1
|
Pereira Rodrigues IC, Danielle Pereira K, Ducati Luchessi A, Najar Lopes ÉS, Pellizzer Gabriel L. Osteoconductive composite membranes produced by rotary jet spinning bioresorbable PLGA for bone regeneration. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-14. [PMID: 39140253 DOI: 10.1080/09205063.2024.2386219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/25/2024] [Indexed: 08/15/2024]
Abstract
Bone defects and injuries are common, and better solutions are needed for improved regeneration and osseointegration. Bioresorbable membranes hold great potential in bone tissue engineering due to their high surface area and versatility. In this context, polymers such as poly(lactic-co-glycolic acid) (PLGA) can be combined with osteoconductive materials like hydroxyapatite (HA) nanoparticles (NPs) to create membranes with enhanced bioactivity and bone regeneration. Rotary Jet spinning (RJS) is a powerful technique to produce these composite membranes. This study presents an innovative and efficient method to obtain PLGA-HA(NPs) membranes with continuous fibers containing homogeneous HA(NPs) distribution. The membranes demonstrated stable thermal degradation, allowing HA(NPs) quantification. In addition, the PLGA-HA(NPs) presented osteoconductivity, were not cytotoxic, and had high cell adhesion when cultured with pre-osteoblastic cells. These findings demonstrate the potential of RJS to produce PLGA-HA(NPs) membranes for easy and effective application in bone regeneration.
Collapse
Affiliation(s)
| | - Karina Danielle Pereira
- Universidade Estadual de Campinas, Faculdade de Ciências Aplicadas, Limeira, São Paulo, Brazi
| | - Augusto Ducati Luchessi
- Universidade Estadual de Campinas, Faculdade de Ciências Aplicadas, Limeira, São Paulo, Brazi
| | | | - Laís Pellizzer Gabriel
- Universidade Estadual de Campinas, Faculdade de Ciências Aplicadas, Limeira, São Paulo, Brazi
| |
Collapse
|
2
|
Indrakumar S, Dash TK, Mishra V, Tandon B, Chatterjee K. Silk Fibroin and Its Nanocomposites for Wound Care: A Comprehensive Review. ACS POLYMERS AU 2024; 4:168-188. [PMID: 38882037 PMCID: PMC11177305 DOI: 10.1021/acspolymersau.3c00050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 06/18/2024]
Abstract
For most individuals, wound healing is a highly organized, straightforward process, wherein the body transitions through different phases in a timely manner. However, there are instances where external intervention becomes necessary to support and facilitate different phases of the body's innate healing mechanism. Furthermore, in developing countries, the cost of the intervention significantly impacts access to treatment options as affordability becomes a determining factor. This is particularly true in cases of long-term wound treatment and management, such as chronic wounds and infections. Silk fibroin (SF) and its nanocomposites have emerged as promising biomaterials with potent wound-healing activity. Driven by this motivation, this Review presents a critical overview of the recent advancements in different aspects of wound care using SF and SF-based nanocomposites. In this context, we explore various formats of hemostats and assess their suitability for different bleeding situations. The subsequent sections discuss the primary causes of nonhealing wounds, i.e., prolonged inflammation and infections. Herein, different treatment strategies to achieve immunomodulatory and antibacterial properties in a wound dressing were reviewed. Despite exhibiting excellent pro-healing properties, few silk-based products reach the market. This Review concludes by highlighting the bottlenecks in translating silk-based products into the market and the prospects for the future.
Collapse
Affiliation(s)
- Sushma Indrakumar
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Tapan Kumar Dash
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore 560064, India
| | - Vivek Mishra
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore 560064, India
| | - Bharat Tandon
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore 560064, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Wu F, Tan J, Wu JH, Zhou JC, Wu Y. Tough and antibacterial poly(l-lactic acid) composites prepared via blending with the bifunctional macromolecular ionomer. Int J Biol Macromol 2023; 253:126974. [PMID: 37729984 DOI: 10.1016/j.ijbiomac.2023.126974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/10/2023] [Accepted: 09/16/2023] [Indexed: 09/22/2023]
Abstract
In order to expand the application of PLLA in the packaging field, improving its toughness and antibacterial activity has been widely concerned. However, seldom researches can simultaneously efficiently improve the toughness and antibacterial activity of PLLA by adding one kind of additions. To address above problems, the bifunctional branched poly(butylene adipate) ionomer additive (b-PBAUi) was synthesized. For b-PBAUi, its branched structure not only increased the plasticizing effect of additive, but also acted as reaction sites to introduce more antibacterial ionic salt. Due to the special structure of b-PBAUi, PLLA/b-PBAUi blends achieved excellent toughness and antibacterial efficiency. The elongation of blend reached 125 % even by adding 5 wt% b-PBAUi, which was 10 times higher than that of PLLA. From the analysis of phase morphology, it could be found that the microvoids promoting tensile yielding was the main tensile toughening mechanism for PLLA/b-PBAUi blends. In addition, the antibacterial activity of PLLA was significantly improved by adding b-PBAUi. For PLLA/b-PBAUi10 and PLLA/b-PBAUi15, the antibacterial efficiency against E. coli and S. aureus bacteria exceeded 99.0 %. By comprehensive consideration, the optimal blend ratio was achieved by PLLA/b-PBAUi10 due to its excellent toughness and antibacterial efficiency.
