1
|
de la Parra S, Fernández-Pampín N, Garroni S, Poddighe M, de la Fuente-Vivas D, Barros R, Martel-Martín S, Aparicio S, Rumbo C, Tamayo-Ramos JA. Comparative toxicological analysis of two pristine carbon nanomaterials (graphene oxide and aminated graphene oxide) and their corresponding degraded forms using human in vitro models. Toxicology 2024; 504:153783. [PMID: 38518840 DOI: 10.1016/j.tox.2024.153783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Despite the wide application of graphene-based materials, the information of the toxicity associated to some specific derivatives such as aminated graphene oxide is scarce. Likewise, most of these studies analyse the pristine materials, while the available data regarding the harmful effects of degraded forms is very limited. In this work, the toxicity of graphene oxide (GO), aminated graphene oxide (GO-NH2), and their respective degraded forms (dGO and dGO-NH2) obtained after being submitted to high-intensity sonication was evaluated applying in vitro assays in different models of human exposure. Viability and ROS assays were performed on A549 and HT29 cells, while their skin irritation potential was tested on a reconstructed human epidermis model. The obtained results showed that GO-NH2 and dGO-NH2 substantially decrease cell viability in the lung and gastrointestinal models, being this reduction slightly higher in the cells exposed to the degraded forms. In contrast, this parameter was not affected by GO and dGO which, conversely, showed the ability to induce higher levels of ROS than the pristine and degraded aminated forms. Furthermore, none of the materials is skin irritant. Altogether, these results provide new insights about the potential harmful effects of the selected graphene-based nanomaterials in comparison with their degraded counterparts.
Collapse
Affiliation(s)
- Sandra de la Parra
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, Burgos 09001, Spain
| | - Natalia Fernández-Pampín
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, Burgos 09001, Spain
| | - Sebastiano Garroni
- Department of Chemical, Physics, Mathematics and Natural Science, University of Sassari, Via Vienna 2, Sassari 07100, Italy
| | - Matteo Poddighe
- Laboratory of Materials Science and Nanotechnology (LMNT), Department of Chemical, Physics, Mathematics and Natural Science, CR-INSTM, University of Sassari, Via Vienna, 2, Sassari 07100, Italy
| | - Dalia de la Fuente-Vivas
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, Burgos 09001, Spain
| | - Rocío Barros
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, Burgos 09001, Spain
| | - Sonia Martel-Martín
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, Burgos 09001, Spain
| | - Santiago Aparicio
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, Burgos 09001, Spain; Department of Chemistry, Universidad de Burgos, Burgos 09001, Spain
| | - Carlos Rumbo
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, Burgos 09001, Spain.
| | - Juan Antonio Tamayo-Ramos
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies-ICCRAM, Universidad de Burgos, Plaza Misael Bañuelos s/n, Burgos 09001, Spain.
| |
Collapse
|
2
|
Shen J, Liu J, Fan X, Liu H, Bao Y, Hui A, Munir HA. Unveiling the antibacterial strategies and mechanisms of MoS 2: a comprehensive analysis and future directions. Biomater Sci 2024; 12:596-620. [PMID: 38054499 DOI: 10.1039/d3bm01030a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Antibiotic resistance is a growing problem that requires alternative antibacterial agents. MoS2, a two-dimensional transition metal sulfide, has gained significant attention in recent years due to its exceptional photocatalytic performance, excellent infrared photothermal effect, and impressive antibacterial properties. This review presents a detailed analysis of the antibacterial strategies and mechanism of MoS2, starting with its morphology and synthesis methods and focusing on the different interaction stages between MoS2 and bacteria. The paper summarizes the main antibacterial mechanisms of MoS2, such as photocatalytic antibacterial, enzyme-like catalytic antibacterial, physical antibacterial, and photothermal-assisted antibacterial. It offers a comprehensive discussion focus on recent research studies of photocatalytic antibacterial mechanisms and categorizes them, guiding the application of MoS2 in the antibacterial field. Overall, the review provides an in-depth understanding of the antibacterial mechanisms of MoS2 and presents the challenges and future directions for the improvement of MoS2 in the field of high-efficiency antibacterial materials.
