1
|
Correa-Abril J, Stahl U, Cabrera EV, Parra YJ, Vega MA, Taamalli S, Louis F, Rodríguez-Díaz JM. Adsorption dynamics of Cd 2+(aq) on microwave-synthetized pristine biochar from cocoa pod husk: Green, experimental, and DFT approaches. iScience 2024; 27:109958. [PMID: 38840843 PMCID: PMC11152673 DOI: 10.1016/j.isci.2024.109958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/05/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024] Open
Abstract
Biochar obtained via microwave-assisted pyrolysis (MAP) at 720 W and 15 min from cocoa pod husk (CPH) is an efficient adsorbent of Cd2+(aq). Biochar of residual biomass of CPH (BCCPH) possesses favorable physicochemical and morphological properties, featuring a modest surface area yet a suitable porous structure. Adsorption, predominantly governed by physisorption, is influenced by the oxygen-containing active sites (-COOR, -C(R)O, and -CH2OR; R = H, alkyl). CdCO3 formation occurs during adsorption. Experimental data were well-fitted into various kinetic models for a broad understanding of the sorption process. Langmuir model indicates a maximum adsorption capacity of 14.694 mg/g. The thermodynamic study confirms the spontaneous and endothermic sorption. Studies at the molecular level have revealed that the Cd2+ ion tends to bind to surface aromatic carbon atoms. This sustainable approach produces BCCPH via MAP as a solution for waste transformation into water-cleaning materials.
Collapse
Affiliation(s)
- Jhonny Correa-Abril
- Universidad Central del Ecuador, Facultad de Ingeniería Química, Grupo de Investigación en Moléculas y Materiales Funcionales (MoléMater), Enrique Ritter s/n y Bolivia, Quito, Pichincha 170521, Ecuador
- Facultad de Posgrado, Universidad Técnica de Manabí, Av. Urbina y Che Guevara, Portoviejo, Manabí 130104, Ecuador
| | - Ullrich Stahl
- Universidad Central del Ecuador, Facultad de Ingeniería Química, Grupo de Investigación en Moléculas y Materiales Funcionales (MoléMater), Enrique Ritter s/n y Bolivia, Quito, Pichincha 170521, Ecuador
| | - Elvia V. Cabrera
- Universidad Central del Ecuador, Facultad de Ingeniería Química, Grupo de Investigación en Moléculas y Materiales Funcionales (MoléMater), Enrique Ritter s/n y Bolivia, Quito, Pichincha 170521, Ecuador
| | - Yonathan J. Parra
- Universidad Central del Ecuador, Facultad de Ingeniería en Geología, Minas, Petróleos y Ambiental, Grupo de Investigación en Moléculas y Materiales Funcionales (MoléMater), Jerónimo Leyton y Gilberto Gatto Sobral, Quito, Pichincha 170521, Ecuador
| | - Michael A. Vega
- Universidad Central del Ecuador, Facultad de Ingeniería Química, Grupo de Investigación en Moléculas y Materiales Funcionales (MoléMater), Enrique Ritter s/n y Bolivia, Quito, Pichincha 170521, Ecuador
- Universidad Central del Ecuador, Facultad de Ingeniería en Geología, Minas, Petróleos y Ambiental, Grupo de Investigación en Moléculas y Materiales Funcionales (MoléMater), Jerónimo Leyton y Gilberto Gatto Sobral, Quito, Pichincha 170521, Ecuador
| | - Sonia Taamalli
- Université de Lille, CNRS, UMR 8522, PhysicoChimie des Processus de Combustion et de l’Atmosphère – PC2A, 59000 Lille, France
| | - Florent Louis
- Université de Lille, CNRS, UMR 8522, PhysicoChimie des Processus de Combustion et de l’Atmosphère – PC2A, 59000 Lille, France
| | - Joan Manuel Rodríguez-Díaz
- Laboratorio de Análisis Químicos y Biotecnológicos, Instituto de Investigación, Universidad Técnica de Manabí, Av. Urbina y Che Guevara, Portoviejo, Manabí 130104, Ecuador
| |
Collapse
|
2
|
Ziyatdinova G, Gimadutdinova L. Recent Advances in Electrochemical Sensors for Sulfur-Containing Antioxidants. MICROMACHINES 2023; 14:1440. [PMID: 37512751 PMCID: PMC10384414 DOI: 10.3390/mi14071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Sulfur-containing antioxidants are an important part of the antioxidant defense systems in living organisms under the frame of a thiol-disulfide equilibrium. Among them, l-cysteine, l-homocysteine, l-methionine, glutathione, and α-lipoic acid are the most typical representatives. Their actions in living systems are briefly discussed. Being electroactive, sulfur-containing antioxidants are interesting analytes to be determined using various types of electrochemical sensors. Attention is paid to the chemically modified electrodes with various nanostructured coverages. The analytical capabilities of electrochemical sensors for sulfur-containing antioxidant quantification are summarized and discussed. The data are summarized and presented on the basis of the electrode surface modifier applied, i.e., carbon nanomaterials, metal and metal oxide nanoparticles (NPs) and nanostructures, organic mediators, polymeric coverage, and mixed modifiers. The combination of various types of nanomaterials provides a wider linear dynamic range, lower limits of detection, and higher selectivity in comparison to bare electrodes and sensors based on the one type of surface modifier. The perspective of the combination of chromatography with electrochemical detection providing the possibility for simultaneous determination of sulfur-containing antioxidants in a complex matrix has also been discussed.
