1
|
Ghalkhani M, Sohouli E, Khaloo SS, Vaziri MH. Architecting of an aptasensor for the staphylococcus aureus analysis by modification of the screen-printed carbon electrode with aptamer/Ag-Cs-Gr QDs/NTiO 2. CHEMOSPHERE 2022; 293:133597. [PMID: 35031253 DOI: 10.1016/j.chemosphere.2022.133597] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/02/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Given the many issues bacterial infections cause to humans and the necessity for their detection, in this work we developed a robust aptasensor for prompt, ultrasensitive, and selective analysis of staphylococcus aureus bacterium (S. aureus). A nanocomposite of Ag nanoparticles, chitosan, graphene quantum dots, and nitrogen-doped TiO2 nanoparticles (Ag-Cs-Gr QDs/NTiO2) was synthesized, and thoroughly characterized by XRD, FT-IR, and FE-SEM spectroscopic methods. The surface of screen-printed carbon electrodes modified with Ag-Cs-Gr QDs/NTiO2 nanocomposite was utilized as a compatible platform for aptamer attachment. The aptasensor accurately determined S. aureus in the dynamic range of 10-5 × 108 CFU/mL with detection limit of 3.3 CFU/mL. The monitoring of the practical performance of aptasensor in human serum samples revealed its superiority over the conventional methods (relative recovery of 96.25-103.33%). The Ag-Cs-Gr QDs/NTiO2-based aptasensor offers facile, biocompatibility, good repeatability, reproducibility (RSD = 3.66%), label free and stabile strategy for sensitive S. aureus analysis free from biomolecules interferences in actual specimens.
Collapse
Affiliation(s)
- Masoumeh Ghalkhani
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, P.O. Box 1678815811, Tehran, Iran.
| | - Esmail Sohouli
- Electrochemical Sensors Research Laboratory, Department of Chemistry, Faculty of Science, Shahid Rajaee Teacher Training University, Lavizan, P.O. Box 1678815811, Tehran, Iran
| | - Shokooh Sadat Khaloo
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health, Safety and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hossein Vaziri
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Health, Safety and Environment, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Lorenzen AL, dos Santos AM, dos Santos LP, da Silva Pinto L, Conceição FR, Wolfart F. PEDOT-AuNPs-based impedimetric immunosensor for the detection of SARS-CoV-2 antibodies. Electrochim Acta 2022; 404:139757. [PMID: 34955549 PMCID: PMC8684030 DOI: 10.1016/j.electacta.2021.139757] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022]
Abstract
Electrochemical sensors and biosensors are useful techniques for fast, inexpensive, sensitive, and easy detection of innumerous specimen. In face of COVID-19 pandemic, it became evident the necessity of a rapid and accurate diagnostic test, so the impedimetric immunosensor approach can be a good alternative to replace the conventional tests due to the specific antibody-antigen binding interaction and the fast response in comparison to traditional methods. In this work, a modified electrode with electrosynthesized PEDOT and gold nanoparticles followed by the immobilization of truncated nucleoprotein (N aa160-406aa) was used for a fast and reliable detection of antibodies against COVID-19 in human serum sample. The method consists in analyzing the charge-transfer resistance (RCT) variation before and after the modified electrode comes into contact with the positive and negative serum sample for COVID-19, using [Fe(CN)6]3-/4- as a probe. The results show a linear and selective response for serum samples diluted in a range of 2.5 × 103 to 20 × 103. Also, the electrode material was fully characterized by Raman spectroscopy, transmission electron microscopy and scanning electron microscopy coupled with EDS, indicating that the gold nanoparticles were well distributed around the polymer matrix and the presence of the biological sample was confirmed by EDS analysis. EIS measurements allowed to differentiate the negative and positive samples by the difference in the RCT magnitude, proving that the material developed here has potential properties to be applied in impedimetric immunosensors for the detection of SARS-CoV-2 antibodies in about 30 min.
Collapse
Affiliation(s)
- Ana Luiza Lorenzen
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha – Campus São Borja, Rua Otaviano Castilho Mendes, 355, Betim, São Borja, RS CEP 97670-000, Brazil
| | - Ariane Moraes dos Santos
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha – Campus São Borja, Rua Otaviano Castilho Mendes, 355, Betim, São Borja, RS CEP 97670-000, Brazil
| | - Luâni Poll dos Santos
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha – Campus São Borja, Rua Otaviano Castilho Mendes, 355, Betim, São Borja, RS CEP 97670-000, Brazil
| | - Luciano da Silva Pinto
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia – Campus Capão do Leão, S/N, Capão do Leão, RS CEP 96160-000, Brazil
| | - Fabricio Rochedo Conceição
- Universidade Federal de Pelotas, Centro de Desenvolvimento Tecnológico, Núcleo de Biotecnologia – Campus Capão do Leão, S/N, Capão do Leão, RS CEP 96160-000, Brazil
| | - Franciele Wolfart
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha – Campus São Borja, Rua Otaviano Castilho Mendes, 355, Betim, São Borja, RS CEP 97670-000, Brazil,Corresponding author
| |
Collapse
|
3
|
Zhang J, Lin J, Zheng T, Jiang Y, Luo S, Lin Y, Zhang Z. DNAzyme concatemer-catalyzed precipitation on an interdigitated micro-comb electrode for capacitance immunosensing of interleukin-6 with rolling circle amplification. NEW J CHEM 2021. [DOI: 10.1039/d0nj05507g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel capacitance immunosensor based on DNAzyme concatemer-amplified signal-generation tags was developed for the sensitive detection of interleukin-6 (IL-6) on an interdigitated micro-comb electrode.