Collapse
Affiliation(s)
- Jiahao Shen
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Junli Liu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Xiuyi Fan
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Hui Liu
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Yan Bao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - AiPing Hui
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-Materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Hafiz Akif Munir
- School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
3
|
Alomari OA, Qusti S, Balgoon M, Aljoud F, Alamry KA, Hussein MA. Modified TPP-MoS 2 QD Blend as a Bio-Functional Model for Normalizing Microglial Dysfunction in Alzheimer's Disease. Neurol Int 2023; 15:954-966. [PMID: 37606394 PMCID: PMC10443245 DOI: 10.3390/neurolint15030061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/23/2023] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease of old age. Accumulation of β-amyloid peptide (Aβ) and mitochondrial dysfunction results in chronic microglial activation, which enhances neuroinflammation and promotes neurodegeneration. Microglia are resident macrophages of the brain and spinal cord which play an important role in maintaining brain homeostasis through a variety of phenotypes, including the pro-inflammatory phenotype and anti-inflammatory phenotypes. However, persistently activated microglial cells generate reactive species and neurotoxic mediators. Therefore, inhibitors of microglial activation are seen to have promise in AD control. The modified TPP/MoS2 QD blend is a mitochondrion-targeted nanomaterial that exhibits cytoprotective activities and antioxidant properties through scavenging free radicals. In the present study, the cell viability and cytotoxicity of the DSPE-PEG-TPP/MoS2 QD blend on microglial cells stimulated by Aβ were investigated. The levels of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were also assessed. In addition, pro-inflammatory and anti-inflammatory cytokines, such as tumor necrosis factor α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), transforming growth factor beta (TGF-β), inducible nitric oxide synthase (iNOS) and arginase-1 (Arg-I) were measured in the presence or absence of the DSPE-PEG-TPP/MoS2 QD blend on an immortalized microglia cells activated by accumulation of Aβ. We found that the DSPE-PEG-TPP/MoS2 QD blend was biocompatible and nontoxic at specific concentrations. Furthermore, the modified TPP/MoS2 QD blend significantly reduced the release of free radicals and improved the mitochondrial function through the upregulation of MMP in a dose-dependent manner on microglial cells treated with Aβ. In addition, pre-treatment of microglia with the DSPE-PEG-TPP/MoS2 QD blend at concentrations of 25 and 50 μg/mL prior to Aβ stimulation significantly inhibited the release and expression of pro-inflammatory cytokines, such as IL-1β, IL-6, TNF-α, and iNOS. Nevertheless, the anti-inflammatory cytokines TGF-β and Arg-I were activated. These findings suggest that the modified TPP/MoS2 QD blend reduced oxidative stress, inflammation and improved the mitochondrial function in the immortalized microglial cells (IMG) activated by Aβ. Overall, our research shows that the DSPE-PEG-TPP/MoS2 QD blend has therapeutic promise for managing AD and can impact microglia polarization.
Collapse
Affiliation(s)
- Ohoud A. Alomari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Safaa Qusti
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Maha Balgoon
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Fadwa Aljoud
- Regenerative Medicine Unit, King Fahd Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khalid A. Alamry
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mahmoud A. Hussein
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
4
|
Fernández-Pampín N, González Plaza JJ, García-Gómez A, Peña E, Garroni S, Poddighe M, Rumbo C, Barros R, Martel-Martín S, Aparicio S, Tamayo-Ramos JA. Toxicological assessment of pristine and degraded forms of graphene functionalized with MnOx nanoparticles using human in vitro models representing different exposure routes. Sci Rep 2023; 13:11846. [PMID: 37481626 PMCID: PMC10363126 DOI: 10.1038/s41598-023-38993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 07/18/2023] [Indexed: 07/24/2023] Open
Abstract
The development of novel advanced nanomaterials (NMs) with outstanding characteristics for their use in distinct applications needs to be accompanied by the generation of knowledge on their potential toxicological impact, in particular, that derived from different occupational risk exposure routes, such as inhalation, ingestion, and skin contact. The harmful effects of novel graphene-metal oxide composites on human health are not well understood, many toxicological properties have not been investigated yet. The present study has evaluated several toxicological effects associated with graphene decorated with manganese oxide nanoparticles (GNA15), in a comparative assessment with those induced by simple graphene (G2), on human models representing inhalation (A549 cell line), ingestion (HT29 cell line) and dermal routes (3D reconstructed skin). Pristine and degraded forms of these NMs were included in the study, showing to have different physicochemical and toxicological properties. The degraded version of GNA15 (GNA15d) and G2 (G2d) exhibited clear structural differences with their pristine counterparts, as well as a higher release of metal ions. The viability of respiratory and gastrointestinal models was reduced in a dose-dependent manner in the presence of both GNA15 and G2 pristine and degraded forms. Besides this, all NMs induced the production of reactive oxygen species (ROS) in both models. However, the degraded forms showed to induce a higher cytotoxicity effect. In addition, we found that none of the materials produced irritant effects on 3D reconstructed skin when present in aqueous suspensions. These results provide novel insights into the potentially harmful effects of novel multicomponent NMs in a comprehensive manner. Furthermore, the integrity of the NMs can play a role in their toxicity, which can vary depending on their composition and the exposure route.