Collapse
Affiliation(s)
- Guzel Ziyatdinova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| | - Liliya Gimadutdinova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| |
Collapse
|
3
|
A nano-enzymatic photoelectrochemical L-cysteine biosensor based on Bi2MoO6 modified honeycomb TiO2 nanotube arrays composite. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
4
|
Melhi S, Ullah Jan S, Khan AA, Badshah K, Ullah S, Bostan B, Selamoglu Z. Remediation of Cd (II) Ion from an Aqueous Solution by a Starch-Based Activated Carbon: Experimental and Density Functional Theory (DFT) Approach. CRYSTALS 2022; 12:189. [DOI: 10.3390/cryst12020189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Heavy metal ion pollution is a serious threat for aquatic and terrestrial living beings. Adsorption is a facile process to encounter heavy metal pollution. Various types of adsorbents have been developed and used for environmental remediation. Activated carbon is one of the cheapest adsorbents derived from various biomass. In this work, the adsorption of cadmium ions (Cd (II)) with starch-based activated carbon (AC) having a specific surface area of 1600 m2 g−1 was investigated in a series of batch laboratory studies. The effective operating parameters, such as initial pH (pH0), initial concentration of metal ions, contact time, and temperature on the adsorption, were investigated. Validation of the kinetic study shows that the adsorption process is better predicted by the pseudo-second-order model. The extended Freundlich and Langmuir isotherms were applied to the study. The results show that the metal ion adsorption capacities of activated carbon increased with increasing pH, and it was found that maximum adsorption (284 mg g−1) of Cd (II) was achieved at pH solution of 5.5–6. The thermodynamic parameters, such as ∆G, ∆H, and ∆S, were found to be −17.42 kJ mol−1, 8.49 kJ mol−1, and 58.66 J mol−1 K−1, respectively, revealing that the adsorption mechanism is endothermic, spontaneous, and feasible. Furthermore, the density functional theory simulations demonstrated that the activated carbon strongly interacted with toxicity and mobility, so it is very urgent to remove this species from industrial wastewater before it is discharged into the environment. The adsorption energy calculated for all interactive sites was negative (−43.41 kJ mol−1 to −967.74 kJ mol−1), showing effective interaction between the adsorbate and adsorbent. The PDOS clearly shows that there is a stronger overlapping at the Femi level between the d orbital of the Cd ion and the p orbital of the O atom, showing a strong interaction and confirming the chemical bond formation between the Cd (II) ion and O atom.
Collapse
Affiliation(s)
- Saad Melhi
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia
| | - Saeed Ullah Jan
- Department of Chemistry, University of Malakand, Chakdara 18800, Pakistan
| | - Adnan Ali Khan
- Department of Chemistry, University of Malakand, Chakdara 18800, Pakistan
| | - Khan Badshah
- Department of Chemistry, University of Malakand, Chakdara 18800, Pakistan
| | - Saeed Ullah
- Department of Chemistry, University of Malakand, Chakdara 18800, Pakistan
| | - Bushra Bostan
- Department of Chemistry, University of Malakand, Chakdara 18800, Pakistan
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Omer Halisdemir University, 51240 Nigde, Turkey
| |
Collapse
|
5
|
Mirac Dizman H, Kazancioglu EO, Shigemune T, Takahara S, Arsu N. High sensitivity colorimetric determination of L-cysteine using gold nanoparticles functionalized graphene oxide prepared by photochemical reduction method. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120294. [PMID: 34455380 DOI: 10.1016/j.saa.2021.120294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/27/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
This study aimed for the development of a cost effective and efficient method for L-cysteine detection, without employing expensive instrumentation within a short analysis time. The proposed method has been involved in the photochemical preparation of gold nanoparticles and gold nanoparticles on graphene oxide nanostructures. The gold nanoparticles and gold nanoparticles on graphene oxide acted as simple and sensitive nano-sensors for L-cysteine, due to the molecular structure of the L-cysteine presented -NH2 and -SH, which is very attractive for coordination to gold nanoparticles and crosslink gold nanoparticles causing aggregation and color change. By using the gold nanoparticles on graphene oxide as a probe, the colorimetric detection of L-cysteine in a nanomolar order concentration was demonstrated.
