1
|
Ren Z, Yu H, Zhang J, Li X, Xu S, Chen B. Remarkable Near-Infrared Temperature Sensing Properties of Y 3Ga 5O 12:Cr 3+ and Y 3Ga 5O 12:Cr 3+/Yb 3+ Nanotubes Fabricated via a Single-Needle Electrospinning Technique. Inorg Chem 2024; 63:21155-21166. [PMID: 39445543 DOI: 10.1021/acs.inorgchem.4c03456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
For the first time, nanotubes of Y3Ga5O12:Cr3+ (referred to as YGO:Cr3+) and Y3Ga5O12:Cr3+/Yb3+ (referred to as YGO:Cr3+/Yb3+) were produced via a single-needle electrospinning method. The nanotubes of YGO:Cr3+ and YGO:Cr3+/Yb3+ have outer diameters between 190 and 210 nm, whereas the inner diameter ranges between 70 and 80 nm, and the wall thickness ranges from 50 to 60 nm. The temperature sensitivity of YGO:0.02Cr3+ nanotubes was examined by studying how the Cr3+ lifetime changes with temperature. In the temperature range of 303 to 723 K, the peak values of Sa and Sr were 0.274 and 0.0067 K-1, respectively. Temperature sensing properties of YGO:0.02Cr3+/yYb3+ (y = 0.01, 0.02, and 0.05) nanotubes were evaluated via the FIR technique utilizing nonthermally coupled energy levels. The I970/I708 in the YGO:0.05Cr3+/0.01Yb3+ nanotubes displayed a maximal Sr value of 0.013 K-1 at 633 K, which exceeds that of other Cr3+-doped NIR phosphors previously reported and is promising for high-temperature measurements.
Collapse
Affiliation(s)
- Zhichao Ren
- Department of Physics, Dalian Maritime University, Dalian 116026, Liaoning,China
| | - Hongquan Yu
- Department of Physics, Dalian Maritime University, Dalian 116026, Liaoning,China
| | - Jinsu Zhang
- Department of Physics, Dalian Maritime University, Dalian 116026, Liaoning,China
| | - Xiangping Li
- Department of Physics, Dalian Maritime University, Dalian 116026, Liaoning,China
| | - Sai Xu
- Department of Physics, Dalian Maritime University, Dalian 116026, Liaoning,China
| | - Baojiu Chen
- Department of Physics, Dalian Maritime University, Dalian 116026, Liaoning,China
| |
Collapse
|
2
|
Song Y, Han N, Guo Z, Li H, Guo M, Dou M, Ye J, Peng Z, Lu X, Li M, Wang X, Bai J, Du S. Baicalein-modified chitosan nanofiber membranes with antioxidant and antibacterial activities for chronic wound healing. Int J Biol Macromol 2024; 279:134902. [PMID: 39168207 DOI: 10.1016/j.ijbiomac.2024.134902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Diabetic foot ulcers, burns and many other trauma can lead to the formation of skin wounds, which often remain open for a long period of time, seriously affecting the quality of patient's life. Oxidative stress and infection are the main factors affecting the healing of chronic wounds, so it is important to develop dressings with dual antioxidant and antimicrobial properties for wound management. In this study, functionalized chitosan was synthesized by modifying chitosan with antioxidant baicalein to enhance the antimicrobial and antioxidant activities of chitosan. Then the obtained baicalein-modified chitosan was prepared into nanofibrous membranes by electrospinning. The membrane structures were characterized, and the antioxidant and antibacterial activities were evaluated by in vivo and in vitro experiments. The results showed that the prepared wound dressings had excellent antioxidant and antibacterial activities and significantly accelerated the wound process. This study provided a reference for the development of novel dressing materials to promote wound healing.
Collapse
Affiliation(s)
- Yang Song
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Ning Han
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Zishuo Guo
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Huahua Li
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Mingxue Guo
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Minhang Dou
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Jinhong Ye
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Ziwei Peng
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Xinying Lu
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Minghui Li
- Beijing university of Chinese Medicine, Beijing 102488, China
| | - Xinran Wang
- Beijing university of Chinese Medicine, Beijing 102488, China.
| | - Jie Bai
- Beijing university of Chinese Medicine, Beijing 102488, China.
| | - Shouying Du
- Beijing university of Chinese Medicine, Beijing 102488, China.
