1
|
Hemmi A, Seitsonen AP, Greber T, Cun H. The Winner Takes It All: Carbon Supersedes Hexagonal Boron Nitride with Graphene on Transition Metals at High Temperatures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205184. [PMID: 36319466 DOI: 10.1002/smll.202205184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The production of high-quality hexagonal boron nitride (h-BN) is essential for the ultimate performance of 2D materials-based devices, since it is the key 2D encapsulation material. Here, a decisive guideline is reported for fabricating high-quality h-BN on transition metals. It is crucial to exclude carbon from the h-BN related process, otherwise carbon prevails over boron and nitrogen due to its larger binding energy, thereupon forming graphene on metals after high-temperature annealing. The surface reaction-assisted conversion from h-BN to graphene with high-temperature treatments is demonstrated. The pyrolysis temperature Tp is an important quality indicator for h-BN/metals. When the temperature is lower than Tp , the quality of the h-BN layer is improved upon annealing. While the annealing temperature is above Tp , in case of carbon-free conditions, the h-BN disintegrates and nitrogen desorbs from the surface more easily than boron, eventually leading to clean metal surfaces. However, once the h-BN layer is exposed to carbon, graphene forms on Pt(111) in the high-temperature regime. This not only provides an indispensable principle (avoid carbon) for fabricating high-quality h-BN materials on transition metals, but also offers a straightforward method for the surface reaction-assisted conversion from h-BN to graphene on Pt(111).
Collapse
Affiliation(s)
- Adrian Hemmi
- Physik-Institut, Universität Zürich, Zürich, 8057, Switzerland
| | | | - Thomas Greber
- Physik-Institut, Universität Zürich, Zürich, 8057, Switzerland
| | - Huanyao Cun
- Physik-Institut, Universität Zürich, Zürich, 8057, Switzerland
| |
Collapse
|
2
|
He Y, Tian H, Das P, Cui Z, Pena P, Chiang I, Shi W, Xu L, Li Y, Yang T, Isarraraz M, Ozkan CS, Ozkan M, Lake RK, Liu J. Growth of High-Quality Hexagonal Boron Nitride Single-Layer Films on Carburized Ni Substrates for Metal-Insulator-Metal Tunneling Devices. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35318-35327. [PMID: 32635717 DOI: 10.1021/acsami.0c07201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional (2D) hexagonal boron nitride (h-BN) plays a significant role in nanoscale electrical and optical devices because of its superior properties. However, the difficulties in the controllable growth of high-quality films hinder its applications. One of the crucial factors that influence the quality of the films obtained via epitaxy is the substrate property. Here, we report a study of 2D h-BN growth on carburized Ni substrates using molecular beam epitaxy. It was found that the carburization of Ni substrates with different surface orientations leads to different kinetics of h-BN growth. While the carburization of Ni(100) enhances the h-BN growth, the speed of the h-BN growth on carburized Ni(111) reduces. As-grown continuous single-layer h-BN films are used to fabricate Ni/h-BN/Ni metal-insulator-metal (MIM) devices, which demonstrate a high breakdown electric field of 12.9 MV/cm.
Collapse
Affiliation(s)
- Yanwei He
- Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
| | - Hao Tian
- Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
| | - Protik Das
- Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
| | - Zhenjun Cui
- Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
| | - Pedro Pena
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ivan Chiang
- Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
| | - Wenhao Shi
- Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
| | - Long Xu
- Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
| | - Yuan Li
- Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
| | - Tianchen Yang
- Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
| | - Miguel Isarraraz
- Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
| | - Cengiz S Ozkan
- Materials Science and Engineering Program, University of California, Riverside, California 92521, United States
- Department of Mechanical Engineering, University of California, Riverside, California 92521, United States
| | - Mihrimah Ozkan
- Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
| | - Roger K Lake
- Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
| | - Jianlin Liu
- Department of Electrical and Computer Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
3
|
Bertolazzi S, Bondavalli P, Roche S, San T, Choi SY, Colombo L, Bonaccorso F, Samorì P. Nonvolatile Memories Based on Graphene and Related 2D Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806663. [PMID: 30663121 DOI: 10.1002/adma.201806663] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/19/2018] [Indexed: 05/19/2023]
Abstract
The pervasiveness of information technologies is generating an impressive amount of data, which need to be accessed very quickly. Nonvolatile memories (NVMs) are making inroads into high-capacity storage to replace hard disk drives, fuelling the expansion of the global storage memory market. As silicon-based flash memories are approaching their fundamental limit, vertical stacking of multiple memory cell layers, innovative device concepts, and novel materials are being investigated. In this context, emerging 2D materials, such as graphene, transition metal dichalcogenides, and black phosphorous, offer a host of physical and chemical properties, which could both improve existing memory technologies and enable the next generation of low-cost, flexible, and wearable storage devices. Herein, an overview of graphene and related 2D materials (GRMs) in different types of NVM cells is provided, including resistive random-access, flash, magnetic and phase-change memories. The physical and chemical mechanisms underlying the switching of GRM-based memory devices studied in the last decade are discussed. Although at this stage most of the proof-of-concept devices investigated do not compete with state-of-the-art devices, a number of promising technological advancements have emerged. Here, the most relevant material properties and device structures are analyzed, emphasizing opportunities and challenges toward the realization of practical NVM devices.