Collapse
Affiliation(s)
- H Mirac Dizman
- Department of Chemistry, Yildiz Technical University, Davutpasa Campus, Istanbul 34220, Turkey
| | | | - Takuya Shigemune
- Department of Materials Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Shigeru Takahara
- Department of Materials Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Nergis Arsu
- Department of Chemistry, Yildiz Technical University, Davutpasa Campus, Istanbul 34220, Turkey.
| |
Collapse
|
6
|
Moulaee K, Neri G. Electrochemical Amino Acid Sensing: A Review on Challenges and Achievements. BIOSENSORS 2021; 11:502. [PMID: 34940259 PMCID: PMC8699811 DOI: 10.3390/bios11120502] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 05/05/2023]
Abstract
The rapid growth of research in electrochemistry in the last decade has resulted in a significant advancement in exploiting electrochemical strategies for assessing biological substances. Among these, amino acids are of utmost interest due to their key role in human health. Indeed, an unbalanced amino acid level is the origin of several metabolic and genetic diseases, which has led to a great need for effective and reliable evaluation methods. This review is an effort to summarize and present both challenges and achievements in electrochemical amino acid sensing from the last decade (from 2010 onwards) to show where limitations and advantages stem from. In this review, we place special emphasis on five well-known electroactive amino acids, namely cysteine, tyrosine, tryptophan, methionine and histidine. The recent research and achievements in this area and significant performance metrics of the proposed electrochemical sensors, including the limit of detection, sensitivity, stability, linear dynamic range(s) and applicability in real sample analysis, are summarized and presented in separate sections. More than 400 recent scientific studies were included in this review to portray a rich set of ideas and exemplify the capabilities of the electrochemical strategies to detect these essential biomolecules at trace and even ultra-trace levels. Finally, we discuss, in the last section, the remaining issues and the opportunities to push the boundaries of our knowledge in amino acid electrochemistry even further.
Collapse
Affiliation(s)
- Kaveh Moulaee
- Department of Engineering, University of Messina, C.Da Di Dio, I-98166 Messina, Italy;
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran 16846-13114, Iran
| | - Giovanni Neri
- Department of Engineering, University of Messina, C.Da Di Dio, I-98166 Messina, Italy;
| |
Collapse
|
7
|
Sharma S, Sidhartha PN, Chappanda KN. Influence of laser and alkali treatment on an Ag/TiO 2nanotube based dopamine sensor. NANOTECHNOLOGY 2021; 33:015502. [PMID: 34587590 DOI: 10.1088/1361-6528/ac2b6f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Herein, TiO2nanotubes (T-NTs) arrays were subjected to two types of treatment followed by a simple metal deposition technique to significantly enhance the performances of T-NTs based electrochemical sensing of dopamine. The first type of treatment was done by soaking T-NTs in sodium hydroxide solution for an optimal time to enhance the conductivity and charge carrier density. The second type of treatment employed was laser irradiation, which induces crystallinity disorder and forms rutile TiO2, promoting active analyte adsorption sites. Afterward, silver (Ag) was electro-deposited on the T-NTs as a dopamine sensing catalyst to form T-NTs/Ag nanohybrids. The dual-treated T-NTs based sensor showed 3-fold enhancement in sensitivity (from 8.2μA mM-1cm-2to 32μA mM-1cm-2), reduced charge transfer resistance (from 38 × 10-6Ω to 0.7 × 10-6Ω), above 2 order higher donor charge density (from 3.58 × 1018cm-3to 1.41 × 1021cm-3), and reduced limit of detection (from 32.3μM to 2.8μM) in comparison to plain T-NTs based sensor. In addition, the sensitivity reported here is significantly higher than most of the previously reported TiO2based dopamine sensors. Perspective-wise, the dual treatment approach is a promising technique and is highly desirable for enhancing the performances of T-NTs and other nanomaterial based electrochemical sensors.
Collapse
Affiliation(s)
- Sarda Sharma
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - P N Sidhartha
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| | - Karumbaiah N Chappanda
- Department of Electrical and Electronics Engineering, Birla Institute of Technology and Sciences (BITS), Pilani, Hyderabad Campus, Hyderabad 500078, Telangana, India
| |
Collapse
|