| |
Collapse
|
3
|
Rajeev A, Yin L, Kalambate PK, Khabbaz MB, Trinh B, Kamkar M, Mekonnen TH, Tang S, Zhao B. Nano-enabled smart and functional materials toward human well-being and sustainable developments. NANOTECHNOLOGY 2024; 35:352003. [PMID: 38768585 DOI: 10.1088/1361-6528/ad4dac] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Fabrication and operation on increasingly smaller dimensions have been highly integrated with the development of smart and functional materials, which are key to many technological innovations to meet economic and societal needs. Along with researchers worldwide, the Waterloo Institute for Nanotechnology (WIN) has long realized the synergetic interplays between nanotechnology and functional materials and designated 'Smart & Functional Materials' as one of its four major research themes. Thus far, WIN researchers have utilized the properties of smart polymers, nanoparticles, and nanocomposites to develop active materials, membranes, films, adhesives, coatings, and devices with novel and improved properties and capabilities. In this review article, we aim to highlight some of the recent developments on the subject, including our own research and key research literature, in the context of the UN Sustainability development goals.
Collapse
Affiliation(s)
- Ashna Rajeev
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Lu Yin
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Pramod K Kalambate
- University of Waterloo, Department of Chemistry, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Mahsa Barjini Khabbaz
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Binh Trinh
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Milad Kamkar
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Tizazu H Mekonnen
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Institute for Polymer Research, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Centre for Bioengineering and Biotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Shirley Tang
- University of Waterloo, Department of Chemistry, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Centre for Bioengineering and Biotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Boxin Zhao
- University of Waterloo, Department of Chemical Engineering, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Waterloo Institute for Nanotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Institute for Polymer Research, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
- University of Waterloo, Centre for Bioengineering and Biotechnology, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
4
|
Zhang Y, Huang X, Chen J, Li J, Chen J. In situ assembly of silver nanoparticles throughout electrospun oriented alginate nanofibers for hazardous rust trace detection on bronze. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123739. [PMID: 38103354 DOI: 10.1016/j.saa.2023.123739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/26/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
A convenient and reliable surface-enhanced Raman scattering (SERS) substrate has been developed for the surface corrosion analysis of bronze artifacts. The substrate consists of oriented alginate nanofiber membranes containing silver nanoparticles (Ag NPs), which were obtained through electrostatic spinning, ion exchange, and in-situ reduction. By controlling the reduction time, Ag/alginate nanofiber membranes with different contents, sizes, and distributions were obtained. The Ag/alginate nanofiber#20 membranes, obtained with a reduction time of 20 min, reached a detection limit of 10-12 M for R6G with an enhancement factor of 6.64 × 107. In the trace detection of bronze patina, the intensity of the characteristic peaks of harmful patina located at 513, 846, 911, and 974 cm-1 were increased by more than 500 %. This was due to the uniform loading of a large number of Ag NPs on the surface of the nanofiber membrane obtained by reduction for 20 min, and the formation of a large number of hot spots between the oriented nanofibers. This significantly improved the SERS performance of the flexible substrate layer under the joint action with the Ag NPs. These results indicate that the flexible substrate layer can greatly enhance the Raman characteristic peaks of alkali copper chloride and be effectively used for trace analysis of the surface composition of bronze artifacts.
Collapse
Affiliation(s)
- Yahui Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Xia Huang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China.
| | - Jiachang Chen
- Henan Provincal Institute of Cultural Relices and Archaeology, Zhengzhou, Henan 450000, PR China.
| | - Jiyuan Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Junying Chen
- School of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
5
|
Chen X, Li H, Xu Z, Lu L, Pan Z, Mao Y. Electrospun Nanofiber-Based Bioinspired Artificial Skins for Healthcare Monitoring and Human-Machine Interaction. Biomimetics (Basel) 2023; 8:223. [PMID: 37366818 DOI: 10.3390/biomimetics8020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
Artificial skin, also known as bioinspired electronic skin (e-skin), refers to intelligent wearable electronics that imitate the tactile sensory function of human skin and identify the detected changes in external information through different electrical signals. Flexible e-skin can achieve a wide range of functions such as accurate detection and identification of pressure, strain, and temperature, which has greatly extended their application potential in the field of healthcare monitoring and human-machine interaction (HMI). During recent years, the exploration and development of the design, construction, and performance of artificial skin has received extensive attention from researchers. With the advantages of high permeability, great ratio surface of area, and easy functional modification, electrospun nanofibers are suitable for the construction of electronic skin and further demonstrate broad application prospects in the fields of medical monitoring and HMI. Therefore, the critical review is provided to comprehensively summarize the recent advances in substrate materials, optimized fabrication techniques, response mechanisms, and related applications of the flexible electrospun nanofiber-based bio-inspired artificial skin. Finally, some current challenges and future prospects are outlined and discussed, and we hope that this review will help researchers to better understand the whole field and take it to the next level.
