1
|
Xiao N, Chen Y, Weng W, Chi X, Chen H, Tang D, Zhong S. Mechanism Understanding for Size Regulation of Silver Nanowires Mediated by Halogen Ions. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2681. [PMID: 35957112 PMCID: PMC9370693 DOI: 10.3390/nano12152681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 02/01/2023]
Abstract
The controllable preparation of silver nanowires (AgNWs) with a high aspect ratio is key for enabling their applications on a large scale. Herein, the aspect ratio regulation of AgNWs mediated by halogen ion composition in ethylene glycol system was systematically investigated and the size evolution mechanism is elaborately understood. The co-addition of Br- and Cl- results in AgNWs with the highest aspect ratio of 1031. The surface physicochemical analysis of AgNWs and the density functional theory calculations indicate that the co-addition of Br- and Cl- contributes to the much-enhanced preferential growth of the Ag(111) crystal plane. At the same time, when Cl- and Br- coexist in the solution, the growth of the Ag(100) crystal plane on the AgNWs was restrained compared with that in the single Cl- system. Resultantly, the enhanced growth of Ag(111) and the inhibited growth of Ag(100) contribute to the formation of AgNWs with a higher aspect ratio in the Cl-Br mixed solution. The results can provide new insights for understanding the morphology and size evolution during the AgNWs preparation in ethylene glycol system.
Collapse
Affiliation(s)
- Ni Xiao
- School of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yinan Chen
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
| | - Wei Weng
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
- Fujian Key Laboratory of Green Extraction and High-Value Utilization of Energy Metals, Fuzhou University, Fuzhou 350108, China
| | - Xiaopeng Chi
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
- Fujian Key Laboratory of Green Extraction and High-Value Utilization of Energy Metals, Fuzhou University, Fuzhou 350108, China
| | - Hang Chen
- Zijin Mining Group Co., Ltd., Shanghang 364200, China
- State Key Laboratory of Comprehensive Utilization of Low Grade Refractory Gold Ores, Shanghang 364200, China
| | - Ding Tang
- Zijin Mining Group Co., Ltd., Shanghang 364200, China
- State Key Laboratory of Comprehensive Utilization of Low Grade Refractory Gold Ores, Shanghang 364200, China
| | - Shuiping Zhong
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
- Fujian Key Laboratory of Green Extraction and High-Value Utilization of Energy Metals, Fuzhou University, Fuzhou 350108, China
- Zijin Mining Group Co., Ltd., Shanghang 364200, China
- State Key Laboratory of Comprehensive Utilization of Low Grade Refractory Gold Ores, Shanghang 364200, China
| |
Collapse
|
2
|
Chen S, Li Q, Tian D, Ke P, Yang X, Wu Q, Chen J, Hu C, Ji H. Assembly of long silver nanowires into highly aligned structure to achieve uniform "Hot Spots" for Surface-enhanced Raman scattering detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 273:121030. [PMID: 35189488 DOI: 10.1016/j.saa.2022.121030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
Silver nanowires (AgNWs) as a promising surface-enhanced Raman spectroscopy (SERS) substrate could be used in the analytical science due to its high sensitivity. However, it is difficult for the randomly-distributed silver nanowires to offer uniform "hot spots" to achieve the SERS signal reproducibility of small molecules detection. Herein, the evaporation-induced aggregation had been used to assemble long silver nanowires into highly aligned structure to achieve uniform "hot spots" for SERS detection. The normal glass slide with well-aligned silver nanowires could act as a high sensitivity and excellent reproducibility SERS substrate to provide a versatile platform for detecting analytes. Rhodamine 6G (R6G) is used to evaluate the sensitivity and reproducibility of these AgNWs SERS substrates. Even the low concentration of the R6G was 10-10 mol/L, the SERS features of R6G could be still observed clearly, and the uniform distribution of enhancement factor (EF) was higher than 0.8 × 104 accounting for about 75 % in the observed mapping area. Moreover, the relative standard deviation (RSD) of SERS intensity at the band of 610 cm-1 was used to estimate the signal reproducibility, and the calculated RSD value of aligned AgNWs substrate was about 3.6%, which was much higher than that of the randomly distributed AgNWs (26.8%) because of the highly aligned structure of silver nanowires with abundant and uniform inherent "hot spots". In addition, potential SERS detection of other small molecule, e.g. melamine was also demonstrated in the micromolar range.