Collapse
Affiliation(s)
- Natalia Fernández-Pampín
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Juan José González Plaza
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | | | - Elisa Peña
- Gnanomat, C/Faraday 7, 28049, Madrid, Spain
| | - Sebastiano Garroni
- Department of Chemical, Physics, Mathematics and Natural Science, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Matteo Poddighe
- Laboratory of Materials Science and Nanotechnology (LMNT), Department of Chemical, Physics, Mathematics and Natural Science, CR-INSTM, University of Sassari, Via Vienna, 2, 07100, Sassari, Italy
| | - Carlos Rumbo
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Rocío Barros
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Sonia Martel-Martín
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Santiago Aparicio
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain
| | - Juan Antonio Tamayo-Ramos
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Bañuelos s/n, 09001, Burgos, Spain.
| |
Collapse
|
5
|
Ortiz Peña N, Cherukula K, Even B, Ji DK, Razafindrakoto S, Peng S, Silva AKA, Ménard-Moyon C, Hillaireau H, Bianco A, Fattal E, Alloyeau D, Gazeau F. Resolution of MoS 2 Nanosheets-Induced Pulmonary Inflammation Driven by Nanoscale Intracellular Transformation and Extracellular-Vesicle Shuttles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209615. [PMID: 36649533 DOI: 10.1002/adma.202209615] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Pulmonary exposure to some engineered nanomaterials can cause chronic lesions as a result of unresolved inflammation. Among 2D nanomaterials and graphene, MoS2 has received tremendous attention in optoelectronics and nanomedicine. Here an integrated approach is proposed to follow up the transformation of MoS2 nanosheets at the nanoscale and assesss their impact on lung inflammation status over 1 month after a single inhalation in mice. Analysis of immune cells, alveolar macrophages, extracellular vesicles, and cytokine profiling in bronchoalveolar lavage fluid (BALF) shows that MoS2 nanosheets induced initiation of lung inflammation. However, the inflammation is rapidly resolved despite the persistence of various biotransformed molybdenum-based nanostructures in the alveolar macrophages and the extracellular vesicles for up to 1 month. Using in situ liquid phase transmission electron microscopy experiments, the dynamics of MoS2 nanosheets transformation triggered by reactive oxygen species could be evidenced. Three main transformation mechanisms are observed directly at the nanoscale level: 1) scrolling of the dispersed sheets leading to the formation of nanoscrolls and folded patches, 2) etching releasing soluble MoO4 - , and 3) oxidation generating oxidized sheet fragments. Extracellular vesicles released in BALF are also identified as a potential shuttle of MoS2 nanostructures and their degradation products and more importantly as mediators of inflammation resolution.
Collapse
Affiliation(s)
- Nathaly Ortiz Peña
- Université Paris Cité, MPQ Matériaux et Phénomènes Quantiques, CNRS, 10 rue Alice Domon et Léonie Duquet, 75205 Cedex 13, Paris, France
| | - Kondareddy Cherukula
- Université Paris Cité, MSC Matière et Systèmes Complexes, CNRS, 45 rue des Saints Pères, 75006, Paris, France
| | - Benjamin Even
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Ding-Kun Ji
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000, Strasbourg, France
| | - Sarah Razafindrakoto
- Université Paris Cité, MSC Matière et Systèmes Complexes, CNRS, 45 rue des Saints Pères, 75006, Paris, France
| | - Shiyuan Peng
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000, Strasbourg, France
| | - Amanda K A Silva
- Université Paris Cité, MSC Matière et Systèmes Complexes, CNRS, 45 rue des Saints Pères, 75006, Paris, France
| | - Cécilia Ménard-Moyon
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000, Strasbourg, France
| | - Hervé Hillaireau
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR 3572, University of Strasbourg, ISIS, 67000, Strasbourg, France
| | - Elias Fattal
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, 91400, Orsay, France
| | - Damien Alloyeau
- Université Paris Cité, MPQ Matériaux et Phénomènes Quantiques, CNRS, 10 rue Alice Domon et Léonie Duquet, 75205 Cedex 13, Paris, France
| | - Florence Gazeau
- Université Paris Cité, MSC Matière et Systèmes Complexes, CNRS, 45 rue des Saints Pères, 75006, Paris, France
| |
Collapse
|
6
|
Lee TW, Lai YH, Chen JL, Chen C. The role of transformation in the risks of chemically exfoliated molybdenum disulfide nanosheets to the aquatic environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116278. [PMID: 36174469 DOI: 10.1016/j.jenvman.2022.116278] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/28/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