Collapse
Affiliation(s)
- Fang Wu
- Chongqing Key Laboratory of Materials Surface & Interface Science, School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, PR China.
| | - Jie Tan
- Chongqing Key Laboratory of Materials Surface & Interface Science, School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, PR China
| | - Jin-Hui Wu
- Chongqing Key Laboratory of Materials Surface & Interface Science, School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, PR China
| | - Jun-Chi Zhou
- Chongqing Key Laboratory of Materials Surface & Interface Science, School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, PR China
| | - Yao Wu
- Chongqing Key Laboratory of Materials Surface & Interface Science, School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, PR China
| |
Collapse
|
4
|
Ghalei S, Handa H. A Review on Antibacterial Silk Fibroin-based Biomaterials: Current State and Prospects. MATERIALS TODAY. CHEMISTRY 2022; 23:100673. [PMID: 34901586 PMCID: PMC8664245 DOI: 10.1016/j.mtchem.2021.100673] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Bacterial contamination of biomaterials is a common problem and a serious threat to human health worldwide. Therefore, the development of multifunctional biomaterials that possess antibacterial properties and can resist infection is a continual goal for biomedical applications. Silk fibroin (SF), approved by U.S. Food and Drug Administration (FDA) as a biomaterial, is one of the most widely studied natural polymers for biomedical applications due to its unique mechanical properties, biocompatibility, tunable biodegradation, and versatile material formats. In the last decade, many methods have been employed for the development of antibacterial SF-based biomaterials (SFBs) such as physical loading or chemical functionalization of SFBs with different antibacterial agents and bio-inspired surface modifications. In this review, we first describe the current understanding of the composition and structure-properties relationship of SF as a leading-edge biomaterial. Then we demonstrate the different antibacterial agents and methods implemented for the development of bactericidal SFBs, their mechanisms of action, and different applications. We briefly address their fabrication methods, advantages, and limitations, and finally discuss the emerging technologies and future trends in this research area.
Collapse
Affiliation(s)
- Sama Ghalei
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens 30602, United States
| |
Collapse
|
5
|
Petre DG, Leeuwenburgh SCG. The Use of Fibers in Bone Tissue Engineering. TISSUE ENGINEERING. PART B, REVIEWS 2022; 28:141-159. [PMID: 33375900 DOI: 10.1089/ten.teb.2020.0252] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Bone tissue engineering aims to restore and maintain the function of bone by means of biomaterial-based scaffolds. This review specifically focuses on the use of fibers in biomaterials used for bone tissue engineering as suitable environment for bone tissue repair and regeneration. We present a bioinspired rationale behind the use of fibers in bone tissue engineering and provide an overview of the most common fiber fabrication methods, including solution, melt, and microfluidic spinning. Subsequently, we provide a brief overview of the composition of fibers that are used in bone tissue engineering, including fibers composed of (i) natural polymers (e.g., cellulose, collagen, gelatin, alginate, chitosan, and silk, (ii) synthetic polymers (e.g., polylactic acid [PLA], polycaprolactone, polyglycolic acid [PGA], polyethylene glycol, and polymer blends of PLA and PGA), (iii) ceramic fibers (e.g., aluminium oxide, titanium oxide, and zinc oxide), (iv) metallic fibers (e.g., titanium and its alloys, copper and magnesium), and (v) composite fibers. In addition, we review the most relevant fiber modification strategies that are used to enhance the (bio)functionality of these fibers. Finally, we provide an overview of the applicability of fibers in biomaterials for bone tissue engineering, with a specific focus on mechanical, pharmaceutical, and biological properties of fiber-functionalized biomaterials for bone tissue engineering. Impact statement Natural bone is a complex composite material composed of an extracellular matrix of mineralized fibers containing living cells and bioactive molecules. Consequently, the use of fibers in biomaterial-based scaffolds offers a wide variety of opportunities to replicate the functional performance of bone. This review provides an overview of the use of fibers in biomaterials for bone tissue engineering, thereby contributing to the design of novel fiber-functionalized bone-substituting biomaterials of improved functionality regarding their mechanical, pharmaceutical, and biological properties.
