1
|
Roman M, Wrobel TP, Panek A, Kwiatek WM. High-definition FT-IR reveals a synergistic effect on lipid accumulation in prostate cancer cells induced by a combination of X-rays and radiosensitizing drugs. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159468. [PMID: 38408538 DOI: 10.1016/j.bbalip.2024.159468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/02/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Radiotherapy is one of the most commonly used cancer therapies with many benefits including low toxicity to healthy tissues. However, a major problem in radiotherapy is cancer radioresistance. To enhance the effect of this kind of therapy several approaches have been proposed such as the use of radiosensitizers. A combined treatment of radiotherapy and radiosensitizing drugs leads to a greater effect on cancer cells than anticipated from the addition of both responses (synergism). In this study, high-definition FT-IR imaging was applied to follow lipid accumulation in prostate cancer cells as a response to X-ray irradiation, radiosensitizing drugs, and a combined treatment of X-rays and the drugs. Lipid accumulation induced in the cells by an increasing X-ray dose and the presence of the drugs was analyzed using Principal Component Analysis and lipid staining. Finally, the synergistic effect of the combined therapy (X-rays and radiosensitizers) was confirmed by calculations of the integral intensity of the 2850 cm-1 band.
Collapse
Affiliation(s)
- Maciej Roman
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland; SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Czerwone Maki 98, 30-392 Krakow, Poland.
| | - Tomasz P Wrobel
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University, Czerwone Maki 98, 30-392 Krakow, Poland
| | - Agnieszka Panek
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Krakow, Poland
| |
Collapse
|
2
|
V. D. dos Santos AC, Hondl N, Ramos-Garcia V, Kuligowski J, Lendl B, Ramer G. AFM-IR for Nanoscale Chemical Characterization in Life Sciences: Recent Developments and Future Directions. ACS MEASUREMENT SCIENCE AU 2023; 3:301-314. [PMID: 37868358 PMCID: PMC10588935 DOI: 10.1021/acsmeasuresciau.3c00010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 10/24/2023]
Abstract
Despite the ubiquitous absorption of mid-infrared (IR) radiation by virtually all molecules that belong to the major biomolecules groups (proteins, lipids, carbohydrates, nucleic acids), the application of conventional IR microscopy to the life sciences remained somewhat limited, due to the restrictions on spatial resolution imposed by the diffraction limit (in the order of several micrometers). This issue is addressed by AFM-IR, a scanning probe-based technique that allows for chemical analysis at the nanoscale with resolutions down to 10 nm and thus has the potential to contribute to the investigation of nano and microscale biological processes. In this perspective, in addition to a concise description of the working principles and operating modes of AFM-IR, we present and evaluate the latest key applications of AFM-IR to the life sciences, summarizing what the technique has to offer to this field. Furthermore, we discuss the most relevant current limitations and point out potential future developments and areas for further application for fruitful interdisciplinary collaboration.
Collapse
Affiliation(s)
| | - Nikolaus Hondl
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Victoria Ramos-Garcia
- Health
Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Julia Kuligowski
- Health
Research Institute La Fe, Avenida Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Bernhard Lendl
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Georg Ramer
- Institute
of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
3
|
Golovynskyi S, Golovynska I, Roganova O, Golovynskyi A, Qu J, Ohulchanskyy TY. Hyperspectral imaging of lipids in biological tissues using near-infrared and shortwave infrared transmission mode: A pilot study. JOURNAL OF BIOPHOTONICS 2023:e202300018. [PMID: 37021842 DOI: 10.1002/jbio.202300018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/21/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
Label-free hyperspectral imaging (HSI) of lipids was demonstrated in the near-infrared (NIR) and shortwave infrared (SWIR) regions (950-1800 nm) using porcine tissue. HSI was performed in the transmission light-pass configuration, using a NIR-SWIR camera coupled with a liquid crystal tunable filter. The transmittance spectra of the regions of interest (ROIs), which correspond to the lipid and muscle areas in the specimen, were utilized for the spectrum unmixing. The transmittance spectra in ROIs were compared with those recorded by a spectrophotometer using samples of adipose and muscle. The lipid optical absorption bands at 1210 and 1730 nm were first used for the unmixing and mapping. Then, we performed the continuous multiband unmixing over the entire available spectral range, thereby, considering a combination of characteristic absorption bands of lipids, proteins, and water. The enhanced protocol demonstrates the ability to visualize small adipose inclusions of 1-10 μm size.