Collapse
Affiliation(s)
- Shaoyun Chen
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Qi Li
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Du Tian
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Pai Ke
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Xinxin Yang
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Qingyun Wu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China
| | - Jian Chen
- Instrumental Analysis and Research Center, Sun Yat-sen University, Guangzhou 510275, China
| | - Chenglong Hu
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, School of Optoelectronic Materials and Technology, Jianghan University, Wuhan 430056, China.
| | - Hongbing Ji
- Fine Chemical Industry Research Institute, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
3
|
Controllable growth of branched silver crystals over a rod of the same material as an efficient electrode in CO2 reduction at high current densities. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Yan S, Chen C, Zhang F, Mahyoub SA, Cheng Z. High-density Ag nanosheets for selective electrochemical CO 2 reduction to CO. NANOTECHNOLOGY 2021; 32:165705. [PMID: 33361577 DOI: 10.1088/1361-6528/abd6af] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To increase the specific surface area, high-density (i.e. number per unit area) Ag nanosheets (ANS) with large electrochemically active surface area and rich edge active sites over Ag plates were synthesized via a facile electrodeposition approach in a double electrode system at a constant current of -1 mA for 1800 s. By adjusting the concentration of H3BO3 (0.5 M, 0.1 M and 0.05 M), which is used to control the growth direction of ANS, ANS-20, -50, -350 were obtained with varying thickness of 20 nm, 50 nm, and 350 nm, respectively. Notably, ANS-20 showed a remarkable current density of -6.48 mA cm-2 at -0.9 V versus the reversible hydrogen electrode (RHE), which is almost 1.6 and 2.4 times as high as those of ANS-50 and -350, respectively. Furthermore, ANS-20 exhibits the best CO selectivity of 91.2% at -0.8 V versus RHE, while the other two give 84.6% and 77.9% at the same potential. The excellent performance of ANS-20 is attributed to its rich edge active sites and large electrochemically active surface area (ECSA).
Collapse
Affiliation(s)
- Shenglin Yan
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Chengzhen Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Fanghua Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Samah A Mahyoub
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Zhenmin Cheng
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
5
|
Huang X, Mutlu H, Théato P. The toolbox of porous anodic aluminum oxide–based nanocomposites: from preparation to application. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04734-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractAnodic aluminum oxide (AAO) templates have been intensively investigated during the past decades and have meanwhile been widely applied through both sacrificial and non-sacrificial pathways. In numerous non-sacrificial applications, the AAO membrane is maintained as part of the obtained composite materials; hence, the template structure and topography determine to a great extent the potential applications. Through-hole isotropic AAO features nanochannels that promote transfer of matter, while anisotropic AAO with barrier layer exhibits nanocavities suitable as independent and homogenous containers. By combining the two kinds of AAO membranes with diverse organic and inorganic materials through physical interactions or chemical bonds, AAO composites are designed and applied in versatile fields such as catalysis, drug release platform, separation membrane, optical appliances, sensors, cell culture, energy, and electronic devices. Therefore, within this review, a perspective on exhilarating prospect for complementary advancement on AAO composites both in preparation and application is provided.
Collapse
|
6
|
Shi Y, He L, Deng Q, Liu Q, Li L, Wang W, Xin Z, Liu R. Synthesis and Applications of Silver Nanowires for Transparent Conductive Films. MICROMACHINES 2019; 10:E330. [PMID: 31100913 PMCID: PMC6562472 DOI: 10.3390/mi10050330] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 01/15/2023]
Abstract
Flexible transparent conductive electrodes (TCEs) are widely applied in flexible electronic devices. Among these electrodes, silver (Ag) nanowires (NWs) have gained considerable interests due to their excellent electrical and optical performances. Ag NWs with a one-dimensional nanostructure have unique characteristics from those of bulk Ag. In past 10 years, researchers have proposed various synthesis methods of Ag NWs, such as ultraviolet irradiation, template method, polyol method, etc. These methods are discussed and summarized in this review, and we conclude that the advantages of the polyol method are the most obvious. This review also provides a more comprehensive description of the polyol method for the synthesis of Ag NWs, and the synthetic factors including AgNO3 concentration, addition of other metal salts and polyvinyl pyrrolidone are thoroughly elaborated. Furthermore, several problems in the fabrication of Ag NWs-based TCEs and related devices are reviewed. The prospects for applications of Ag NWs-based TCE in solar cells, electroluminescence, electrochromic devices, flexible energy storage equipment, thin-film heaters and stretchable devices are discussed and summarized in detail.
Collapse
Affiliation(s)
- Yue Shi
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China.
| | - Liang He
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.
| | - Qian Deng
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China.
| | - Quanxiao Liu
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China.
| | - Luhai Li
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China.
| | - Wei Wang
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China.
| | - Zhiqing Xin
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China.
| | - Ruping Liu
- School of Printing and Packaging Engineering, Beijing Institute of Graphic Communication, Beijing 102600, China.
| |
Collapse
|