Collapse
Affiliation(s)
- Daniela Geta Petre
- Department of Dentistry-Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Sander C G Leeuwenburgh
- Department of Dentistry-Regenerative Biomaterials, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Lu Y, Wan Y, Gan D, Zhang Q, Luo H, Deng X, Li Z, Yang Z. Enwrapping Polydopamine on Doxorubicin-Loaded Lamellar Hydroxyapatite/Poly(lactic- co-glycolic acid) Composite Fibers for Inhibiting Bone Tumor Recurrence and Enhancing Bone Regeneration. ACS APPLIED BIO MATERIALS 2021; 4:6036-6045. [PMID: 35006872 DOI: 10.1021/acsabm.1c00297] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Simultaneous prevention of bone tumor recurrence and promotion of repairing bone defects resulting from tumorectomy remain a challenge. Herein, we report a polydopamine (PDA)-coated composite scaffold consisting of doxorubicin (DOX)-loaded lamellar hydroxyapatite (LHAp) and poly(lactic-co-glycolic acid) (PLGA) in an attempt to reach dual functions of tumor inhibition and bone repair. The DOX was intercalated into LHAp, and the DOX-loaded LHAp was incorporated into PLGA solution to prepare a DOX-intercalated LHAp/PLGA (labeled as DH/PLGA) scaffold that was coated with PDA to obtain a PDA@DH/PLGA scaffold. The morphology, structure, wettability, mechanical properties, drug release, biocompatibility, and in vitro and in vivo bioactivities of the PDA@DH/PLGA scaffold were evaluated. It is found that PDA coating not only improves hydrophilicity and mechanical properties, but also leads to more sustainable drug release. More importantly, the PDA@DH/PLGA scaffold shows significantly inhibited growth of tumor cells initially and subsequent improved adhesion and proliferation of osteoblasts. In addition, the PDA coating improves the bioactivity of the DH/PLGA scaffold as suggested by the in vitro biomineralization. Further in vivo study demonstrates the improved bone growth around PDA@DH/PLGA over DH/PLGA after 20 days of drug release. The dual functional PDA@DH/PLGA scaffold shows great promise in the treatment of bone tumor.
Collapse
Affiliation(s)
- Ying Lu
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Yizao Wan
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China.,School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Deqiang Gan
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Quanchao Zhang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Honglin Luo
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Xiaoyan Deng
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Zhen Li
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| | - Zhiwei Yang
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang 330013, China
| |
Collapse
|
7
|
Bozorgi A, Khazaei M, Soleimani M, Jamalpoor Z. Application of nanoparticles in bone tissue engineering; a review on the molecular mechanisms driving osteogenesis. Biomater Sci 2021; 9:4541-4567. [PMID: 34075945 DOI: 10.1039/d1bm00504a] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The introduction of nanoparticles into bone tissue engineering strategies is beneficial to govern cell fate into osteogenesis and the regeneration of large bone defects. The present study explored the role of nanoparticles to advance osteogenesis with a focus on the cellular and molecular pathways involved. Pubmed, Pubmed Central, Embase, Scopus, and Science Direct databases were explored for those published articles relevant to the involvement of nanoparticles in osteogenic cellular pathways. As multifunctional compounds, nanoparticles contribute to scaffold-free and scaffold-based tissue engineering strategies to progress osteogenesis and bone regeneration. They regulate inflammatory responses and osteo/angio/osteoclastic signaling pathways to generate an osteogenic niche. Besides, nanoparticles interact with biomolecules, enhance their half-life and bioavailability. Nanoparticles are promising candidates to promote osteogenesis. However, the interaction of nanoparticles with the biological milieu is somewhat complicated, and more considerations are recommended on the employment of nanoparticles in clinical applications because of NP-induced toxicities.
