1
|
Remote and precise control over morphology and motion of organic crystals by using magnetic field. Nat Commun 2022; 13:2322. [PMID: 35484161 PMCID: PMC9050695 DOI: 10.1038/s41467-022-29959-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/08/2022] [Indexed: 12/02/2022] Open
Abstract
Elastic organic crystals are the materials foundation of future lightweight flexible electronic, optical and sensing devices, yet precise control over their deformation has not been accomplished. Here, we report a general non-destructive approach to remote bending of organic crystals. Flexible organic crystals are coupled to magnetic nanoparticles to prepare hybrid actuating elements whose shape can be arbitrarily and precisely controlled simply by using magnetic field. The crystals are mechanically and chemically robust, and can be flexed precisely to a predetermined curvature with complete retention of their macroscopic integrity at least several thousand times in contactless mode, in air or in a liquid medium. These crystals are used as optical waveguides whose light output can be precisely and remotely controlled by using a permanent magnet. This approach expands the range of applications of flexible organic crystals beyond the known limitations with other methods for control of their shape, and opens prospects for their direct implementation in flexible devices such as sensors, emitters, and other (opto)electronics. Elastic organic crystals are the materials foundation of future lightweight flexible electronic, optical and sensing devices, yet precise control over their deformation has not been accomplished. Here, the authors demonstrate rapid remote bending of organic crystals which are coupled to magnetic nanoparticles using magnetic field.
Collapse
|
2
|
Multimodal microwheel swarms for targeting in three-dimensional networks. Sci Rep 2022; 12:5078. [PMID: 35332242 PMCID: PMC8948265 DOI: 10.1038/s41598-022-09177-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/16/2022] [Indexed: 01/02/2023] Open
Abstract
Microscale bots intended for targeted drug delivery must move through three-dimensional (3D) environments that include bifurcations, inclined surfaces, and curvature. In previous studies, we have shown that magnetically actuated colloidal microwheels (µwheels) reversibly assembled from superparamagnetic beads can translate rapidly and be readily directed. Here we show that, at high concentrations, µwheels assemble into swarms that, depending on applied magnetic field actuation patterns, can be designed to transport cargo, climb steep inclines, spread over large areas, or provide mechanical action. We test the ability of these multimodal swarms to navigate through complex, inclined microenvironments by characterizing the translation and dispersion of individual µwheels and swarms of µwheels on steeply inclined and flat surfaces. Swarms are then studied within branching 3D vascular models with multiple turns where good targeting efficiencies are achieved over centimeter length scales. With this approach, we present a readily reconfigurable swarm platform capable of navigating through 3D microenvironments.
Collapse
|
3
|
Chen J, Yuan M, Madison CA, Eitan S, Wang Y. Blood-brain barrier crossing using magnetic stimulated nanoparticles. J Control Release 2022; 345:557-571. [PMID: 35276300 DOI: 10.1016/j.jconrel.2022.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/22/2022] [Accepted: 03/03/2022] [Indexed: 11/15/2022]
Abstract
Due to the low permeability and high selectivity of the blood-brain barrier (BBB), existing brain therapeutic technologies are limited by the inefficient BBB crossing of conventional drugs. Magnetic nanoparticles (MNPs) have shown great potential as nano-carriers for efficient BBB crossing under the external static magnetic field (SMF). To quantify the impact of SMF on MNPs' in vivo dynamics towards BBB crossing, we developed a physiologically based pharmacokinetic (PBPK) model for intraperitoneal (IP) injected superparamagnetic iron oxide nanoparticles coated by gold and conjugated with poly (ethylene glycol) (PEG) (SPIO-Au-PEG NPs) in mice. Unlike most reported PBPK models that ignore brain permeability, we first obtained the brain permeabilities with and without SMF by determining the concentration of SPIO-Au-PEG NPs in the cerebral blood and brain tissue. This concentration in the brain was simulated by the advection-diffusion equations and was numerically solved in COMSOL Multiphysics. The results from the PBPK model after incorporating the brain permeability showed a good agreement (regression coefficient R2 = 0.848) with the in vivo results, verifying the capability of using the proposed PBPK model to predict the in vivo biodistribution of SPIO-Au-PEG NPs under the exposure to SMF. Furthermore, the in vivo results revealed that the distribution coefficient from blood to brain under the exposure to SMF (4.01%) is slightly better than the control group (3.68%). In addition, the modification of SPIO-Au-PEG NPs with insulin (SPIO-Au-PEG-insulin) showed an improvement of the brain bioavailability by 24.47% in comparison to the non-insulin group. With the SMF stimulation, the brain bioavailability of SPIO-Au-PEG-insulin was further improved by 3.91% compared to the group without SMF. The PBPK model and in vivo validation in this paper lay a solid foundation for future study on non-invasive targeted drug delivery to the brain.