Collapse
Affiliation(s)
- Jianming Zhang
- Quanzhou First Hospital Affiliated to Fujian Medical University
- Quanzhou 362000
- P. R. China
| | - Jia Lin
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical University
- Collaborative Innovation Center for Rehabilitation Technology
- Fujian University of Traditional Chinese Medicine
- Fuzhou 350122
- P. R. China
| | - Tingjin Zheng
- Quanzhou First Hospital Affiliated to Fujian Medical University
- Quanzhou 362000
- P. R. China
| | - Yancheng Jiang
- Quanzhou First Hospital Affiliated to Fujian Medical University
- Quanzhou 362000
- P. R. China
| | - Shimu Luo
- Quanzhou First Hospital Affiliated to Fujian Medical University
- Quanzhou 362000
- P. R. China
| | - Yao Lin
- Central Laboratory at The Second Affiliated Hospital of Fujian Traditional Chinese Medical University
- Collaborative Innovation Center for Rehabilitation Technology
- Fujian University of Traditional Chinese Medicine
- Fuzhou 350122
- P. R. China
| | - Zhishan Zhang
- Quanzhou First Hospital Affiliated to Fujian Medical University
- Quanzhou 362000
- P. R. China
| |
Collapse
|
4
|
A Novel Paper-Based Capacitance Mast Cell Sensor for Evaluating Peanut Allergen Protein Ara h 2. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01769-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Tran TD, Le LT, Nguyen DH, Pham MT, Truong DQ, Pham HV, Nguyen MT, Tran PD. Gold nanorod/molybdenum sulfide core-shell nanostructures synthesized by a photo-induced reduction process. NANOTECHNOLOGY 2020; 31:265602. [PMID: 32301441 DOI: 10.1088/1361-6528/ab7e6f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Coupling of plasmonic nanostructures and semiconductors gives promising hybrid nanostructures that can be used in different applications such as photosensing and energy conversion. In this report, we describe an approach for fabricating a new hybrid material by coupling a gold nanorod (Au NR) core and amorphous molybdenum sulfide (MoSx) shell. The Au NR/MoSx core-shell structure is achieved by exploiting the hot electrons generated in the plasmonic excitation of Au NRs to drive the reduction of [MoS4]2-, which is pre-adsorbed on the Au NR surface, producing a thin MoSx layer. This approach allows us to control the thickness of the MoSx coating layer on the Au NR surface. The resultant Au NR/MoSx hybrid is characterized by absorption spectroscopy, scanning electron microscopy, transmission electron microscopy, energy-dispersive x-ray spectroscopy elemental mapping, x-ray diffraction and x-ray photoelectron spectroscopy.
Collapse
Affiliation(s)
- Tien D Tran
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Hanoi, Vietnam
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Mansuriya BD, Altintas Z. Applications of Graphene Quantum Dots in Biomedical Sensors. SENSORS (BASEL, SWITZERLAND) 2020; 20:E1072. [PMID: 32079119 PMCID: PMC7070974 DOI: 10.3390/s20041072] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/02/2023]
Abstract
Due to the proliferative cancer rates, cardiovascular diseases, neurodegenerative disorders, autoimmune diseases and a plethora of infections across the globe, it is essential to introduce strategies that can rapidly and specifically detect the ultralow concentrations of relevant biomarkers, pathogens, toxins and pharmaceuticals in biological matrices. Considering these pathophysiologies, various research works have become necessary to fabricate biosensors for their early diagnosis and treatment, using nanomaterials like quantum dots (QDs). These nanomaterials effectively ameliorate the sensor performance with respect to their reproducibility, selectivity as well as sensitivity. In particular, graphene quantum dots (GQDs), which are ideally graphene fragments of nanometer size, constitute discrete features such as acting as attractive fluorophores and excellent electro-catalysts owing to their photo-stability, water-solubility, biocompatibility, non-toxicity and lucrativeness that make them favorable candidates for a wide range of novel biomedical applications. Herein, we reviewed about 300 biomedical studies reported over the last five years which entail the state of art as well as some pioneering ideas with respect to the prominent role of GQDs, especially in the development of optical, electrochemical and photoelectrochemical biosensors. Additionally, we outline the ideal properties of GQDs, their eclectic methods of synthesis, and the general principle behind several biosensing techniques.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
7
|
Mansuriya BD, Altintas Z. Graphene Quantum Dot-Based Electrochemical Immunosensors for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 13:E96. [PMID: 31878102 PMCID: PMC6982008 DOI: 10.3390/ma13010096] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023]
Abstract
