1
|
Lyu N, Hassanzadeh-Barforoushi A, Rey Gomez LM, Zhang W, Wang Y. SERS biosensors for liquid biopsy towards cancer diagnosis by detection of various circulating biomarkers: current progress and perspectives. NANO CONVERGENCE 2024; 11:22. [PMID: 38811455 PMCID: PMC11136937 DOI: 10.1186/s40580-024-00428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
Liquid biopsy has emerged as a promising non-invasive strategy for cancer diagnosis, enabling the detection of various circulating biomarkers, including circulating tumor cells (CTCs), circulating tumor nucleic acids (ctNAs), circulating tumor-derived small extracellular vesicles (sEVs), and circulating proteins. Surface-enhanced Raman scattering (SERS) biosensors have revolutionized liquid biopsy by offering sensitive and specific detection methodologies for these biomarkers. This review comprehensively examines the application of SERS-based biosensors for identification and analysis of various circulating biomarkers including CTCs, ctNAs, sEVs and proteins in liquid biopsy for cancer diagnosis. The discussion encompasses a diverse range of SERS biosensor platforms, including label-free SERS assay, magnetic bead-based SERS assay, microfluidic device-based SERS system, and paper-based SERS assay, each demonstrating unique capabilities in enhancing the sensitivity and specificity for detection of liquid biopsy cancer biomarkers. This review critically assesses the strengths, limitations, and future directions of SERS biosensors in liquid biopsy for cancer diagnosis.
Collapse
Affiliation(s)
- Nana Lyu
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | | | - Laura M Rey Gomez
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Wei Zhang
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Yuling Wang
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
2
|
Huang J, Zu Y, Zhang L, Cui W. Progress in Procalcitonin Detection Based on Immunoassay. RESEARCH (WASHINGTON, D.C.) 2024; 7:0345. [PMID: 38711476 PMCID: PMC11070848 DOI: 10.34133/research.0345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/04/2024] [Indexed: 05/08/2024]
Abstract
Procalcitonin (PCT) serves as a crucial biomarker utilized in diverse clinical contexts, including sepsis diagnosis and emergency departments. Its applications extend to identifying pathogens, assessing infection severity, guiding drug administration, and implementing theranostic strategies. However, current clinical deployed methods cannot meet the needs for accurate or real-time quantitative monitoring of PCT. This review aims to introduce these emerging PCT immunoassay technologies, focusing on analyzing their advantages in improving detection performances, such as easy operation and high precision. The fundamental principles and characteristics of state-of-the-art methods are first introduced, including chemiluminescence, immunofluorescence, latex-enhanced turbidity, enzyme-linked immunosorbent, colloidal gold immunochromatography, and radioimmunoassay. Then, improved methods using new materials and new technologies are briefly described, for instance, the combination with responsive nanomaterials, Raman spectroscopy, and digital microfluidics. Finally, the detection performance parameters of these methods and the clinical importance of PCT detection are also discussed.
Collapse
Affiliation(s)
- Jiayue Huang
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy,
Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yan Zu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P.R. China
| | - Lexiang Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute,
University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P.R. China
- Joint Centre of Translational Medicine,
the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, P.R. China
| | - Wenguo Cui
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy,
Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- Department of Orthopedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases,
Shanghai Institute of Traumatology and Orthopedics,Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, P.R. China
| |
Collapse
|
3
|
Zhao M, Yang Y, Li N, Lv Y, Jin Q, Wang L, Shi Y, Zhang Y, Shen H, Li LS, Wu R. Development of a Dual Fluorescence Signal-Enhancement Immunosensor Based on Substrate Modification for Simultaneous Detection of Interleukin-6 and Procalcitonin. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4447-4459. [PMID: 38349871 DOI: 10.1021/acs.langmuir.3c03772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
High-sensitivity detection of biomarkers is of great significance to improve the accuracy of disease diagnosis and the rate of occult disease diagnosis. Using a substrate modification and two-color quantum dot (QD) nanobeads (QBs), we have developed a dual fluorescence signal-enhancement immunosensor for sensitive, simultaneous detection of interleukin 6 (IL-6) and procalcitonin (PCT) at low volumes (∼20 μL). First, the QBs compatible with QDs with different surface ligands were prepared by optimizing surfactants based on the microemulsion method. Through the use of a fluorescence-linked immunosorbent assay (FLISA), the feasibility of a dual signal-enhancement immunosensor was verified, and a 5-fold enhancement of fluorescence intensity was achieved after the directional coating of the antibodies on sulfhydryl functionalization (-SH) substrates and the preparation of QBs by using a polymer and silica double-protection method. Next, a simple polydimethylsiloxane (HS-PDMS) immunosensor with a low volume consumption was prepared. Under optimal conditions, we achieved the simultaneous detection of IL-6 and PCT with a linear range of 0.05-50 ng/mL, and the limit of detection (LOD) was 24 and 32 pg/mL, respectively. The result is comparable to two-color QBs-FLISA with a sulfhydryl microplate, even though only 20% of its volume was used. Thus, the dual fluorescence signal-enhancement HS-PDMS immunosensor offers the capability of early microvolume diagnosis of diseases, while the detection of inflammatory factors is clinically important for assisting disease diagnosis and determining disease progression.