Collapse
Affiliation(s)
- Sergii Golovynskyi
- Shenzhen Key Laboratory of Photonics and Biophotonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, People's Republic of China
| | - Iuliia Golovynska
- Shenzhen Key Laboratory of Photonics and Biophotonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, People's Republic of China
| | - Olena Roganova
- V.M. Glushkov Institute of Cybernetics, National Academy of Sciences, Kyiv, Ukraine
| | - Andrii Golovynskyi
- V.M. Glushkov Institute of Cybernetics, National Academy of Sciences, Kyiv, Ukraine
| | - Junle Qu
- Shenzhen Key Laboratory of Photonics and Biophotonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, People's Republic of China
| | - Tymish Y Ohulchanskyy
- Shenzhen Key Laboratory of Photonics and Biophotonics, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, People's Republic of China
| |
Collapse
|
4
|
Paluszkiewicz C, Piergies N, Guidi MC, Pięta E, Ścierski W, Misiołek M, Drozdzowska B, Ziora P, Lisowska G, Kwiatek WM. Nanoscale infrared probing of amyloid formation within the pleomorphic adenoma tissue. Biochim Biophys Acta Gen Subj 2020; 1864:129677. [PMID: 32634535 DOI: 10.1016/j.bbagen.2020.129677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND The process of malignant transformations of many tumour cases is still unclear and more specific experimental approaches are necessary. The detailed identification of the pathological changes may help in the therapy progression through the development of drugs with more selective action. METHODS In this study, the AFM-IR nanospectroscopy was applied for the first time to the pleomorphic adenoma (TM) and the marginal tissue characterizations. In order to verify the obtained spectral information, conventional FT-IR investigations were also performed. RESULTS The AFM-IR data (topographies, intensity maps, and spectra) show structural changes observed for the margin and TM samples. Additionally, within the tumour tissue the fibril-like areas, characteristic for amyloid diseases, were distinguished. CONCLUSIONS The application of AFM-IR allows to determine changes in the protein secondary structures between the fibrils and the regions outside them. It has been proved that, for the former areas, the α-helix/random coil/ β-sheet components dominate, while for the latter regions the α-helix/random coil indicate the main contribution to the protein composition. GENERAL SIGNIFICANCE The FT-IR results remain in good agreement with the AFM-IR data recorded for the areas outside the fibrils of the TM. This observation confirms that by means of the conventional FT-IR method the identification of the considered fibrils structure would be impossible. Only application of the AFM-IR nanospectroscopy allow for characterization and visualization of the fibrillization process occurring within the investigated tumour tissue.
Collapse
Affiliation(s)
| | - Natalia Piergies
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland.
| | | | - Ewa Pięta
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Wojciech Ścierski
- Department of Otorhinolaryngology and Laryngological Oncology in Zabrze, Medical University of Silesia Katowice, PL-41800 Zabrze, Poland
| | - Maciej Misiołek
- Department of Otorhinolaryngology and Laryngological Oncology in Zabrze, Medical University of Silesia Katowice, PL-41800 Zabrze, Poland
| | - Bogna Drozdzowska
- Department and Chair of Pathomorphology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, PL-41800 Zabrze, Poland
| | - Paweł Ziora
- Department and Chair of Pathomorphology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, PL-41800 Zabrze, Poland
| | - Grażyna Lisowska
- Department of Otorhinolaryngology and Laryngological Oncology in Zabrze, Medical University of Silesia Katowice, PL-41800 Zabrze, Poland
| | - Wojciech M Kwiatek
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| |
Collapse
|
5
|
Roman M, Wrobel TP, Paluszkiewicz C, Kwiatek WM. Comparison between high definition FT-IR, Raman and AFM-IR for subcellular chemical imaging of cholesteryl esters in prostate cancer cells. JOURNAL OF BIOPHOTONICS 2020; 13:e201960094. [PMID: 31999078 DOI: 10.1002/jbio.201960094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The family of vibrational spectroscopic imaging techniques grows every few years and there is a need to compare and contrast new modalities with the better understood ones, especially in the case of demanding biological samples. Three vibrational spectroscopy techniques (high definition Fourier-transform infrared [FT-IR], Raman and atomic force microscopy infrared [AFM-IR]) were applied for subcellular chemical imaging of cholesteryl esters in PC-3 prostate cancer cells. The techniques were compared and contrasted in terms of image quality, spectral pattern and chemical information. All tested techniques were found to be useful in chemical imaging of cholesterol derivatives in cancer cells. The results obtained from FT-IR and Raman imaging showed to be comparable, whereas those achieved from AFM-IR study exhibited higher spectral heterogeneity. It confirms AFM-IR method as a powerful tool in local chemical imaging of cells at the nanoscale level. Furthermore, due to polarization effect, p-polarized AFM-IR spectra showed strong enhancement of lipid bands when compared to FT-IR.
Collapse
Affiliation(s)
- Maciej Roman
- Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Tomasz P Wrobel
- Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Czeslawa Paluszkiewicz
- Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Wojciech M Kwiatek
- Department of Experimental Physics of Complex Systems, Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
6
|
Kochan K, Nethercott C, Perez Guaita D, Jiang JH, Peleg AY, Wood BR, Heraud P. Detection of Antimicrobial Resistance-Related Changes in Biochemical Composition of Staphylococcus aureus by Means of Atomic Force Microscopy-Infrared Spectroscopy. Anal Chem 2019; 91:15397-15403. [PMID: 31755705 DOI: 10.1021/acs.analchem.9b01671] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The development of antimicrobial resistance (AMR) resulting from widespread antibiotic usage is occurring at an alarming pace, much faster than our understanding of the mechanisms behind resistance. Knowledge about resistance-related phenotypic and genotypic changes is critical for the development of new drugs. Here, we identify changes in the chemical composition of Staphylococcus aureus associated with the development of resistance to last resort drugs, vancomycin and daptomycin, using a novel, single cell, nanoscale technique, atomic force microscopy-infrared spectroscopy (AFM-IR), combined with chemometric analysis. We utilized paired clinical isolates, with the parent (susceptible) strain isolated prior to treatment and the daughter (resistant) strain obtained from the same patient after drug admission and clinical failure. We observed an increase in the amount of nonintracellular carbohydrates, indicating thickening or changes in the packing of the cell wall, as well as changes in the phospholipid content in relation to vancomycin resistance and daptomycin nonsusceptibility, respectively.
Collapse
Affiliation(s)
| | | | | | | | - Anton Y Peleg
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School , Monash University , Melbourne , Victoria 3004 , Australia
| | | | | |
Collapse
|