While the effects of environmental factors (e.g., coexisting organic macromolecules and solar irradiation) on the phase transformation and oxidative dissolution of chemically exfoliated molybdenum nanosheets (ceMoS2) have been recognized, the effects of environmental processes on the subsequent biological impacts of ceMoS2 are still poorly understood. In this study, the bioavailability and transitions in chemical speciation occurring during the aging process are demonstrated to be key factors causing ceMoS2 to affect aquatic organisms. The lower survival rate of embryonic zebrafish with aged (i.e., sunlight-irradiated and dark-ambient-aged) ceMoS2, compared to that with freshly prepared ceMoS2, was due to the release of ionic aging products (mainly acidic Mo species) throughout the oxidative dissolution of ceMoS2. The released soluble molybdenum interacted with natural organic matter (NOM) depending on their functionality, and this attenuated the toxicity caused by ceMoS2 to different degrees. Toxicity triggered by aged ceMoS2 under both dark and irradiated conditions was significantly reduced by Suwannee River NOM due to the formation of complexes with ionic Mo species, which was established by Mo K-edge X-ray absorption spectroscopy. The findings provide useful insights for comprehending the impacts of ceMoS2 on aquatic organisms and guidance for the prevention measures necessary in the applications of MoS2 nanosheets.
Collapse
Affiliation(s)
- Ting-Wei Lee
- Department of Environmental Engineering, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Yu-Heng Lai
- Department of Chemistry, Chinese Culture University, Taipei, 111, Taiwan
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chiaying Chen
- Department of Environmental Engineering, National Chung Hsing University, Taichung City, 402, Taiwan.
| |
Collapse
|
7
|
Naikoo GA, Arshad F, Almas M, Hassan IU, Pedram MZ, Aljabali AA, Mishra V, Serrano-Aroca Á, Birkett M, Charbe NB, Goyal R, Negi P, El-Tanani M, Tambuwala MM. 2D materials, synthesis, characterization and toxicity: A critical review. Chem Biol Interact 2022; 365:110081. [PMID: 35948135 DOI: 10.1016/j.cbi.2022.110081] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
|
8
|
Roy S, Deo KA, Singh KA, Lee HP, Jaiswal A, Gaharwar AK. Nano-bio interactions of 2D molybdenum disulfide. Adv Drug Deliv Rev 2022; 187:114361. [PMID: 35636569 DOI: 10.1016/j.addr.2022.114361] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 12/29/2022]
Abstract
Two-dimensional (2D) molybdenum disulfide (MoS2) is an ultrathin nanomaterial with a high degree of anisotropy, surface-to-volume ratio, chemical functionality and mechanical strength. These properties together enable MoS2 to emerge as a potent nanomaterial for diverse biomedical applications including drug delivery, regenerative medicine, biosensing and bioelectronics. Thus, understanding the interactions of MoS2 with its biological interface becomes indispensable. These interactions, referred to as "nano-bio" interactions, play a key role in determining the biocompatibility and the pathways through which the nanomaterial influences molecular, cellular and biological function. Herein, we provide a critical overview of the nano-bio interactions of MoS2 and emphasize on how these interactions dictate its biomedical applications including intracellular trafficking, biodistribution and biodegradation. Also, a critical evaluation of the interactions of MoS2 with proteins and specific cell types such as immune cells and progenitor/stem cells is illustrated which governs the short-term and long-term compatibility of MoS2-based biomedical devices.
Collapse
|
9
|
Lin H, Peng S, Guo S, Ma B, Lucherelli MA, Royer C, Ippolito S, Samorì P, Bianco A. 2D Materials and Primary Human Dendritic Cells: A Comparative Cytotoxicity Study. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107652. [PMID: 35451183 DOI: 10.1002/smll.202107652] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Human health can be affected by materials indirectly through exposure to the environment or directly through close contact and uptake. With the ever-growing use of 2D materials in many applications such as electronics, medical therapeutics, molecular sensing, and energy storage, it has become more pertinent to investigate their impact on the immune system. Dendritic cells (DCs) are highly important, considering their role as the main link between the innate and the adaptive immune system. By using primary human DCs, it is shown that hexagonal boron nitride (hBN), graphene oxide (GO) and molybdenum disulphide have minimal effects on viability. In particular, it is evidenced that hBN and GO increase DC maturation, while GO leads to the release of reactive oxygen species and pro-inflammatory cytokines. hBN and MoS2 increase T cell proliferation with and without the presence of DCs. hBN in particular does not show any sign of downstream T cell polarization. The study allows ranking of the three materials in terms of inherent toxicity, providing the following trend: GO > hBN ≈ MoS2 , with GO the most cytotoxic.
