1
|
Wang J, Wu J, Jiang Z, Zhou Z, Zhang L, Zhao J, Jia K, Hu J. Stretchable and Transparent Heaters Based on Hydrophobic Ionogels with Superior Moisture Insensitivity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19529-19536. [PMID: 38564290 DOI: 10.1021/acsami.4c00507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Flexible and stretchable transparent heaters (THs) have been widely used in various applications, including deicing and defogging of flexible screens as well as thermotherapy pads. Ionic THs based on ionogels have emerged as a promising alternative to conventional electronic THs due to their unique advantages in terms of transparency-conductance conflict, uniform heating, and interfacial adhesion. However, the commonly used hydrophilic ionogels inevitably introduce a moisture-sensitive issue. In this work, we present a stretchable and transparent hydrophobic ionogel-based heater that utilizes ionic current-induced Joule heating under high-frequency alternating current. This ionogel-based TH exhibits exceptional multifunctional properties with low hysteresis, a fracture strain of 840%, transmittance of 93%, conductivity of 0.062 S m-1, temperature resistance up to 165 °C, voltage resistance up to 120 V, heating rate of 0.1 °C s-1, steady-state temperature at 115 °C, and uniform heating even when bent or stretched (up to 200%). Furthermore, it maintains its heating performance when it is directly exposed to water. This hydrophobic ionogel-based TH expands the range of materials available for ionic THs and paves the way for their practical applications.
Collapse
Affiliation(s)
- Jiao Wang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jingping Wu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhouhu Jiang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zilei Zhou
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Limei Zhang
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jiayou Zhao
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kun Jia
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Hu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Department of Engineering Mechanics, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
2
|
Kumar DR, Koshy AM, Sharma N, Thomas N, Swaminathan P. Room Temperature Curable Copper Nanowire-Based Transparent Heater. ACS OMEGA 2023; 8:21107-21112. [PMID: 37332811 PMCID: PMC10269267 DOI: 10.1021/acsomega.3c02048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/19/2023] [Indexed: 06/20/2023]
Abstract
Copper nanowires (Cu NWs) are a promising alternative to silver NWs to develop transparent conducting films (TCFs) due to their comparable electrical conductivity and relative abundance. Postsynthetic modifications of the ink and high-temperature postannealing processes for obtaining conducting films are significant challenges that need to be addressed before commercial deployment of these materials. In this work, we have developed an annealing-free (room temperature curable) TCF with Cu NW ink that requires minimal postsynthetic modifications. Organic acid pretreated Cu NW ink is used for spin-coating to obtain a TCF with a sheet resistance of 9.4 Ω/sq. and optical transparency of 67.4% at 550 nm. For oxidation protection, the Cu NW TCF is encapsulated with polydimethylsiloxane (PDMS). The encapsulated film is tested as a transparent heater at various voltages and shows good repeatability. These results demonstrate the potential of Cu NW-based TCFs as a replacement for Ag-NW based TCFs for a variety of optoelectronic applications, such as transparent heaters, touch screens, and photovoltaics.
Collapse
Affiliation(s)
- Darbha
V. Ravi Kumar
- Department
of Sciences, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore, Tamil Nadu 641 112, India
| | - Aarju Mathew Koshy
- Electronic
Materials and Thin Films Lab, Department of Metallurgical and Materials
Engineering, IIT Madras, Chennai, Tamil Nadu 600 036, India
| | - Neha Sharma
- Electronic
Materials and Thin Films Lab, Department of Metallurgical and Materials
Engineering, IIT Madras, Chennai, Tamil Nadu 600 036, India
| | - Neethu Thomas
- Electronic
Materials and Thin Films Lab, Department of Metallurgical and Materials
Engineering, IIT Madras, Chennai, Tamil Nadu 600 036, India
| | - Parasuraman Swaminathan
- Electronic
Materials and Thin Films Lab, Department of Metallurgical and Materials
Engineering, IIT Madras, Chennai, Tamil Nadu 600 036, India
- Centre
of Excellence in Ceramics Technologies for Futuristic Mobility, IIT Madras, Chennai, Tamil Nadu 600 036, India
| |
Collapse
|
3
|
Zeng X, He P, Hu M, Zhao W, Chen H, Liu L, Sun J, Yang J. Copper inks for printed electronics: a review. NANOSCALE 2022; 14:16003-16032. [PMID: 36301077 DOI: 10.1039/d2nr03990g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conductive inks have attracted tremendous attention owing to their adaptability and the convenient large-scale fabrication. As a new type of conductive ink, copper-based ink is considered to be one of the best candidate materials for the conductive layer in flexible printed electronics owing to its high conductivity and low price, and suitability for large-scale manufacturing processes. Recently, tremendous progress has been made in the preparation of cooper-based inks for electronic applications, but the antioxidation ability of copper-based nanomaterials within inks or films, that is, long-term reliability upon exposure to water and oxygen, still needs more exploration. In this review, we present a comprehensive overview of copper inks for printed electronics from ink preparation, printing methods and sintering, to antioxidation strategies and electronic applications. The review begins with an overview of the development of copper inks, followed by a demonstration of various preparation methods for copper inks. Then, the diverse printing techniques and post-annealing strategies used to fabricate conductive copper patterns are discussed. In addition, antioxidation strategies utilized to stabilize the mechanical and electrical properties of copper nanomaterials are summarized. Then the diverse applications of copper inks for electronic devices, such as transparent conductive electrodes, sensors, optoelectronic devices, and thin-film transistors, are discussed. Finally, the future development of copper-based inks and the challenges of their application in printed electronics are discussed.