Collapse
Affiliation(s)
- Xingwei Chen
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Han Li
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Ziteng Xu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Lijun Lu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Zhifeng Pan
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| | - Yanchao Mao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
6
|
Nezamdoost-Sani N, Khaledabad MA, Amiri S, Mousavi Khaneghah A. Alginate and derivatives hydrogels in encapsulation of probiotic bacteria: An updated review. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
7
|
A highly stretchable and self-healable hyperbranched polyurethane elastomer with excellent adhesion. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Dmitrieva E, Grushevenko E, Razlataya D, Golubev G, Rokhmanka T, Anokhina T, Bazhenov S. Alginate Ag for Composite Hollow Fiber Membrane: Formation and Ethylene/Ethane Gas Mixture Separation. MEMBRANES 2022; 12:1090. [PMID: 36363645 PMCID: PMC9696779 DOI: 10.3390/membranes12111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Membranes based on natural polymers, in particular alginate, are of great interest for various separation tasks. In particular, the possibility of introducing silver ions during the crosslinking of sodium alginate makes it possible to obtain a membrane with an active olefin transporter. In this work, the creation of a hollow fiber composite membrane with a selective layer of silver alginate is proposed for the first time. The approach to obtaining silver alginate is presented in detail, and its sorption and transport properties are also studied. It is worth noting the increased selectivity of the material for the ethylene/ethane mixture (more than 100). A technique for obtaining a hollow fiber membrane from silver alginate has been developed, and its separating characteristics have been determined. It is shown that in thin layers, silver alginate retains high values of selectivity for the ethylene/ethane gas pair. The obtained gas transport properties demonstrate the high potential of using membranes based on silver alginate for the separation of an olefin/paraffin mixture.
Collapse
|
9
|
Zdiri K, Cayla A, Elamri A, Erard A, Salaun F. Alginate-Based Bio-Composites and Their Potential Applications. J Funct Biomater 2022; 13:jfb13030117. [PMID: 35997455 PMCID: PMC9397003 DOI: 10.3390/jfb13030117] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Over the last two decades, bio-polymer fibers have attracted attention for their uses in gene therapy, tissue engineering, wound-healing, and controlled drug delivery. The most commonly used bio-polymers are bio-sourced synthetic polymers such as poly (glycolic acid), poly (lactic acid), poly (e-caprolactone), copolymers of polyglycolide and poly (3-hydroxybutyrate), and natural polymers such as chitosan, soy protein, and alginate. Among all of the bio-polymer fibers, alginate is endowed with its ease of sol–gel transformation, remarkable ion exchange properties, and acid stability. Blending alginate fibers with a wide range of other materials has certainly opened many new opportunities for applications. This paper presents an overview on the modification of alginate fibers with nano-particles, adhesive peptides, and natural or synthetic polymers, in order to enhance their properties. The application of alginate fibers in several areas such as cosmetics, sensors, drug delivery, tissue engineering, and water treatment are investigated. The first section is a brief theoretical background regarding the definition, the source, and the structure of alginate. The second part deals with the physico-chemical, structural, and biological properties of alginate bio-polymers. The third part presents the spinning techniques and the effects of the process and solution parameters on the thermo-mechanical and physico-chemical properties of alginate fibers. Then, the fourth part presents the additives used as fillers in order to improve the properties of alginate fibers. Finally, the last section covers the practical applications of alginate composite fibers.
