvist R, Tornberg M, Marnauza M, Jacobsson D, Dick KA. Observation of the Multilayer Growth Mode in Ternary InGaAs Nanowires. ACS NANOSCIENCE AU 2022; 2:539-548. [PMID: 37101854 PMCID: PMC10125347 DOI: 10.1021/acsnanoscienceau.2c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 04/28/2023]
Abstract
Au-seeded semiconductor nanowires have classically been considered to only grow in a layer-by-layer growth mode, where individual layers nucleate and grow one at a time with an incubation step in between. Recent in situ investigations have shown that there are circumstances where binary semiconductor nanowires grow in a multilayer fashion, creating a stack of incomplete layers at the interface between a nanoparticle and a nanowire. In the current investigation, the growth behavior in ternary InGaAs nanowires has been analyzed in situ, using environmental transmission electron microscopy. The investigation has revealed that multilayer growth also occurs for ternary nanowires and appears to be more common than in the binary case. In addition, the size of the multilayer stacks observed is much larger than what has been reported previously. The investigation details the implications of multilayers for the overall growth of the nanowires, as well as the surrounding conditions under which it has manifested. We show that multilayer growth is highly dynamic, where the stack of layers regularly changes size by transporting material between the growing layers. Another observation is that multilayer growth can be initiated in conjunction with the formation of crystallographic defects and compositional changes. In addition, the role that multilayers can have in behaviors such as growth failure and kinking, sometimes observed when creating heterostructures between GaAs and InAs ex situ, is discussed. The prevalence of multilayer growth in this ternary material system implies that, in order to fully understand and accurately predict the growth of nanowires of complex composition and structure, multilayer growth has to be considered.
Collapse
Affiliation(s)
- Robin Sjökvist
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
| | - Marcus Tornberg
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
| | - Mikelis Marnauza
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
| | - Daniel Jacobsson
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
- National
Centre for High Resolution Electron Microscopy, Lund University, Box 124, 22100 Lund, Sweden
| | - Kimberly A. Dick
- Centre
for Analysis and Synthesis, Lund University, Box 124, 22100 Lund, Sweden
- NanoLund, Lund University, Box
118, 22100 Lund, Sweden
| |
Collapse
|
2
|
Jaffal A, Redjem W, Regreny P, Nguyen HS, Cueff S, Letartre X, Patriarche G, Rousseau E, Cassabois G, Gendry M, Chauvin N. InAs quantum dot in a needlelike tapered InP nanowire: a telecom band single photon source monolithically grown on silicon. NANOSCALE 2019; 11:21847-21855. [PMID: 31696191 DOI: 10.1039/c9nr06114b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Realizing single photon sources emitting in the telecom band on silicon substrates is essential to reach complementary-metal-oxide-semiconductor (CMOS) compatible devices that secure communications over long distances. In this work, we propose the monolithic growth of needlelike tapered InAs/InP quantum dot-nanowires (QD-NWs) on silicon substrates with a small taper angle and a nanowire diameter tailored to support a single mode waveguide. Such a NW geometry is obtained by a controlled balance over axial and radial growths during the gold-catalyzed growth of the NWs by molecular beam epitaxy. This allows us to investigate the impact of the taper angle on the emission properties of a single InAs/InP QD-NW. At room temperature, a Gaussian far-field emission profile in the telecom O-band with a beam divergence angle θ = 30° is demonstrated using a single InAs QD embedded in a 2° tapered InP NW. Moreover, single photon emission is observed at cryogenic temperature for an off-resonant excitation and the best result, g2(0) = 0.05, is obtained for a 7° tapered NW. This all-encompassing study paves the way for the monolithic growth on silicon of an efficient single photon source in the telecom band based on InAs/InP QD-NWs.
Collapse
Affiliation(s)
- Ali Jaffal
- Université de Lyon, Institut des Nanotechnologies de Lyon, UMR 5270 CNRS, INSA de Lyon, 7 avenue Jean Capelle, 69621 Villeurbanne cedex, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Zamani RR, Arbiol J. Understanding semiconductor nanostructures via advanced electron microscopy and spectroscopy. NANOTECHNOLOGY 2019; 30:262001. [PMID: 30812017 DOI: 10.1088/1361-6528/ab0b0a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Transmission electron microscopy (TEM) offers an ample range of complementary techniques which are able to provide essential information about the physical, chemical and structural properties of materials at the atomic scale, and hence makes a vast impact on our understanding of materials science, especially in the field of semiconductor one-dimensional (1D) nanostructures. Recent advancements in TEM instrumentation, in particular aberration correction and monochromation, have enabled pioneering experiments in complex nanostructure material systems. This review aims to address these understandings through the applications of the methodology for semiconductor nanostructures. It points out various electron microscopy techniques, in particular scanning TEM (STEM) imaging and spectroscopy techniques, with their already-employed or potential applications on 1D nanostructured semiconductors. We keep the main focus of the paper on the electronic and optoelectronic properties of such semiconductors, and avoid expanding it further. In the first part of the review, we give a brief introduction to each of the STEM-based techniques, without detailed elaboration, and mention the recent technological and conceptual developments which lead to novel characterization methodologies. For further reading, we refer the audience to a handful of papers in the literature. In the second part, we highlight the recent examples of application of the STEM methodology on the 1D nanostructure semiconductor materials, especially III-V, II-V, and group IV bare and heterostructure systems. The aim is to address the research questions on various physical properties and introduce solutions by choosing the appropriate technique that can answer the questions. Potential applications will also be discussed, the ones that have already been used for bulk and 2D materials, and have shown great potential and promise for 1D nanostructure semiconductors.
Collapse
Affiliation(s)
- Reza R Zamani
- Department of Physics, Chalmers University of Technology, Gothenburg, SE-41296, Sweden. Interdisciplinary Centre for Electron Microscopy (CIME), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | | |
Collapse
|