Collapse
Affiliation(s)
- Hazel Lin
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Shiyuan Peng
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Shi Guo
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Baojin Ma
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Matteo Andrea Lucherelli
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| | - Cathy Royer
- Plateforme Imagerie In Vitro de l'ITI Neurostra, CNRS UAR 3156, University of Strasbourg, Strasbourg, 67000, France
| | | | - Paolo Samorì
- CNRS, ISIS, Université de Strasbourg, Strasbourg, 67000, France
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry UPR 3572, University of Strasbourg, ISIS, Strasbourg, 67000, France
| |
Collapse
|
10
|
Kumar A, Sood A, Han SS. Molybdenum disulfide (MoS 2)-based nanostructures for tissue engineering applications: prospects and challenges. J Mater Chem B 2022; 10:2761-2780. [PMID: 35262167 DOI: 10.1039/d2tb00131d] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Molybdenum disulfide (MoS2) nanostructures have recently earned substantial thoughts from the scientific communities owing to their unique physicochemical, optical and electrical properties. Although MoS2 has been mostly highlighted for its industrial applications, its biological applicability has not been extensively explored. The introduction of nanotechnology in the field of tissue engineering has significantly contributed to human welfare by displaying advancement in tissue regeneration. Assimilation of MoS2 nanostructures into the polymer matrix has been considered a persuasive material of choice for futuristic tissue engineering applications. The current review provides a general discussion on the structural properties of different MoS2 nanostructures. Further, this article focuses on the interactions of MoS2 with biological systems in terms of its cellular toxicity, and biocompatibility along with its capability for cell proliferation, adhesion, and immunomodulation. The article continues to confer the utility of MoS2 nanostructure-based scaffolds for various tissue engineering applications. The article also highlights some emerging prospects and possibilities of the applicability of MoS2-based nanostructures in large organ tissue engineering. Finally, the article concludes with a brief annotation on the challenges and limitations that need to be overcome in order to make plentiful use of this wonderful material for tissue engineering applications.
Collapse
Affiliation(s)
- Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea. .,Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea. .,Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, Korea
| |
Collapse
|
11
|
Balayan S, Chauhan N, Kumar P, Chandra R, Jain U. Fabrication of a sensing platform for identification of tumor necrosis factor-alpha: a biomarker for neonatal sepsis. 3 Biotech 2022; 12:37. [PMID: 35070627 PMCID: PMC8733138 DOI: 10.1007/s13205-021-03083-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023] Open
Abstract
Neonatal sepsis is a prime cause of neonatal deaths across the globe. Presently, various medical tests and biodevices are available in neonatal care. These diagnosis platforms possess several limitations such as being highly expensive, time-consuming, or requiring skilled professionals for operation. These limitations can be overcome through biosensor development. This work discusses the assembling of an electrochemical sensing platform that is designed to detect the level of tumor necrosis factor-alpha (TNF-α). The sensing platform was moderated with nanomaterials molybdenum disulfide nanosheets (MoS2NSs) and silicon dioxide-modified iron oxide nanoparticles (Fe3O4@SiO2NPs). The integration of nanomaterials helps in accomplishing the improved characteristics of the biosensor in terms of conductivity, selectivity, and sensitivity. Further, the molecularly imprinted polymer (MIP) approach was incorporated for sensing the presence of TNF-α on the surface of the working electrode. The electrochemical response of the electrode was recorded at different conditions. A broad concentration range was selected to optimize the biosensor from 0.01 pM to 100 nM. The sensitivity of the biosensor was higher and it exhibits a lower detection limit (0.01 pM).