Collapse
Affiliation(s)
- Azam Bozorgi
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran and Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mozafar Khazaei
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran and Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mansoureh Soleimani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Jamalpoor
- Trauma Research Center, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Olmos D, González-Benito J. Polymeric Materials with Antibacterial Activity: A Review. Polymers (Basel) 2021; 13:613. [PMID: 33670638 PMCID: PMC7922637 DOI: 10.3390/polym13040613] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Infections caused by bacteria are one of the main causes of mortality in hospitals all over the world. Bacteria can grow on many different surfaces and when this occurs, and bacteria colonize a surface, biofilms are formed. In this context, one of the main concerns is biofilm formation on medical devices such as urinary catheters, cardiac valves, pacemakers or prothesis. The development of bacteria also occurs on materials used for food packaging, wearable electronics or the textile industry. In all these applications polymeric materials are usually present. Research and development of polymer-based antibacterial materials is crucial to avoid the proliferation of bacteria. In this paper, we present a review about polymeric materials with antibacterial materials. The main strategies to produce materials with antibacterial properties are presented, for instance, the incorporation of inorganic particles, micro or nanostructuration of the surfaces and antifouling strategies are considered. The antibacterial mechanism exerted in each case is discussed. Methods of materials preparation are examined, presenting the main advantages or disadvantages of each one based on their potential uses. Finally, a review of the main characterization techniques and methods used to study polymer based antibacterial materials is carried out, including the use of single force cell spectroscopy, contact angle measurements and surface roughness to evaluate the role of the physicochemical properties and the micro or nanostructure in antibacterial behavior of the materials.
Collapse
Affiliation(s)
- Dania Olmos
- Department of Materials Science and Engineering and Chemical Engineering, Instituto de Química y Materiales Álvaro Alonso Barba (IQMAA), Universidad Carlos III de Madrid, Leganés, 28911 Madrid, Spain
| | - Javier González-Benito
- Department of Materials Science and Engineering and Chemical Engineering, Instituto de Química y Materiales Álvaro Alonso Barba (IQMAA), Universidad Carlos III de Madrid, Leganés, 28911 Madrid, Spain
| |
Collapse
|
9
|
Calabrese G, Petralia S, Franco D, Nocito G, Fabbi C, Forte L, Guglielmino S, Squarzoni S, Traina F, Conoci S. A new Ag-nanostructured hydroxyapatite porous scaffold: Antibacterial effect and cytotoxicity study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111394. [PMID: 33254999 DOI: 10.1016/j.msec.2020.111394] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/07/2020] [Accepted: 08/19/2020] [Indexed: 12/25/2022]
Abstract
We report a new chemical method for the functionalization of Mg-hydroxyapatite (Mg-HA) scaffold with Ag nanoparticles (Ag NPs) integrating in one step both the synthesis of the Ag NPs and their nano-structuring into the HA matrix (Ag-Mg-HA scaffold). This method exploits a green photochemical synthesis and allows the direct growth of Ag NPs on the Mg-HA surface. The surface structure of Ag-Mg-HA scaffold, investigated by scanning electron microscopy, shows no significant changes in the morphology upon Ag NPs incorporation. The presence of Ag was confirmed by EDX analysis. TEM and spectroscopic investigations show Ag NPs spherical shaped with a mean diameter of about 20 nm exhibiting the typical plasmon absorption band with maximum at 420 nm. The antibacterial properties of Ag-Mg-HA scaffolds were tested against two bacterial strains, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The results show excellent antibacterial properties achieving up to 99% and 100% reduction of colonies for both bacteria cultures after 24 h of incubation and 100% of reduction after 48 h of incubation. The cytotoxicity of Ag-Mg-HA was also in deep investigated assessing both cell proliferation and differentiation using hADSCs (human Adipose Derived Stem Cells) and testing data point at 0, 7, 14 and 24 days. The results show cytotoxic effect with cell proliferation decreasing up to 90% at 24 days and osteogenic differentiation inhibition. The observed cytotoxicity can be probable ascribed to the oxidative stress by ROS. Indeed, considering the effectiveness of the nanofunctionalization method and the excellent antibacterial properties showed by the Ag-Mg-HA scaffold, future works will be devoted to create nanofunctionalized scaffold satisfying both antimicrobial and osteo-regenerative properties.