Collapse
Affiliation(s)
- Khmais Zdiri
- Laboratoire de Génie et Matériaux Textiles, École Nationale Supérieure des Arts et Industries Textiles, Université de Lille, 59000 Lille, France
- Laboratoire de Physique et Mécanique Textiles, École Nationale Supérieure d’Ingénieurs Sud-Alsace, Université de Haute Alsace, EA 4365, 68100 Mulhouse, France
- Correspondence:
| | - Aurélie Cayla
- Laboratoire de Génie et Matériaux Textiles, École Nationale Supérieure des Arts et Industries Textiles, Université de Lille, 59000 Lille, France
| | - Adel Elamri
- Unité de Recherche Matériaux et Procédés Textiles, École Nationale d’Ingénieurs de Monastir, Université de Monastir, UR17ES33, Monastir 5019, Tunisia
| | - Annaëlle Erard
- Laboratoire de Génie et Matériaux Textiles, École Nationale Supérieure des Arts et Industries Textiles, Université de Lille, 59000 Lille, France
| | - Fabien Salaun
- Laboratoire de Génie et Matériaux Textiles, École Nationale Supérieure des Arts et Industries Textiles, Université de Lille, 59000 Lille, France
| |
Collapse
|
10
|
Multitasking smart hydrogels based on the combination of alginate and poly(3,4-ethylenedioxythiophene) properties: A review. Int J Biol Macromol 2022; 219:312-332. [PMID: 35934076 DOI: 10.1016/j.ijbiomac.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/28/2022] [Accepted: 08/02/2022] [Indexed: 11/05/2022]
Abstract
Poly(3,4-ethylenedioxythiophene) (PEDOT), a very stable and biocompatible conducting polymer, and alginate (Alg), a natural water-soluble polysaccharide mainly found in the cell wall of various species of brown algae, exhibit very different but at the same complementary properties. In the last few years, the remarkable capacity of Alg to form hydrogels and the electro-responsive properties of PEDOT have been combined to form not only layered composites (PEDOT-Alg) but also interpenetrated multi-responsive PEDOT/Alg hydrogels. These materials have been found to display outstanding properties, such as electrical conductivity, piezoelectricity, biocompatibility, self-healing and re-usability properties, pH and thermoelectric responsiveness, among others. Consequently, a wide number of applications are being proposed for PEDOT-Alg composites and, especially, PEDOT/Alg hydrogels, which should be considered as a new kind of hybrid material because of the very different chemical nature of the two polymeric components. This review summarizes the applications of PEDOT-Alg and PEDOT/Alg in tissue interfaces and regeneration, drug delivery, sensors, microfluidics, energy storage and evaporators for desalination. Special attention has been given to the discussion of multi-tasking applications, while the new challenges to be tackled based on aspects not yet considered in either of the two polymers have also been highlighted.
Collapse
|
11
|
Muthulakshmi L, Prabakaran S, Ramalingam V, Rajulu AV, Rajan M, Ramakrishna S, Luo H. Sodium alginate nanofibers loaded Terminalia catappa scaffold regulates intrinsic apoptosis signaling in skin melanoma cancer. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Maity C, Das N. Alginate-Based Smart Materials and Their Application: Recent Advances and Perspectives. Top Curr Chem (Cham) 2021; 380:3. [PMID: 34812965 DOI: 10.1007/s41061-021-00360-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
Nature produces materials using available molecular building blocks following a bottom-up approach. These materials are formed with great precision and flexibility in a controlled manner. This approach offers the inspiration for manufacturing new artificial materials and devices. Synthetic artificial materials can find many important applications ranging from personalized therapeutics to solutions for environmental problems. Among these materials, responsive synthetic materials are capable of changing their structure and/or properties in response to external stimuli, and hence are termed "smart" materials. Herein, this review focuses on alginate-based smart materials and their stimuli-responsive preparation, fragmentation, and applications in diverse fields from drug delivery and tissue engineering to water purification and environmental remediation. In the first part of this report, we review stimuli-induced preparation of alginate-based materials. Stimuli-triggered decomposition of alginate materials in a controlled fashion is documented in the second part, followed by the application of smart alginate materials in diverse fields. Because of their biocompatibility, easy accessibility, and simple techniques of material formation, alginates can provide solutions for several present and future problems of humankind. However, new research is needed for novel alginate-based materials with new functionalities and well-defined properties for targeted applications.
Collapse
Affiliation(s)
- Chandan Maity
- Department of Chemistry, School of Advanced Science (SAS), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Nikita Das
- Department of Chemistry, School of Advanced Science (SAS), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
13
|
Abstract
INTRODUCTION During routine surgery, rapid hemostasis, especially the rapid hemostasis of internal organs, is very important. The emergence of in-situ electrospinning technology has fundamentally solved this problem. It exhibits a high speed of hemostasis, and no bleeding occurs after surgery. Thus, it is of great significance. The use of sutures in some human organs, such as the intestines and bladder, is inadequate because fluid leakage occurs due to the presence of pinholes. METHODS Three types of large intestine wounds with an opening of about 1 cm were investigated. They were untreated, treated by needle and threaded, and treated by hand-held electrospinning, respectively. RESULTS The results show that hand-held electrospinning technique effectively prevented the exudation of fluids in the intestinal tract. The average diameter of the nanofibrous membrane was about 0.5 μm with hole of several micrometers. It can be elongated 90% without breakage. The hand-held electrospinning device could be used with nitrile gloves, preventing the risk of infection caused by exposed hands. DISCUSSION This work can provide a reference for future animal experiments and clinical experiments. However, safety should be investigated before application.