Collapse
Affiliation(s)
- Simone Bertolazzi
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| | - Paolo Bondavalli
- Chemical and Multifunctional Materials Lab, Thales Research and Technology, 91767, Palaiseau, France
| | - Stephan Roche
- Catalan Institute of Nanoscience and Nanotechnology, CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08070, Barcelona, Spain
| | - Tamer San
- Texas Instruments, Dallas, TX, 75243, USA
| | - Sung-Yool Choi
- School of Electrical Engineering, Graphene/2D Materials Research Center, KAIST, 34141, Daejeon, Korea
| | - Luigi Colombo
- Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Francesco Bonaccorso
- Istituto Italiano di Tecnologia, Graphene Labs, Via Morego 30, I-16163, Genova, Italy
- BeDimensional Spa, Via Albisola 121, 16163, Genova, Italy
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS UMR 7006, 8 allée Gaspard Monge, 67000, Strasbourg, France
| |
Collapse
|
4
|
Tian H, Khanaki A, Das P, Zheng R, Cui Z, He Y, Shi W, Xu Z, Lake R, Liu J. Role of Carbon Interstitials in Transition Metal Substrates on Controllable Synthesis of High-Quality Large-Area Two-Dimensional Hexagonal Boron Nitride Layers. NANO LETTERS 2018; 18:3352-3361. [PMID: 29727192 DOI: 10.1021/acs.nanolett.7b05179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Reliable and controllable synthesis of two-dimensional (2D) hexagonal boron nitride (h-BN) layers is highly desirable for their applications as 2D dielectric and wide bandgap semiconductors. In this work, we demonstrate that the dissolution of carbon into cobalt (Co) and nickel (Ni) substrates can facilitate the growth of h-BN and attain large-area 2D homogeneity. The morphology of the h-BN film can be controlled from 2D layer-plus-3D islands to homogeneous 2D few-layers by tuning the carbon interstitial concentration in the Co substrate through a carburization process prior to the h-BN growth step. Comprehensive characterizations were performed to evaluate structural, electrical, optical, and dielectric properties of these samples. Single-crystal h-BN flakes with an edge length of ∼600 μm were demonstrated on carburized Ni. An average breakdown electric field of 9 MV/cm was achieved for an as-grown continuous 3-layer h-BN on carburized Co. Density functional theory calculations reveal that the interstitial carbon atoms can increase the adsorption energy of B and N atoms on the Co(111) surface and decrease the diffusion activation energy and, in turn, promote the nucleation and growth of 2D h-BN.
Collapse
Affiliation(s)
- Hao Tian
- Department of Electrical and Computer Engineering , University of California , Riverside , California 92521 , United States
| | - Alireza Khanaki
- Department of Electrical and Computer Engineering , University of California , Riverside , California 92521 , United States
| | - Protik Das
- Department of Electrical and Computer Engineering , University of California , Riverside , California 92521 , United States
| | - Renjing Zheng
- Department of Electrical and Computer Engineering , University of California , Riverside , California 92521 , United States
| | - Zhenjun Cui
- Department of Electrical and Computer Engineering , University of California , Riverside , California 92521 , United States
| | - Yanwei He
- Department of Electrical and Computer Engineering , University of California , Riverside , California 92521 , United States
| | - Wenhao Shi
- Department of Electrical and Computer Engineering , University of California , Riverside , California 92521 , United States
| | - Zhongguang Xu
- Department of Electrical and Computer Engineering , University of California , Riverside , California 92521 , United States
| | - Roger Lake
- Department of Electrical and Computer Engineering , University of California , Riverside , California 92521 , United States
| | - Jianlin Liu
- Department of Electrical and Computer Engineering , University of California , Riverside , California 92521 , United States
| |
Collapse
|