Collapse
Affiliation(s)
- Jingfan Chen
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, United States of America
| | - Muzhaozi Yuan
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, United States of America
| | - Caitlin A Madison
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77843, United States of America
| | - Shoshana Eitan
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX 77843, United States of America.
| | - Ya Wang
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, United States of America; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, United States of America; Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, United States of America.
| |
Collapse
|
4
|
Yu S, Sun Z, Zhang Z, Sun H, Liu L, Wang W, Li M, Zhao Q, Li T. Magnetic Microdimer as Mobile Meter for Measuring Plasma Glucose and Lipids. Front Bioeng Biotechnol 2021; 9:779632. [PMID: 34900967 PMCID: PMC8660689 DOI: 10.3389/fbioe.2021.779632] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 10/08/2021] [Indexed: 01/21/2023] Open
Abstract
With the development of designed materials and structures, a wide array of micro/nanomachines with versatile functionalities are employed for specific sensing applications. Here, we demonstrated a magnetic propelled microdimer-based point-of-care testing system, which can be used to provide the real-time data of plasma glucose and lipids relying on the motion feedback of mechanical properties. On-demand and programmable speed and direction of the microdimers can be achieved with the judicious adjustment of the external magnetic field, while their velocity and instantaneous postures provide estimation of glucose, cholesterol, and triglycerides concentrations with high temporal accuracy. Numerical simulations reveal the relationship between motility performance and surrounding liquid properties. Such technology presents a point-of-care testing (POCT) approach to adapt to biofluid measurement, which advances the development of microrobotic system in biomedical fields.
Collapse
Affiliation(s)
- Shimin Yu
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.,State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Zhongqi Sun
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhanxiang Zhang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China.,Chongqing Research Institute of HIT, Harbin, China
| | - Haoran Sun
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Lina Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Wuyi Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| | - Mu Li
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingsong Zhao
- Department of Endocrinology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
5
|
Xu K, Xu S, Wei F. Recent progress in magnetic applications for micro- and nanorobots. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:744-755. [PMID: 34367858 PMCID: PMC8313977 DOI: 10.3762/bjnano.12.58] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
In recent years, magnetic micro- and nanorobots have been developed and extensively used in many fields. Actuated by magnetic fields, micro- and nanorobots can achieve controllable motion, targeted transportation of cargo, and energy transmission. The proper use of magnetic fields is essential for the further research and development of micro- and nanorobotics. In this article, recent progress in magnetic applications in the field of micro- and nanorobots is reviewed. First, the achievements of manufacturing micro- and nanorobots by incorporating different magnetic nanoparticles, such as diamagnetic, paramagnetic, and ferromagnetic materials, are discussed in detail, highlighting the importance of a rational use of magnetic materials. Then the innovative breakthroughs of using different magnetoelectric devices and magnetic drive structures to improve the micro- and nanorobots are reviewed. Finally, based on the biofriendliness and the precise and stable performance of magnetic micro- and nanorobots in microbial environments, some future challenges are outlined, and the prospects of magnetic applications for micro- and nanorobots are presented.
Collapse
Affiliation(s)
- Ke Xu
- School of Information & Control Engineering, Shenyang Jianzhu University, Shenyang, China
| | - Shuang Xu
- School of Information & Control Engineering, Shenyang Jianzhu University, Shenyang, China
| | - Fanan Wei
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, China
| |
Collapse
|
6
|
Abstract
![]()
Manipulation and navigation of micro
and nanoswimmers in different
fluid environments can be achieved by chemicals, external fields,
or even motile cells. Many researchers have selected magnetic fields
as the active external actuation source based on the advantageous
features of this actuation strategy such as remote and spatiotemporal
control, fuel-free, high degree of reconfigurability, programmability,
recyclability, and versatility. This review introduces fundamental
concepts and advantages of magnetic micro/nanorobots (termed here
as “MagRobots”) as well as basic knowledge of magnetic
fields and magnetic materials, setups for magnetic manipulation, magnetic
field configurations, and symmetry-breaking strategies for effective
movement. These concepts are discussed to describe the interactions
between micro/nanorobots and magnetic fields. Actuation mechanisms
of flagella-inspired MagRobots (i.e., corkscrew-like motion and traveling-wave
locomotion/ciliary stroke motion) and surface walkers (i.e., surface-assisted
motion), applications of magnetic fields in other propulsion approaches,
and magnetic stimulation of micro/nanorobots beyond motion are provided
followed by fabrication techniques for (quasi-)spherical, helical,
flexible, wire-like, and biohybrid MagRobots. Applications of MagRobots
in targeted drug/gene delivery, cell manipulation, minimally invasive
surgery, biopsy, biofilm disruption/eradication, imaging-guided delivery/therapy/surgery,
pollution removal for environmental remediation, and (bio)sensing
are also reviewed. Finally, current challenges and future perspectives
for the development of magnetically powered miniaturized motors are
discussed.
Collapse
Affiliation(s)
- Huaijuan Zhou
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Carmen C Mayorga-Martinez
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Salvador Pané
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent Systems (IRIS), ETH Zurich, Tannenstrasse 3, 8092 Zurich, Switzerland
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Martin Pumera
- Center for Advanced Functional Nanorobots, Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic.,Department of Medical Research, China Medical University Hospital, China Medical University, No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan.,Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic.,Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.,Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, Brno CZ-612 00, Czech Republic
| |
Collapse
|