Collapse
Affiliation(s)
- Tongtong Zhou
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao266071, People’s Republic of China
| | - Yaozhong Wang
- Department of Oral and Maxillo-Facial Surgery, Qingdao Stomatological Hospital, Qingdao, People’s Republic of China
| | - Fengcai Lei
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, People’s Republic of China
| | - Jing Yu
- School of Physics and Electronics, Shandong Normal University, Jinan250014, People’s Republic of China
| |
Collapse
|
14
|
He Y, Du E, Zhou X, Zhou J, He Y, Ye Y, Wang J, Tang B, Wang X. Wet-spinning of fluorescent fibers based on gold nanoclusters-loaded alginate for sensing of heavy metal ions and anti-counterfeiting. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118031. [PMID: 31931357 DOI: 10.1016/j.saa.2020.118031] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 05/08/2023]
Abstract
Fluorescent and robust fibers based on gold nanoclusters-loaded alginate were successfully prepared by wet spinning of gold nanoclusters and alginate. The relationship between process conditions, mechanical properties, and fluorescent properties of fibers was investigated. The as-prepared fibers exhibited high mechanical strength (up to 7.09 cN/dtex) and remarkable red emission under ultraviolet excitation. The fibers could be used as a simple, low-cost, and high-selectivity fluorescent sensor for detecting Cu2+ and Hg2+ among various metal ions in aqueous solution, with a detection limit as low as 187.99 nM for Cu2+ and 82.14 nM for Hg2+, respectively. Furthermore, the novel fluorescent fibers were used as an anti-counterfeiting label through knitting into textile materials. The wet-spun functional fibers may be applied to the design of smart wearable sensors and flexible optical sensors.
Collapse
Affiliation(s)
- Ying He
- Hubei University, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Wuhan 430062, China
| | - Enhui Du
- Hubei University, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Wuhan 430062, China
| | - Xu Zhou
- Hubei University, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Wuhan 430062, China
| | - Ji Zhou
- Hubei University, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Wuhan 430062, China.
| | - Yu He
- Hubei University, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Wuhan 430062, China
| | - Yong Ye
- Hubei University, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Wuhan 430062, China.
| | - Jinfeng Wang
- Deakin University, Institute for Frontier Materials, Geelong, Victoria 3216, Australia; Wuhan Textile University, National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan 430073, China
| | - Bin Tang
- Deakin University, Institute for Frontier Materials, Geelong, Victoria 3216, Australia; Wuhan Textile University, National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan 430073, China.
| | - Xungai Wang
- Deakin University, Institute for Frontier Materials, Geelong, Victoria 3216, Australia; Wuhan Textile University, National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Wuhan 430073, China
| |
Collapse
|
15
|
Mokhena TC, Mochane MJ, Mtibe A, John MJ, Sadiku ER, Sefadi JS. Electrospun Alginate Nanofibers Toward Various Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E934. [PMID: 32093142 PMCID: PMC7078630 DOI: 10.3390/ma13040934] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022]
Abstract
Alginate has been a material of choice for a spectrum of applications, ranging from metal adsorption to wound dressing. Electrospinning has added a new dimension to polymeric materials, including alginate, which can be processed to their nanosize levels in order to afford unique nanostructured materials with fascinating properties. The resulting nanostructured materials often feature high porosity, stability, permeability, and a large surface-to-volume ratio. In the present review, recent trends on electrospun alginate nanofibers from over the past 10 years toward advanced applications are discussed. The application of electrospun alginate nanofibers in various fields such as bioremediation, scaffolds for skin tissue engineering, drug delivery, and sensors are also elucidated.
