1
|
Akter R, Shah SS, Ehsan MA, Shaikh MN, Zahir MH, Aziz MA, Ahammad AJS. Transition-metal-based Catalysts for Electrochemical Synthesis of Ammonia by Nitrogen Reduction Reaction: Advancing the Green Ammonia Economy. Chem Asian J 2024; 19:e202300797. [PMID: 37812018 DOI: 10.1002/asia.202300797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/10/2023]
Abstract
Ammonia (NH3), a cornerstone in the chemical industry, has historically been pivotal for producing various valuable products, notably fertilizers. Its significance is further underscored in the modern energy landscape, where NH3 is seen as a promising medium for hydrogen storage and transportation. However, the conventional Haber-Bosch process, which accounts for approximately 170 million ton of NH3 produced globally each year, is energy-intensive and environmentally damaging. The electrochemical nitrogen reduction reaction (NRR) emerges as a sustainable alternative that operates in ambient conditions and uses renewable energy sources. Despite its potential, the NRR faces challenges, including the inherent stability of nitrogen and its competition with the hydrogen evolution reaction. Transition metals, especially ruthenium (Ru) and molybdenum (Mo), have demonstrated promise as catalysts, enhancing the efficiency of the NRR. Ru excels in catalytic activity, while Mo offers robustness. Strategies like heteroatom doping are being pursued to mitigate NRR challenges, especially the competing hydrogen evolution reaction. This review delves into the advancements of Ru and Mo-based catalysts for electrochemical ammonia synthesis, elucidating the NRR mechanisms, and championing the transition towards a greener ammonia economy. It also seeks to elucidate the core principles underpinning the NRR mechanism. This shift aims not only to address challenges inherent to traditional production methods but also to align with the overarching goals of global sustainability.
Collapse
Affiliation(s)
- Riva Akter
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Syed Shaheen Shah
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - Muhammad Ali Ehsan
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - M Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Md Hasan Zahir
- Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| |
Collapse
|
2
|
Qin M, Chen L, Zhang W, Yang J. A Self-Consistent Framework for Tailored Single-Atom Catalysts in Electrocatalytic Nitrogen Reduction. J Phys Chem Lett 2024; 15:1089-1096. [PMID: 38261607 DOI: 10.1021/acs.jpclett.3c03213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The catalytic activity of single-atom catalysts (SACs) is crucially affected by the actual ligand configurations under the reaction condition; thus, carefully considering the reaction condition is crucial for the theoretical design of SACs. With single metal atoms supported by g-C3N4 as a model system, a self-consistent screening framework is proposed for the theoretical design of SACs with respect to the nitrogen reduction reaction (NRR). Pourbaix diagrams are constructed on the basis of various co-adsorption configurations of N2, H, and OH. Possible stable configurations containing N2 under the expected reaction condition are considered to obtain the limiting potential of NRR, and the stability of the configuration at the calculated UL is rechecked. With this framework, AC stacking of double-layer g-C3N4-supported Nb and AA stacking and AB stacking of double-layer g-C3N4-supported W are predicted to exhibit superior NRR activity with UL values of -0.36, -0.45, and -0.52 V, respectively. This procedure can be widely applied to the screening of SACs for electrocatalytic reactions.