Collapse
Affiliation(s)
- Xianghui Zeng
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Pei He
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Minglu Hu
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Weikai Zhao
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Huitong Chen
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Longhui Liu
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Jia Sun
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| | - Junliang Yang
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, Hunan, People's Republic of China.
| |
Collapse
|
4
|
Nguyen VH, Papanastasiou DT, Resende J, Bardet L, Sannicolo T, Jiménez C, Muñoz-Rojas D, Nguyen ND, Bellet D. Advances in Flexible Metallic Transparent Electrodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106006. [PMID: 35195360 DOI: 10.1002/smll.202106006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Transparent electrodes (TEs) are pivotal components in many modern devices such as solar cells, light-emitting diodes, touch screens, wearable electronic devices, smart windows, and transparent heaters. Recently, the high demand for flexibility and low cost in TEs requires a new class of transparent conductive materials (TCMs), serving as substitutes for the conventional indium tin oxide (ITO). So far, ITO has been the most used TCM despite its brittleness and high cost. Among the different emerging alternative materials to ITO, metallic nanomaterials have received much interest due to their remarkable optical-electrical properties, low cost, ease of manufacturing, flexibility, and widespread applicability. These involve metal grids, thin oxide/metal/oxide multilayers, metal nanowire percolating networks, or nanocomposites based on metallic nanostructures. In this review, a comparison between TCMs based on metallic nanomaterials and other TCM technologies is discussed. Next, the different types of metal-based TCMs developed so far and the fabrication technologies used are presented. Then, the challenges that these TCMs face toward integration in functional devices are discussed. Finally, the various fields in which metal-based TCMs have been successfully applied, as well as emerging and potential applications, are summarized.
Collapse
Affiliation(s)
- Viet Huong Nguyen
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi, 12116, Viet Nam
| | | | - Joao Resende
- AlmaScience Colab, Madan Parque, Caparica, 2829-516, Portugal
| | - Laetitia Bardet
- Université Grenoble Alpes, CNRS, Grenoble INP, LMGP, Grenoble, F-38016, France
| | - Thomas Sannicolo
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Carmen Jiménez
- Université Grenoble Alpes, CNRS, Grenoble INP, LMGP, Grenoble, F-38016, France
| | - David Muñoz-Rojas
- Université Grenoble Alpes, CNRS, Grenoble INP, LMGP, Grenoble, F-38016, France
| | - Ngoc Duy Nguyen
- Département de Physique, CESAM/Q-MAT, SPIN, Université de Liège, Liège, B-4000, Belgium
| | - Daniel Bellet
- Université Grenoble Alpes, CNRS, Grenoble INP, LMGP, Grenoble, F-38016, France
| |
Collapse
|
5
|
Evolution of copper nanowires through coalescing of copper nanoparticles induced by aliphatic amines and their electrical conductivities in polyester films. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Yu H, Tian Y, Dirican M, Fang D, Yan C, Xie J, Jia D, Liu Y, Li C, Cui M, Liu H, Chen G, Zhang X, Tao J. Flexible, transparent and tough silver nanowire/nanocellulose electrodes for flexible touch screen panels. Carbohydr Polym 2021; 273:118539. [PMID: 34560951 DOI: 10.1016/j.carbpol.2021.118539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/05/2021] [Accepted: 07/31/2021] [Indexed: 10/20/2022]
Abstract
Flexible touch screen panel (f-TSP) has been emerging recently and metallic nanowire transparent conductive electrodes (TCEs) are its key components. However, most metallic nanowire (MNW) TCEs suffer from weak bonding strength between metal nanowire electrode layers and polymer substrates, which causes delamination of TCEs and produces serious declines in durability of f-TSPs. Here, we introduce AgS bonding and develop tough and strong electrode-substrate bonded MNW TCEs, which can enhance durability of f-TSPs significantly. We used silver nanowires (AgNWs) as metal conductive electrode and thiol-modified nanofibrillated cellulose (NFC-HS) nanopaper as substrates. Because of the existence of Ag from AgNWs and S from NFC-HS, strong AgS bonding was generated and tough TCEs were obtained. The TCEs exhibit excellent electrical stability, outstanding optical and electrical properties. The f-TSP devices integrated with the TCEs illustrate striking durability. This technique may provide a promising strategy to produce flexible and tough TCEs for next-generation high-durability f-TSPs.