Collapse
Affiliation(s)
- Teboho Clement Mokhena
- Department of Chemistry, Nelson Mandela University, Port Elizabeth 6031, South Africa;
- Advanced Polymer Composites, Centre of Nanostructured and Advanced Material, CSIR, Pretoria 0184, South Africa;
| | - Mokgaotsa Jonas Mochane
- Department of Life Sciences, Central University of Technology Free State, Private Bag X20539, Bloemfontein 9301, South Africa;
| | - Asanda Mtibe
- Advanced Polymer Composites, Centre of Nanostructured and Advanced Material, CSIR, Pretoria 0184, South Africa;
| | - Maya Jacob John
- Department of Chemistry, Nelson Mandela University, Port Elizabeth 6031, South Africa;
- Advanced Polymer Composites, Centre of Nanostructured and Advanced Material, CSIR, Pretoria 0184, South Africa;
- School of Mechanical, Industrial & Aeronautical Engineering, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Emmanuel Rotimi Sadiku
- Institute of NanoEngineering Research (INER), Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria 0001, South Africa;
| | - Jeremia Shale Sefadi
- Department of Physical and Earth Sciences (PES), Sol Plaatje University, Kimberley 8301, South Africa
| |
Collapse
|
16
|
Dodero A, Scarfi S, Pozzolini M, Vicini S, Alloisio M, Castellano M. Alginate-Based Electrospun Membranes Containing ZnO Nanoparticles as Potential Wound Healing Patches: Biological, Mechanical, and Physicochemical Characterization. ACS APPLIED MATERIALS & INTERFACES 2020; 12:3371-3381. [PMID: 31876405 DOI: 10.1021/acsami.9b17597] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In the present work, alginate-based mats with and without ZnO nanoparticles were prepared via an electrospinning technique and subjected to a washing-cross-linking process to obtain highly stable products characterized by thin and homogeneous nanofibers with a diameter of 100 ± 30 nm. Using a commercial collagen product as control, the biological response of the prepared mats was carefully evaluated with particular attention paid to the influence of the used cross-linking agent (Ca2+, Sr2+, or Ba2+ ions) and to the presence of nanofillers. Fibroblast and keratinocyte cultures successfully proved the safety of the prepared alginate-based mats, whereas ZnO nanoparticles were found to provide strong antibacteriostatic and antibacterial properties; above all, the strontium- and barium-cross-linked samples showed performances in terms of cell adhesion and growth very similar to those of the commercial collagen membrane despite them showing a significantly lower protein adsorption. Moreover, the mechanical and water-related properties of the strontium-cross-linked mats embedding ZnO nanoparticles were proven to be similar to those of human skin (i.e., Young modulus of 470 MPa and water vapor permeability of 3.8 × 10-12 g/m Pa s), thus proving the ability of the prepared mats to be able to endure considerable stress, maintaining at the same time the fundamental ability to remove exudates. Taking into account the obtained results, the proposed alginate-based products could lead to harmless and affordable surgical patches and wound dressing membranes with a simpler and safer production procedure than the commonly employed animal collagen-derived systems.
Collapse
Affiliation(s)
- Andrea Dodero
- Department of Chemistry and Industrial Chemistry (DCCI) , University of Genoa , Via Dodecaneso 31 , 16146 Genoa , Italy
| | - Sonia Scarfi
- Department of Earth, Environment and Life Sciences (DISTAV) , University of Genoa , Via Pastore 3 , 16132 Genoa , Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R) , Italy
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences (DISTAV) , University of Genoa , Via Pastore 3 , 16132 Genoa , Italy
| | - Silvia Vicini
- Department of Chemistry and Industrial Chemistry (DCCI) , University of Genoa , Via Dodecaneso 31 , 16146 Genoa , Italy
| | - Marina Alloisio
- Department of Chemistry and Industrial Chemistry (DCCI) , University of Genoa , Via Dodecaneso 31 , 16146 Genoa , Italy
| | - Maila Castellano
- Department of Chemistry and Industrial Chemistry (DCCI) , University of Genoa , Via Dodecaneso 31 , 16146 Genoa , Italy
| |
Collapse
|
17
|
Taemeh MA, Shiravandi A, Korayem MA, Daemi H. Fabrication challenges and trends in biomedical applications of alginate electrospun nanofibers. Carbohydr Polym 2020; 228:115419. [DOI: 10.1016/j.carbpol.2019.115419] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 11/15/2022]
|
18
|
Flexible TiO 2/PVDF/g-C 3N 4 Nanocomposite with Excellent Light Photocatalytic Performance. Polymers (Basel) 2019; 12:polym12010055. [PMID: 31906233 PMCID: PMC7023571 DOI: 10.3390/polym12010055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/04/2019] [Accepted: 12/12/2019] [Indexed: 11/17/2022] Open
Abstract
As the world faces water shortage and pollution crises, the development of novel visible light photocatalysts to purify water resources is urgently needed. Over the past decades, most of the reported photocatalysts have been in powder or granular forms, creating separation and recycling difficulties. To overcome these challenges, a flexible and recyclable heterostructured TiO2/polyvinylidene fluoride/graphitic carbon nitride (TiO2/PVDF/g-C3N4) composite was developed by combining electrospinning, sintering and hydrothermal methods. In the composite, PVDF was used as a support template for removing and separating the photocatalyst from solution. Compared with pure TiO2, the TiO2/PVDF/g-C3N4 composite exhibited the extended light capture range of TiO2 into the visible light region. The photogenerated carriers were efficiently transferred and separated at the contact interface between TiO2 and g-C3N4 under visible light irradiation, which consequently increased the photocatalytic activity of the photocatalyst. In addition, the flexible composites exhibited excellent self-cleaning properties, and the dye on the photocatalysts was completely degraded by the as-prepared materials. Based on the intrinsic low cost, recyclability, absorption of visible light, facile synthesis, self-cleaning properties and good photocatalytic performances of the composite, the photocatalyst is expected to be used for water treatment.