Collapse
Affiliation(s)
- Mingxin Qin
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lanlan Chen
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenhua Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Laboratory for Chemical Technology, Ghent University, Ghent 9052, Belgium
| | - Jinlong Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
3
|
Fang H, Liu D, Luo Y, Zhou Y, Liang S, Wang X, Lin B, Jiang L. Challenges and Opportunities of Ru-Based Catalysts toward the Synthesis and Utilization of Ammonia. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00090] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Huihuang Fang
- National Engineering Research Center for Chemical Fertilizer Catalyst (NERC−CFC), School of Chemical Engineering, Fuzhou University, Fuzhou 350002, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, P.R. China
| | - Dan Liu
- National Engineering Research Center for Chemical Fertilizer Catalyst (NERC−CFC), School of Chemical Engineering, Fuzhou University, Fuzhou 350002, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, P.R. China
| | - Yu Luo
- National Engineering Research Center for Chemical Fertilizer Catalyst (NERC−CFC), School of Chemical Engineering, Fuzhou University, Fuzhou 350002, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, P.R. China
| | - Yanliang Zhou
- National Engineering Research Center for Chemical Fertilizer Catalyst (NERC−CFC), School of Chemical Engineering, Fuzhou University, Fuzhou 350002, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, P.R. China
| | - Shijing Liang
- National Engineering Research Center for Chemical Fertilizer Catalyst (NERC−CFC), School of Chemical Engineering, Fuzhou University, Fuzhou 350002, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, P.R. China
| | - Xiuyun Wang
- National Engineering Research Center for Chemical Fertilizer Catalyst (NERC−CFC), School of Chemical Engineering, Fuzhou University, Fuzhou 350002, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, P.R. China
| | - Bingyu Lin
- National Engineering Research Center for Chemical Fertilizer Catalyst (NERC−CFC), School of Chemical Engineering, Fuzhou University, Fuzhou 350002, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, P.R. China
| | - Lilong Jiang
- National Engineering Research Center for Chemical Fertilizer Catalyst (NERC−CFC), School of Chemical Engineering, Fuzhou University, Fuzhou 350002, China
- Qingyuan Innovation Laboratory, Quanzhou, Fujian 362801, P.R. China
| |
Collapse
|
4
|
Xu X, Liu X, Zhao J, Wu D, Du Y, Yan T, Zhang N, Ren X, Wei Q. Interface engineering of MoS 2@Fe(OH) 3 nanoarray heterostucture: Electrodeposition of MoS 2@Fe(OH) 3 as N 2 and H + channels for artificial NH 3 synthesis under mild conditions. J Colloid Interface Sci 2022; 606:1374-1379. [PMID: 34492473 DOI: 10.1016/j.jcis.2021.08.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 01/23/2023]
Abstract
The electrocatalytic reduction of nitrogen (N2) to ammonia (NH3) has broad prospects for green and sustainable NH3 production. Due to the electrocatalytic nitrogen reduction reaction (eNRR) performance of transition metal compound may be restricted with low yield rate, we develop transition metal interface engineering to improve the eNRR performance. Although the edge of MoS2 catalyst is active, the MoS2(001) surface is inert for N2 electroreduction. Through the hydrothermal and electrodeposition methods, Fe(OH)3 as N2 and H+ channels coated on MoS2 nanosheets array (MoS2@Fe(OH)3/CC) is synthesized. Such catalyst exhibits excellent eNRR performance in 0.1 M Na2SO4 with high Faradaic efficiency (2.76%) and NH3 yield rate (4.23 × 10-10 mol s-1 cm-2) at - 0.45 V (vs. RHE). This work may provide a new electrocatalyst synthesis pathway for artificial N2 fixation. Density functional theory calculations show that electrodeposition Fe(OH)3 can accelerate eNRR process rate of MoS2.
Collapse
Affiliation(s)
- Xiaolong Xu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Xuejing Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Jinxiu Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Jinan, Shandong 250022, China
| | - Yu Du
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Jinan, Shandong 250022, China
| | - Tao Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong 250022, China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Jinan, Shandong 250022, China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong 250022, China; Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Jinan, Shandong 250022, China.
| |
Collapse
|
5
|
Xu J, Xu X, Du Y, Wu D, Ma H, Ren X, Li Y, Wei Q. Carbon-doped tin disulfide nanoflowers: a heteroatomic doping strategy for improving the electrocatalytic performance of nitrogen reduction to ammonia. NEW J CHEM 2022. [DOI: 10.1039/d2nj02478k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, hydrophobic carbon-doped tin disulfide (C-SnS2) was fabricated for the first time and adopted as an advanced catalyst for the eNRR.