Collapse
Affiliation(s)
- Huang Yu
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yan Tian
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Mahmut Dirican
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27695-8301, USA
| | - Dongjun Fang
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chaoyi Yan
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27695-8301, USA
| | - Jingyi Xie
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongmei Jia
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yi Liu
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chunxing Li
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Meng Cui
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hao Liu
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Gang Chen
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiangwu Zhang
- Fiber and Polymer Science Program, Department of Textile Engineering, Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27695-8301, USA
| | - Jinsong Tao
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
7
|
Copper Nanowires for Transparent Electrodes: Properties, Challenges and Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11178035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Transparent electrodes are essential elements of devices bearing a screen or display, as well as solar cells, LEDs etc. To overcome the drawbacks presented by indium tin oxide, nanomaterials have been proposed for a long time as alternatives. Metal nanowires are particularly interesting for their high intrinsic electrical conductivity. Copper nanowires have attracted wide interest due to the low cost and high abundancy of the starting material. However, they are easily oxidized thus suitable strategies must be devised to prevent it. This review discusses the fundamental properties and challenges of copper nanowires, focusing on the efforts made to make them longer and thinner then the strategies to prevent oxidation and to join them in the network are presented. After that, mechanical properties are summarized and applications are presented, before conclusions and perspectives are finally given.
Collapse
|
8
|
Shiomi S, Shamsuri SR, Matsubara E. Magnetic field strength controlled liquid phase syntheses of ferromagnetic metal nanowire. NANOTECHNOLOGY 2020; 31:365602. [PMID: 32422611 DOI: 10.1088/1361-6528/ab93ef] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The effect of the external magnetic field strength on the morphology of metal nickel (Ni) nanowires synthesized via electroless deposition is investigated. Under strong magnetic fields, Ni nanoparticles, precursors of Ni nanowires, easily align along the magnetic field to form straight nanowires with smooth surfaces. In contrast, under weak magnetic fields, branched Ni nanowires with rough surfaces are formed. By leveraging this magnetic effect on the morphology of Ni nanowires, simply changing the external magnetic field can synthesize various types of Ni nanowire nonwovens. Furthermore, different forms of Ni nanowires were grown on the sheet by the similar electroless deposition reaction on a non-magnetic copper metal sheet. The macroscopic morphology of this composite is closely correlated with the microstructures of Ni nanowires.
Collapse
Affiliation(s)
- Shohei Shiomi
- Metallic Materials Lab., Kyoto Municipal Institute of Industrial Technology and Culture, Kyoto, Japan
| | | | | |
Collapse
|
9
|
Salvatore KL, Deng K, Yue S, McGuire SC, Rodriguez JA, Wong SS. Optimized Microwave-Based Synthesis of Thermally Stable Inverse Catalytic Core-shell Motifs for CO 2 Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:32591-32603. [PMID: 32657113 DOI: 10.1021/acsami.0c06430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The rational synthesis of Cu@TiO2 core@shell nanowire (NW) structures was thoroughly explored using a microwave-assisted method through the tuning of experimental parameters such as but not limited to (i) controlled variation in molar ratios, (ii) the effect of discrete Ti precursors, (iii) the method of addition of the precursors themselves, and (iv) time of irradiation. Uniform coatings were obtained using Cu/Ti molar ratios of 1:2, 1:1, 2:1, and 4:1, respectively. It should be noted that although relative molar precursor concentrations primarily determined the magnitude of the resulting shell size, the dependence was nonlinear. Moreover, additionally important reaction parameters, such as precursor identity, the means of addition of precursors, and the reaction time, were individually explored with the objective of creating a series of optimized reaction conditions. As compared with Cu NWs alone, it is evident that both of the Cu@TiO2 core-shell NW samples, regardless of pretreatment conditions, evinced much better catalytic performance, up to as much as 20 times greater activity as compared with standard Cu NWs. These results imply the significance of the Cu/TiO2 interface in terms of promoting CO2 hydrogenation, because TiO2 alone is known to be inert for this reaction. Furthermore, it is additionally notable that the N2 annealing pretreatment is crucial in terms of preserving the overall Cu@TiO2 core@shell structure. We also systematically analyzed and tracked the structural and chemical evolution of our catalysts before and after the CO2 reduction experiments. Indeed, we discovered that the core@shell wire motif was essentially maintained and conserved after this high-temperature reaction process, thereby accentuating the thermal stability and physical robustness of our as-prepared hierarchical motifs.
Collapse
Affiliation(s)
- Kenna L Salvatore
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| | - Kaixi Deng
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
- Chemistry Department, Brookhaven National Laboratory, Building 555, Upton, New York 11973, United States
| | - Shiyu Yue
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| | - Scott C McGuire
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| | - José A Rodriguez
- Chemistry Department, Brookhaven National Laboratory, Building 555, Upton, New York 11973, United States
| | - Stanislaus S Wong
- Department of Chemistry, State University of New York at Stony Brook, Stony Brook, New York 11794-3400, United States
| |
Collapse
|