In the area of biomedicine, research for designing electrochemical sensors has evolved over the past decade, since it is crucial to selectively quantify biomarkers or pathogens in clinical samples for the efficacious diagnosis and/or treatment of various diseases. To fulfil the demand of rapid, specific, economic, and easy detection of such biomolecules in ultralow amounts, numerous nanomaterials have been explored to effectively enhance the sensitivity, selectivity, and reproducibility of immunosensors. Graphene quantum dots (GQDs) have garnered tremendous attention in immunosensor development, owing to their special attributes such as large surface area, excellent biocompatibility, quantum confinement, edge effects, and abundant sites for chemical modification. Besides these distinct features, GQDs acquire peroxidase (POD)-mimicking electro-catalytic activity, and hence, they can replace horseradish peroxidase (HRP)-based systems to conduct facile, quick, and inexpensive label-free immunoassays. The chief motive of this review article is to summarize and focus on the recent advances in GQD-based electrochemical immunosensors for the early and rapid detection of cancer, cardiovascular disorders, and pathogenic diseases. Moreover, the underlying principles of electrochemical immunosensing techniques are also highlighted. These GQD immunosensors are ubiquitous in biomedical diagnosis and conducive for miniaturization, encouraging low-cost disease diagnostics in developing nations using point-of-care testing (POCT) and similar allusive techniques.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
8
|
Piezoelectric arsenite aptasensor based on the use of a self-assembled mercaptoethylamine monolayer and gold nanoparticles. Mikrochim Acta 2019; 186:268. [PMID: 30953172 DOI: 10.1007/s00604-019-3373-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/21/2019] [Indexed: 10/27/2022]
Abstract
The authors describe a piezoelectric aptasensor for arsenite. A self assembeled monolayer (SAM) of mercaptoethylamine was prepared to immobilize arsenite on the surface of a quartz crystal microbalance. Gold nanoparticles were modified with arsenite aptamer to amplify the response frequency of the biosensor. Arsenite first binds to the SAM on the gold surface of the QCM. On addition of gold nanoparticles with aptamer (DNA-AuNp), the SAM-As(III)-aptamer sandwich is formed. This increases the resonance frequency of the sensor and allows trace concentration of arsenite to be determined. The aptasensor can detect arsenite in the 8 to 1000 nmol·L-1 concentration range with a 4.4 nmol·L-1 lower detection limit (at S/N = 3). The sandwich structure improves the specificity of the aptasensor without considering the conformational transition of the aptamer. The strategy described here conceivably has a large potential as it shows that small molecules can be sensed by using aptamers with unknown working mechanism. Graphical abstract Schematic presentation of a piezoelectric biosensor for arsenite detection by using a mercaptoethylamine monolayer and gold nanoparticles with respect to Arsenite first binds to the SAM on the gold surface of the QCM. Next, gold nanoparticles with aptamer (DNA-AuNp) are added to form a SAM-As(III)-aptamer sandwich which affects the resonance frequency.
Collapse
|
9
|
Lara S, Perez-Potti A. Applications of Nanomaterials for Immunosensing. BIOSENSORS-BASEL 2018; 8:bios8040104. [PMID: 30388865 PMCID: PMC6316038 DOI: 10.3390/bios8040104] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 10/24/2018] [Accepted: 10/29/2018] [Indexed: 12/28/2022]
Abstract
In biomedical science among several other growing fields, the detection of specific biological agents or biomolecular markers, from biological samples is crucial for early diagnosis and decision-making in terms of appropriate treatment, influencing survival rates. In this regard, immunosensors are based on specific antibody-antigen interactions, forming a stable immune complex. The antigen-specific detection antibodies (i.e., biomolecular recognition element) are generally immobilized on the nanomaterial surfaces and their interaction with the biomolecular markers or antigens produces a physico-chemical response that modulates the signal readout. Lowering the detection limits for particular biomolecules is one of the key parameters when designing immunosensors. Thus, their design by combining the specificity and versatility of antibodies with the intrinsic properties of nanomaterials offers a plethora of opportunities for clinical diagnosis. In this review, we show a comprehensive set of recent developments in the field of nanoimmunosensors and how they are progressing the detection and validation for a wide range of different biomarkers in multiple diseases and what are some drawbacks and considerations of the uses of such devices and their expansion.
Collapse
Affiliation(s)
- Sandra Lara
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, D04 V1W8 Dublin, Ireland.
| | - André Perez-Potti
- Centre for BioNano Interactions, School of Chemistry, University College Dublin, D04 V1W8 Dublin, Ireland.
| |
Collapse
|