Collapse
Affiliation(s)
- Jingyi Xu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Xiaolong Xu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yu Du
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Jinan 250022, Shandong, China
| | - Dan Wu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Jinan 250022, Shandong, China
| | - Hongmin Ma
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Jinan 250022, Shandong, China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Jinan 250022, Shandong, China
| | - Yuyang Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Jinan 250022, Shandong, China
| |
Collapse
|
6
|
Wang C, Yang M, Wang X, Ma H, Tian Y, Pang H, Tan L, Gao K. Hierarchical CoS 2/MoS 2 flower-like heterostructured arrays derived from polyoxometalates for efficient electrocatalytic nitrogen reduction under ambient conditions. J Colloid Interface Sci 2021; 609:815-824. [PMID: 34839922 DOI: 10.1016/j.jcis.2021.11.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical nitrogen reduction reaction (NRR) has been identified as a prospective alternative for sustainable ammonia production. Developing cost-effective and highly efficient electrocatalysts is critical for NRR under ambient conditions. Herein, the hierarchical cobalt-molybdenum bimetallic sulfide (CoS2/MoS2) flower-like heterostructure assembled from well-aligned nanosheets has been easily fabricated through a one-step strategy. The efficient synergy between different components and the formation of heterostructure in CoS2/MoS2 nanosheets with abundant active sites makes the non-noble metal catalyst CoS2/MoS2 highly effective in NRR, with a high NH3 yield rate (38.61 μg h-1 mgcat.-1), Faradaic efficiency (34.66%), high selectivity (no formation of hydrazine) and excellent long-term stability in 1.0 mol L-1 K2SO4 electrolyte (pH = 3.5) at -0.25 V versus the reversible hydrogen electrode (vs. RHE) under ambient conditions, exceeding much recently reported cobalt- and molybdenum-based materials, even catch up with some noble-metal-based catalyst. Density functional theory (DFT) calculation indicates that the formation of N2H* species on CoS2(200)/MoS2(002) is the rate-determining step via both the alternating and distal pathways with the maximum ΔG values (1.35 eV). These results open up opportunities for the development of efficient non-precious bimetal-based catalysts for NRR.
Collapse
Affiliation(s)
- Chenglong Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.
| | - Mengle Yang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China
| | - Xinming Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.
| | - Huiyuan Ma
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.
| | - Yu Tian
- Institute for Interdisciplinary Quantum Information Technology, Jilin Engineering Normal University, Changchun, 130052, Jilin, China.
| | - Haijun Pang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China
| | - Lichao Tan
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China
| | - Keqing Gao
- Beijing Caron Fiber Engineering Technology Research Center, Beijing Bluestar Technical Center, Beijing 101318, PR China
| |
Collapse
|
7
|
Yang G, Zhao L, Huang G, Liu Z, Yu S, Wang K, Yuan S, Sun Q, Li X, Li N. Electrochemical Fixation of Nitrogen by Promoting N 2 Adsorption and N-N Triple Bond Cleavage on the CoS 2/MoS 2 Nanocomposite. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21474-21481. [PMID: 33908250 DOI: 10.1021/acsami.1c04458] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An electrochemical N2 reduction reaction (NRR), as an environmentally benign method to produce NH3, is a suitable alternative to substitute the energy-intensive Haber-Bosch technology. Unfortunately, to date, it is obstructed by the lack of efficient electrocatalysts. Here, a CoS2/MoS2 nanocomposite with CoS2 nanoparticles decorated on MoS2 nanosheets is fabricated and adapted as a catalyst for the NRR. As unveiled by experimental and theoretical results, the strong interaction between CoS2 and MoS2 modulates interfacial charge distribution with electrons transferring from CoS2 to MoS2. Consequently, a local electrophilic region is formed near the CoS2 side, which enables effective N2 absorption. On the other hand, the nucleophilic area formed near the MoS2 side is in favor of breaking stable N≡N, the potential-determining step (*N2 → *N2H) which brings about a much decreased energy barrier than that on pure MoS2. As a result, this catalyst exhibits an excellent NRR performance, NH3 yield and Faradaic efficiency of 54.7 μg·h-1·mg-1 and 20.8%, respectively, far better than most MoS2-based catalysts.