Collapse
Affiliation(s)
- Sapna Balayan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector-125, Noida, 201313 India
| | - Nidhi Chauhan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector-125, Noida, 201313 India
| | - Prabhanshu Kumar
- Amity Institute of Biotechnology (AIB), Amity University Uttar Pradesh (AUUP), Sector-125, Noida, 201313 India
| | - Ramesh Chandra
- Drug Discovery and Development Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007 India ,Institute of Nanomedical Sciences (INMS), University of Delhi, Delhi, 110007 India
| | - Utkarsh Jain
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Sector-125, Noida, 201313 India
| |
Collapse
|
12
|
Ghim D, Chou PI, Chae SH, Jun YS. Effects of MoS 2 Layer Thickness on Its Photochemically Driven Oxidative Dissolution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13759-13769. [PMID: 34581181 DOI: 10.1021/acs.est.1c02363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The distinctive optical and electronic properties of two-dimensional (2D) molybdenum disulfide (MoS2) make it a promising photocatalyst and photothermal agent in aqueous applications. In terms of environmental stability, MoS2 has been considered insoluble, but 2D MoS2 nanosheets can be susceptible to dissolution, owing to their large surface areas and highly accessible reactive sites, including defects at the basal plane and edge sites. Under light illumination, the dissolution of 2D MoS2 nanosheets can be further accelerated by their photochemical reactivity. To elucidate MoS2 reactivity in the environment, here we investigated the thickness-dependent dissolution of MoS2 under illumination. To synthesize nanoscale thicknesses of MoS2, we exfoliated bulk MoS2 by ultrasonication and controlled the layer thickness by iterative cascade centrifugation, producing MoS2 nanosheets averaging either ∼18 nm or ∼46 nm thick, depending on the centrifugation rate. Under simulated sunlight, MoS2 dissolution was accelerated, the Mo6+ composition increased, and the solution pH decreased compared to those in the dark. These results suggest that light exposure promotes the oxidation of MoS2, causing faster dissolution. Importantly, 18 nm thick MoS2 exhibited faster dissolution than either 46 nm or bulk MoS2, driven by the superoxide radical (O2•-) generation promoted by its relative thinness. These findings highlight the important role of the thickness-dependent photochemistry of MoS2 nanosheets in their dissolution, which is directly linked to their environmental behavior and stability.
Collapse
Affiliation(s)
- Deoukchen Ghim
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, Missouri 63130, United States
| | - Ping-I Chou
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, Missouri 63130, United States
| | - Seung Hee Chae
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, Missouri 63130, United States
- Department of Civil and Environmental Engineering, Seoul National University, Seoul 151-744, Republic of Korea
| | - Young-Shin Jun
- Department of Energy, Environmental and Chemical Engineering, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
13
|
Martel Martín S, Barros R, Domi B, Rumbo C, Poddighe M, Aparicio S, Suarez-Diez M, Tamayo-Ramos JA. Low Toxicological Impact of Commercial Pristine Multi-Walled Carbon Nanotubes on the Yeast Saccharomyces cerevisiae. NANOMATERIALS 2021; 11:nano11092272. [PMID: 34578588 PMCID: PMC8471963 DOI: 10.3390/nano11092272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/16/2022]
Abstract
Carbon nanotubes (CNTs) have attracted the attention of academy and industry due to their potential applications, being currently produced and commercialized at a mass scale, but their possible impact on different biological systems remains unclear. In the present work, an assessment to understand the toxicity of commercial pristine multi-walled carbon nanotubes (MWCNTs) on the unicellular fungal model Saccharomyces cerevisiae is presented. Firstly, the nanomaterial was physico-chemically characterized, to obtain insights concerning its morphological features and elemental composition. Afterwards, a toxicology assessment was carried out, where it could be observed that cell proliferation was negatively affected only in the presence of 800 mg L-1 for 24 h, while oxidative stress was induced at a lower concentration (160 mg L-1) after a short exposure period (2 h). Finally, to identify possible toxicity pathways induced by the selected MWCNTs, the transcriptome of S. cerevisiae exposed to 160 and 800 mg L-1, for two hours, was studied. In contrast to a previous study, reporting massive transcriptional changes when yeast cells were exposed to graphene nanoplatelets in the same exposure conditions, only a small number of genes (130) showed significant transcriptional changes in the presence of MWCNTs, in the higher concentration tested (800 mg L-1), and most of them were found to be downregulated, indicating a limited biological response of the yeast cells exposed to the selected pristine commercial CNTs.