Collapse
Affiliation(s)
| | - Salvatore Petralia
- Department of Drug Science Department, University of Catania, Catania, Italy
| | - Domenico Franco
- ChiBioFarAm Department, University of Messina, Messina, Italy
| | - Giuseppe Nocito
- ChiBioFarAm Department, University of Messina, Messina, Italy
| | | | - Lucia Forte
- Fin-Ceramica Faenza, 48018 Faenza, RA, Italy
| | | | - Stefano Squarzoni
- CNR - Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Francesco Traina
- IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy; Biomorf Department, University of Messina, Messina, Italy
| | - Sabrina Conoci
- ChiBioFarAm Department, University of Messina, Messina, Italy; Distretto Tecnologico Micro e Nano Sistemi Sicilia, Catania, Italy.
| |
Collapse
|
10
|
Yao C, Lai Y, Chen Y, Cheng C. Bone Morphogenetic Protein‐2‐Activated 3D‐Printed Polylactic Acid Scaffolds to Promote Bone Regrowth and Repair. Macromol Biosci 2020; 20:e2000161. [DOI: 10.1002/mabi.202000161] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/28/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Chun‐Hsu Yao
- Department of Biomedical Imaging and Radiological Science China Medical University Taichung Taiwan 404 Republic of China
- School of Chinese Medicine China Medical University Taichung Taiwan 404 Republic of China
- Biomaterials Translational Research Center China Medical University Hospital Taichung Taiwan 404 Republic of China
- Department of Biomedical Informatics Asia University Taichung Taiwan 413 Republic of China
| | - Yi‐Hui Lai
- Department of Biomedical Imaging and Radiological Science China Medical University Taichung Taiwan 404 Republic of China
| | - Yi‐Wen Chen
- Graduate Institute of Clinical Medical Science China Medical University Taichung Taiwan 404 Republic of China
- Graduate Institute of Biomedical Sciences China Medical University Taichung Taiwan 404 Republic of China
- 3D Printing Medical Research Institute Asia University Taichung Taiwan 413 Republic of China
| | - Cheng‐Hsin Cheng
- Department of Neurosurgery An Nan Hospital China Medical University Tainan Taiwan 709 Republic of China
- Graduate Institute of Medical Science Chang Jung Christian University Tainan Taiwan 711 Republic of China
| |
Collapse
|
11
|
Preparation of ropivacaine-loaded mesoporous bioactive glass microspheres and evaluation of their efficacy for sciatic nerve block. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101810] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
12
|
Yang K, Guan J, Shao Z, Ritchie RO. Mechanical properties and toughening mechanisms of natural silkworm silks and their composites. J Mech Behav Biomed Mater 2020; 110:103942. [PMID: 32957236 DOI: 10.1016/j.jmbbm.2020.103942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/19/2020] [Accepted: 06/17/2020] [Indexed: 01/26/2023]
Abstract
There is an emerging interest in natural silkworm silks as alternative reinforcement for engineering composites. Here, we summarize the research on two common silkworm silks and silk fibre reinforced plastics (SFRPs) from the authors over the past few years in the context of related research. Silk fibres from silkworms display good strength and toughness under ambient and cryogenic conditions owing to their elastic-plastic deformation mechanism. In particular, the wild Antheraea pernyi (A. pernyi) silk also displays micro- and nano-fibrillation as an important mechanism for toughness and impact resistance. For SFRP composites, we found: (i) it is critical to achieve silk fibre volume fraction to above 50% for an optimal reinforcement and toughening effect; (ii) the tougher A. pernyi silks present a better reinforcement and toughening agent than B. mori silks; (iii) impact and toughness properties are advantageous properties of SFRPs; (iv) hybridization of natural silk with other fibres can further improve the mechanical performance and economics of SFRPs for engineering applications; and (v) the lightweight structure designs can improve the service efficiency of SFRPs for energy absorption. The understanding on the comprehensive mechanical properties and the toughening mechanisms of silks and silk fibre-reinforced polymer composites (SFRPs) could provide key insights into material design and applications.
Collapse
Affiliation(s)
- Kang Yang
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science and Engineering, Beihang University, Beijing, 100191, China; Biomechanics and Soft Robotics Lab, Beihang University, Beijing, 100191, China
| | - Juan Guan
- International Research Center for Advanced Structural and Biomaterials, School of Materials Science and Engineering, Beihang University, Beijing, 100191, China; Beijing Advanced Innovation Center for Biomedical Engineering, Beijing, 100083, China.
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Department of Macromolecular Science, Fudan University, Shanghai, 200433, China.
| | - Robert O Ritchie
- Materials Sciences Division, Lawrence Berkeley National Laboratory and Department of Materials Science & Engineering, University of California, Berkeley, CA94720, USA.
| |
Collapse
|