Collapse
|
19
|
Chang K, Li M, Zhong W, Wu Y, Luo M, Chen Y, Liu Q, Liu K, Wang Y, Lu Z, Wang D. A novel, stretchable, silver‐coated polyolefin elastomer nanofiber membrane for strain sensor applications. J Appl Polym Sci 2019. [DOI: 10.1002/app.47928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kangqi Chang
- Hubei Key Laboratory of Advanced Textile Materials and Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials and ApplicationWuhan Textile University Wuhan 430200 China
| | - Mufang Li
- Hubei Key Laboratory of Advanced Textile Materials and Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials and ApplicationWuhan Textile University Wuhan 430200 China
- Foshan We‐Change Science and Technology, Limited Hao Science Park, 17 Shenhai Road, Guicheng Nanhai District, Foshan City 528000 China
| | - Weibing Zhong
- College of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 China
| | - Yongzhi Wu
- Hubei Key Laboratory of Advanced Textile Materials and Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials and ApplicationWuhan Textile University Wuhan 430200 China
| | - Mengying Luo
- Hubei Key Laboratory of Advanced Textile Materials and Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials and ApplicationWuhan Textile University Wuhan 430200 China
| | - Yuanli Chen
- Hubei Key Laboratory of Advanced Textile Materials and Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials and ApplicationWuhan Textile University Wuhan 430200 China
| | - Qiongzhen Liu
- Hubei Key Laboratory of Advanced Textile Materials and Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials and ApplicationWuhan Textile University Wuhan 430200 China
| | - Ke Liu
- Hubei Key Laboratory of Advanced Textile Materials and Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials and ApplicationWuhan Textile University Wuhan 430200 China
| | - Yuedan Wang
- Hubei Key Laboratory of Advanced Textile Materials and Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials and ApplicationWuhan Textile University Wuhan 430200 China
| | - Zhentan Lu
- Hubei Key Laboratory of Advanced Textile Materials and Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials and ApplicationWuhan Textile University Wuhan 430200 China
| | - Dong Wang
- Hubei Key Laboratory of Advanced Textile Materials and Application, Hubei International Scientific and Technological Cooperation Base of Intelligent Textile Materials and ApplicationWuhan Textile University Wuhan 430200 China
- College of Chemistry, Chemical Engineering and BiotechnologyDonghua University Shanghai 201620 China
| |
Collapse
|
20
|
Nguyen TD, Vo TT, Nguyen CH, Doan VD, Dang CH. Biogenic palladium nanoclusters supported on hybrid nanocomposite 2-hydroxypropyl-β-cyclodextrin/alginate as a recyclable catalyst in aqueous medium. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.138] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Liu H, Zhang ZG, He HW, Wang XX, Zhang J, Zhang QQ, Tong YF, Liu HL, Ramakrishna S, Yan SY, Long YZ. One-Step Synthesis Heterostructured g-C₃N₄/TiO₂ Composite for Rapid Degradation of Pollutants in Utilizing Visible Light. NANOMATERIALS 2018; 8:nano8100842. [PMID: 30332837 PMCID: PMC6215260 DOI: 10.3390/nano8100842] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/19/2022]
Abstract
To meet the urgent need of society for advanced photocatalytic materials, novel visible light driven heterostructured composite was constructed based on graphitic carbon nitride (g-C3N4) and fibrous TiO2. The g-C3N4/TiO2 (CNT) composite was prepared through electrospinning technology and followed calcination process. The state of the g-C3N4 and fibrous TiO2 was tightly coupled. The photocatalytic performance was measured by degrading the Rhodamine B. Compared to commercial TiO2 (P25®) and electrospun TiO2 nanofibers, the photocatalytic performance of CNT composite was higher than them. The formation of CNT heterostructures and the enlarged specific surface area enhanced the photocatalytic performance, suppressing the recombination rate of photogenerated carriers while broadening the absorption range of light spectrum. Our studies have demonstrated that heterostructured CNT composite with an appropriate proportion can rational use of visible light and can significantly promote the photogenerated charges transferred at the contact interface between g-C3N4 and TiO2.