Collapse
Affiliation(s)
- Sonia Martel Martín
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain; (S.M.M.); (R.B.); (B.D.); (C.R.); (S.A.)
| | - Rocío Barros
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain; (S.M.M.); (R.B.); (B.D.); (C.R.); (S.A.)
| | - Brixhilda Domi
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain; (S.M.M.); (R.B.); (B.D.); (C.R.); (S.A.)
| | - Carlos Rumbo
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain; (S.M.M.); (R.B.); (B.D.); (C.R.); (S.A.)
| | - Matteo Poddighe
- Laboratory of Materials Science and Nanotechnology (LMNT), Department of Chemistry and Pharmacy, University of Sassari, CR-INSTM, Via Vienna, 2, 07100 Sassari, Italy;
| | - Santiago Aparicio
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain; (S.M.M.); (R.B.); (B.D.); (C.R.); (S.A.)
- Department of Chemistry, University of Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain
| | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University & Research, Stippeneg 4, 6708 WE Wageningen, The Netherlands;
| | - Juan Antonio Tamayo-Ramos
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain; (S.M.M.); (R.B.); (B.D.); (C.R.); (S.A.)
- Correspondence:
| |
Collapse
|
14
|
Domi B, Bhorkar K, Rumbo C, Sygellou L, Martin SM, Quesada R, Yannopoulos SN, Tamayo-Ramos JA. Toxicological assessment of commercial monolayer tungsten disulfide nanomaterials aqueous suspensions using human A549 cells and the model fungus Saccharomyces cerevisiae. CHEMOSPHERE 2021; 272:129603. [PMID: 33485043 DOI: 10.1016/j.chemosphere.2021.129603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
The utilization of tungsten disulfide (WS2) nanomaterials in distinct applications is raising due to their unique physico-chemical properties, such as low friction coefficient and high strength, which highlights the necessity to study their potential toxicological effects, due to the potential increase of environmental and human exposure. The aim of this work was to analyze commercially available aqueous dispersions of monolayer tungsten disulfide (2D WS2) nanomaterials with distinct lateral size employing a portfolio of physico-chemical and toxicological evaluations. The structure and stoichiometry of monolayer tungsten disulfide (WS2-ACS-M) and nano size monolayer tungsten disulfide (WS2-ACS-N) was analyzed by Raman spectroscopy, whereas a more quantitative approach to study the nature of formed oxidized species was undertaken employing X-ray photoelectron spectroscopy. Adenocarcinomic human alveolar basal epithelial cells (A549 cells) and the ecotoxicology model Saccharomyces cerevisiae were selected as unicellular eukaryotic systems to assess the cytotoxicity of the nanomaterials. Cell viability and reactive oxygen species (ROS) determinations demonstrated different toxicity levels depending on the cellular model used. While both 2D WS2 suspensions showed very low toxicity towards the A549 cells, a comparable concentration (160 mg L-1) reduced the viability of yeast cells. The toxicity of a nano size 2D WS2 commercialized in dry form from the same provider was also assessed, showing ability to reduce yeast cells viability as well. Overall, the presented data reveal the physico-chemical properties and the potential toxicity of commercial 2D WS2 aqueous suspensions when interacting with distinct eukaryotic organisms, showing differences in function of the biological system exposed.
Collapse
Affiliation(s)
- Brixhilda Domi
- International Research Centre in Critical Raw Materials-ICCRAM, Universidad de Burgos, Plaza Misael Banuelos S/n, 09001, Burgos, Spain
| | - Kapil Bhorkar
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), P.O. Box 1414, GR-26504, Rio-Patras, Greece; Univ Rennes, CNRS, ISCR, UMR 6226, F-35000, Rennes, France
| | - Carlos Rumbo
- International Research Centre in Critical Raw Materials-ICCRAM, Universidad de Burgos, Plaza Misael Banuelos S/n, 09001, Burgos, Spain
| | - Labrini Sygellou
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), P.O. Box 1414, GR-26504, Rio-Patras, Greece
| | - Sonia Martel Martin
- International Research Centre in Critical Raw Materials-ICCRAM, Universidad de Burgos, Plaza Misael Banuelos S/n, 09001, Burgos, Spain
| | - Roberto Quesada
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001, Burgos, Spain
| | - Spyros N Yannopoulos
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), P.O. Box 1414, GR-26504, Rio-Patras, Greece
| | - Juan Antonio Tamayo-Ramos
- International Research Centre in Critical Raw Materials-ICCRAM, Universidad de Burgos, Plaza Misael Banuelos S/n, 09001, Burgos, Spain.
| |
Collapse
|
15
|
Levine M. Fluorescence-Based Sensing of Pesticides Using Supramolecular Chemistry. Front Chem 2021; 9:616815. [PMID: 33937184 PMCID: PMC8085505 DOI: 10.3389/fchem.2021.616815] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/11/2021] [Indexed: 01/02/2023] Open
Abstract
The detection of pesticides in real-world environments is a high priority for a broad range of applications, including in areas of public health, environmental remediation, and agricultural sustainability. While many methods for pesticide detection currently exist, the use of supramolecular fluorescence-based methods has significant practical advantages. Herein, we will review the use of fluorescence-based pesticide detection methods, with a particular focus on supramolecular chemistry-based methods. Illustrative examples that show how such methods have achieved success in real-world environments are also included, as are areas highlighted for future research and development.