Collapse
Affiliation(s)
- Guohua Yang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Lei Zhao
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Guoqing Huang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Zhipeng Liu
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shuyi Yu
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Kaiwen Wang
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shisheng Yuan
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Qiwei Sun
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Xiaotian Li
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Nan Li
- Key Laboratory of Automobile Materials, Ministry of Education, School of Materials Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
8
|
Wei X, Pu M, Jin Y, Wessling M. Efficient Electrocatalytic N 2 Reduction on Three-Phase Interface Coupled in a Three-Compartment Flow Reactor for the Ambient NH 3 Synthesis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:21411-21425. [PMID: 33909402 DOI: 10.1021/acsami.1c03698] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The electrochemical N2 reduction reaction (eNRR) represents a carbon-free alternative to the Haber-Bosch process for a sustainable NH3 synthesis powered by renewable energy under ambient conditions. Despite significant efforts to develop catalyst activity and selectivity toward eNRR, an appropriate electrochemical system to obstruct the drawback of low N2 solubility remains broadly unexplored. Here, we demonstrate an electrocatalytic system combining a ruthenium/carbon black gas diffusion electrode (Ru/CB GDE) with a three-compartment flow cell, enabling solid-liquid-gas catalytic interfaces for the highly efficient Ru-catalyzed eNRR. The electrolyte optimization and the Ru/CB GDE development through the hydrophobicity, the Ru/CB loading, and the post-treatment have revealed the crucial contribution of interfacial N2 transportation and local pH environment. The optimized hydrophobic Ru/CB GDE generated excellent eNRR performance, achieving a high NH3 yield rate of 9.9 × 10-10 mol/cm2 s at -0.1 V vs RHE, corresponding to the highest faradaic efficiency of 64.8% and a specific energy efficiency of 40.7%, exceeding the most reported system. This work highlights the critical role of design and optimization of the GDE-flow cell combination and provides a valuable practicable solution to enhance the electrochemical reaction involving gas-phase reactants with low solubility.
Collapse
Affiliation(s)
- Xin Wei
- RWTH Aachen University, Chemical Process Engineering, Forckenbeckstrasse 51, 52074 Aachen, Germany
| | - Minghua Pu
- RWTH Aachen University, Chemical Process Engineering, Forckenbeckstrasse 51, 52074 Aachen, Germany
| | - Yiman Jin
- RWTH Aachen University, Chemical Process Engineering, Forckenbeckstrasse 51, 52074 Aachen, Germany
| | - Matthias Wessling
- RWTH Aachen University, Chemical Process Engineering, Forckenbeckstrasse 51, 52074 Aachen, Germany
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany
| |
Collapse
|
9
|
Ma C, Zhai N, Liu B, Yan S. Defected MoS2: An efficient electrochemical nitrogen reduction catalyst under mild conditions. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137695] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Zhao L, Zhou J, Zhang L, Sun X, Sun X, Yan T, Ren X, Wei Q. Anchoring Au(111) on a Bismuth Sulfide Nanorod: Boosting the Artificial Electrocatalytic Nitrogen Reduction Reaction under Ambient Conditions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55838-55843. [PMID: 33263999 DOI: 10.1021/acsami.0c15987] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrocatalytic nitrogen reduction reaction (NRR), as a green and sustainable method for ammonia synthesis, has become one of the candidates to substitute industrial Haber-Bosch ammonia synthesis in the near future. In this work, gold nanoparticles (Au NPs) were successfully anchored on bismuth sulfide nanorods (Bi2S3 NRs), which acted as highly efficient electrocatalytic NRR catalysts. The N-philic nature of Bi and the unique mutual coordination of Au-S-Bi can greatly promote the nitrogen adsorption and form the intermediate product N2H*, achieving a boosted improvement in the NRR activity through a continuous hydrogenation reaction. Definitely, the as-synthesized Au(111)@Bi2S3 nanorod catalyst exhibits an excellent NH3 generation rate of 45.57 μg h-1 mgcat.-1 with a faradic efficiency of 3.10% at -0.8 V vs reversible hydrogen electrode. High stability and reproducibility are also demonstrated throughout the electrocatalytic NRR process. Density functional theory calculations were performed to further understand the NRR catalytic mechanism on the Au(111)@Bi2S3 nanorods catalyst.
Collapse
Affiliation(s)
- Lei Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Jinzhi Zhou
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Lunwen Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, Shandong, China
| | - Xu Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Jinan 250022, Shandong, China
| | - Xiaojun Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Tao Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, Shandong, China
| | - Xiang Ren
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Jinan 250022, Shandong, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Jinan 250022, Shandong, China
| |
Collapse
|