Collapse
Affiliation(s)
- Hui Liu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Zhi-Guang Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
- College of Science & Information, Qingdao Agricultural University, Qingdao 266109, China.
| | - Hong-Wei He
- Industrial Research Institute of Nonwovens & Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao, 266071, China.
| | - Xiao-Xiong Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Jun Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Qian-Qian Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Yan-Fu Tong
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Hong-Ling Liu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Faculty of Engineering, National University of Singapore, Singapore.
| | - Shi-Ying Yan
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
22
|
Nguyen TD, Dang CH, Mai DT. Biosynthesized AgNP capped on novel nanocomposite 2-hydroxypropyl-β-cyclodextrin/alginate as a catalyst for degradation of pollutants. Carbohydr Polym 2018; 197:29-37. [DOI: 10.1016/j.carbpol.2018.05.077] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 12/16/2022]
|
23
|
Wang X, Song WZ, You MH, Zhang J, Yu M, Fan Z, Ramakrishna S, Long YZ. Bionic Single-Electrode Electronic Skin Unit Based on Piezoelectric Nanogenerator. ACS NANO 2018; 12:8588-8596. [PMID: 30102853 DOI: 10.1021/acsnano.8b04244] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Moravec's paradox shows that low-level sensorimotor skills are more difficult than high-level reasoning in artificial intelligence and robotics. So simplifying every sensing unit on electronic skin is critical for endowing intelligent robots with tactile and temperature sense. The human nervous system is characterized by efficient single-electrode signal transmission, ensuring the efficiency and reliability of information transmission under big data conditions. In this work, we report a sensor based on a single-electrode piezoelectric nanogenerator (SPENG) by electrospun polyvinylidene fluoride (PVDF) nanofibers that can realize steady-state sensing of pressure integrating cold/heat sensing on a single unit. Piezoelectric signals appear as square wave signals, and the thermal-sensing signals appear as pulse signals. Therefore, the two signals can be acquired by a single unit simultaneously. The SPENG overcomes the shortcoming of electronic skins based on a single-electrode triboelectric nanogenerator (STENG), which can sense only dynamic movement and cannot sense temperature variations. The new sensor configuration uses a capacitor instead of the STENG's ground wire as a potential reference, allowing it to be used for truly autonomous robots. At the same time, the traditional advantages of polymer piezoelectric materials, such as flexibility, transparency, and self-powered advantages, have also been preserved.
Collapse
Affiliation(s)
- Xiaoxiong Wang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics , Qingdao University , Qingdao 266071 , China
| | - Wei-Zhi Song
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics , Qingdao University , Qingdao 266071 , China
| | - Ming-Hao You
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics , Qingdao University , Qingdao 266071 , China
| | - Jun Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics , Qingdao University , Qingdao 266071 , China
| | - Miao Yu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics , Qingdao University , Qingdao 266071 , China
- Department of Mechanical Engineering , Columbia University , New York , New York 10027 , United States
| | - Zhiyong Fan
- Department of Electronic & Computer Engineering , The Hong Kong University of Science & Technology , Kowloon , Hong Kong , China
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology , National University of Singapore , Singapore 119077 , Singapore
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics , Qingdao University , Qingdao 266071 , China
| |
Collapse
|
24
|
Esfahani H, Jose R, Ramakrishna S. Electrospun Ceramic Nanofiber Mats Today: Synthesis, Properties, and Applications. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1238. [PMID: 29077074 PMCID: PMC5706185 DOI: 10.3390/ma10111238] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/10/2017] [Accepted: 10/25/2017] [Indexed: 01/22/2023]
Abstract
Ceramic nanofibers (NFs) have recently been developed for advanced applications due to their unique properties. In this article, we review developments in electrospun ceramic NFs with regard to their fabrication process, properties, and applications. We find that surface activity of electrospun ceramic NFs is improved by post pyrolysis, hydrothermal, and carbothermal processes. Also, when combined with another surface modification methods, electrospun ceramic NFs result in the advancement of properties and widening of the application domains. With the decrease in diameter and length of a fiber, many properties of fibrous materials are modified; characteristics of such ceramic NFs are different from their wide and long (bulk) counterparts. In this article, electrospun ceramic NFs are reviewed with an emphasis on their applications as catalysts, membranes, sensors, biomaterials, fuel cells, batteries, supercapacitors, energy harvesting systems, electric and magnetic parts, conductive wires, and wearable electronic textiles. Furthermore, properties of ceramic nanofibers, which enable the above applications, and techniques to characterize them are briefly outlined.
Collapse
Affiliation(s)
- Hamid Esfahani
- Department of Materials Engineering, Bu-Ali Sina University, Hamedan 65178-38695, Iran.
| | - Rajan Jose
- Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, Lebuhraya Tun Razak, Gambang 26300, Kuantan, Malaysia.
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, 2 Engineering Drive 3, National University of Singapore, Singapore 117576, Singapore.
| |
Collapse
|