Collapse
Affiliation(s)
- Mindy Levine
- Ariel University, Department of Chemical Sciences, Ariel, Israel
| |
Collapse
|
16
|
Domi B, Bhorkar K, Rumbo C, Sygellou L, Yannopoulos SN, Barros R, Quesada R, Tamayo-Ramos JA. Assessment of Physico-Chemical and Toxicological Properties of Commercial 2D Boron Nitride Nanopowder and Nanoplatelets. Int J Mol Sci 2021; 22:E567. [PMID: 33430016 PMCID: PMC7827597 DOI: 10.3390/ijms22020567] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Boron nitride (BN) nanomaterials have been increasingly explored for potential applications in chemistry and biology fields (e.g., biomedical, pharmaceutical, and energy industries) due to their unique physico-chemical properties. However, their safe utilization requires a profound knowledge on their potential toxicological and environmental impact. To date, BN nanoparticles have been considered to have a high biocompatibility degree, but in some cases, contradictory results on their potential toxicity have been reported. Therefore, in the present study, we assessed two commercial 2D BN samples, namely BN-nanopowder (BN-PW) and BN-nanoplatelet (BN-PL), with the objective to identify whether distinct physico-chemical features may have an influence on the biological responses of exposed cellular models. Morphological, structural, and composition analyses showed that the most remarkable difference between both commercial samples was the diameter of their disk-like shape, which was of 200-300 nm for BN-PL and 100-150 nm for BN-PW. Their potential toxicity was investigated using adenocarcinomic human alveolar basal epithelial cells (A549 cells) and the unicellular fungus Saccharomycescerevisiae, as human and environmental eukaryotic models respectively, employing in vitro assays. In both cases, cellular viability assays and reactive oxygen species (ROS) determinations where performed. The impact of the selected nanomaterials in the viability of both unicellular models was very low, with only a slight reduction of S. cerevisiae colony forming units being observed after a long exposure period (24 h) to high concentrations (800 mg/L) of both nanomaterials. Similarly, BN-PW and BN-PL showed a low capacity to induce the formation of reactive oxygen species in the studied conditions. Even at the highest concentration and exposure times, no major cytotoxicity indicators were observed in human cells and yeast. The results obtained in the present study provide novel insights into the safety of 2D BN nanomaterials, indicating no significant differences in the toxicological potential of similar commercial products with a distinct lateral size, which showed to be safe products in the concentrations and exposure conditions tested.
Collapse
Affiliation(s)
- Brixhilda Domi
- International Research Centre in Critical Raw Materials (ICCRAM), Universidad de Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain; (B.D.); (C.R.); (R.B.)
| | - Kapil Bhorkar
- Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences (FORTH/ICE-HT), P.O. Box 1414, GR-26504 Rio-Patras, Greece; (K.B.); (L.S.); (S.N.Y.)
- CNRS, ISCR-UMR 6226, University of Rennes, F-35000 Rennes, France
| | - Carlos Rumbo
- International Research Centre in Critical Raw Materials (ICCRAM), Universidad de Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain; (B.D.); (C.R.); (R.B.)
| | - Labrini Sygellou
- Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences (FORTH/ICE-HT), P.O. Box 1414, GR-26504 Rio-Patras, Greece; (K.B.); (L.S.); (S.N.Y.)
| | - Spyros N. Yannopoulos
- Foundation for Research and Technology Hellas-Institute of Chemical Engineering Sciences (FORTH/ICE-HT), P.O. Box 1414, GR-26504 Rio-Patras, Greece; (K.B.); (L.S.); (S.N.Y.)
| | - Rocio Barros
- International Research Centre in Critical Raw Materials (ICCRAM), Universidad de Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain; (B.D.); (C.R.); (R.B.)
| | - Roberto Quesada
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, 09001 Burgos, Spain;
| | - Juan Antonio Tamayo-Ramos
- International Research Centre in Critical Raw Materials (ICCRAM), Universidad de Burgos, Plaza Misael Banuelos s/n, 09001 Burgos, Spain; (B.D.); (C.R.); (R.B.)
| |
Collapse
|