Collapse
Affiliation(s)
- Man Zhao
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng 475004, China
| | - Yifan Yang
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng 475004, China
| | - Ning Li
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng 475004, China
| | - Yanbing Lv
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng 475004, China
| | - Qiaoli Jin
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng 475004, China
| | - Lei Wang
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng 475004, China
| | - Yangchao Shi
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng 475004, China
| | - Yuning Zhang
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng 475004, China
| | - Huaibin Shen
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng 475004, China
| | - Lin Song Li
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng 475004, China
| | - Ruili Wu
- Key Lab for Special Functional Materials of Ministry of Education, and School of Materials, Henan University, Kaifeng 475004, China
| |
Collapse
|
4
|
Gordón Pidal JM, Arruza L, Moreno-Guzmán M, López MÁ, Escarpa A. Micromotor-based dual aptassay for early cost-effective diagnosis of neonatal sepsis. Mikrochim Acta 2024; 191:106. [PMID: 38240873 PMCID: PMC10798920 DOI: 10.1007/s00604-023-06134-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024]
Abstract
Given the long-life expectancy of the newborn, research aimed at improving sepsis diagnosis and management in this population has been recognized as cost-effective, which at early stages continues to be a tremendous challenge. Despite there is not an ideal-specific biomarker, the simultaneous detection of biomarkers with different behavior during an infection such as procalcitonin (PCT) as high specificity biomarker with one of the earliest biomarkers in sepsis as interleukin-6 (IL-6) increases diagnostic performance. This is not only due to their high positive predictive value but also, since it can also help the clinician to rule out infection and thus avoid the use of antibiotics, due to their high negative predictive value. To this end, we explore a cutting-edge micromotor (MM)-based OFF-ON dual aptassay for simultaneous determination of both biomarkers in 15 min using just 2 μL of sample from low-birth-weight neonates with gestational age less than 32 weeks and birthweight below 1000 g with clinical suspicion of late-onset sepsis. The approach reached the high sensitivities demanded in the clinical scenario (LODPCT = 0.003 ng/mL, LODIL6 = 0.15 pg/mL) with excellent correlation performance (r > 0.9990, p < 0.05) of the MM-based approach with the Hospital method for both biomarkers during the analysis of diagnosed samples and reliability (Er < 6% for PCT, and Er < 4% for IL-6). The proposed approach also encompasses distinctive technical attributes in a clinical scenario since its minimal sample volume requirements and expeditious results compatible with few easy-to-obtain drops of heel stick blood samples from newborns admitted to the neonatal intensive care unit. This would enable the monitoring of both sepsis biomarkers within the initial hours after the manifestation of symptoms in high-risk neonates as a valuable tool in facilitating prompt and well-informed decisions about the initiation of antibiotic therapy.These results revealed the asset behind micromotor technology for multiplexing analysis in diagnosing neonatal sepsis, opening new avenues in low sample volume-based diagnostics.
Collapse
Affiliation(s)
- José M Gordón Pidal
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, Alcalá de Henares, 28802, Madrid, Spain
| | - Luis Arruza
- Department of Neonatology, Instituto del Niño y del Adolescente, Hospital Clínico San Carlos-IdISSC, 28040, Madrid, Spain
| | - María Moreno-Guzmán
- Department of Chemistry in Pharmaceutical Sciences, Analytical Chemistry, Faculty of Pharmacy, Complutense University of Madrid, Plaza Ramón y Cajal, S/N, 28040, Madrid, Spain
| | - Miguel Ángel López
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, Alcalá de Henares, 28802, Madrid, Spain.
- Chemical Research Institute "Andrés M. Del Rio", University of Alcalá, Madrid, Spain.
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, Faculty of Sciences, University of Alcalá, Ctra. Madrid-Barcelona, Km. 33.600, Alcalá de Henares, 28802, Madrid, Spain.
- Chemical Research Institute "Andrés M. Del Rio", University of Alcalá, Madrid, Spain.
| |
Collapse
|
5
|
Song B, Wang L, Jiao F, Zhao H, Liu T, Sun S, Zhou H, Li J, Li X. Combined detection of SARS-CoV-2 neutralizing antibodies and specific IgG in plasma based on SERS magnetic sensor. NANOTECHNOLOGY 2023; 35:075101. [PMID: 37934022 DOI: 10.1088/1361-6528/ad0a4a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/07/2023] [Indexed: 11/08/2023]
Abstract
In this study, a surface-enhanced Raman spectroscopy (SERS) magnetic sensor is established based on SERS principle and magnetic separation technology, and a highly sensitive, simple and fast method for quantitative detection of neutralizing antibodies (nABs) and specific IgG of SARS-CoV-2 in plasma is established combined with immunoassay. Two kinds of Raman nanospheres (RNPs) with different characteristic Raman shifts are used as signal sources and coupled to ACE2 and anti-IgG (FC) antibodies respectively, and magnetic beads are coupled to RBD. The competitive relationship between ACE2 and nABs, the binding relationship between specific IgG and anti-IgG (FC) antibodies are determined. The results show that the concentrations of nABs and specific IgG in the range of 10-2000 ng ml-1are well correlated with SERS response intensity, and the recoveries are both between 90%-110%, with good precision. Bilirubin and common anticoagulants have no interference on the detection results. This method is accurate, reliable, sensitive and does not require complex pre-treatment, and is expected to be used for simultaneous detection of nABs and specific IgG in plasma of SARS-CoV-2. It has guiding significance for the development and evaluation of vaccines and the formulation of individualized vaccination schedule.
Collapse
Affiliation(s)
- Bailing Song
- Pharmacy Academy of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
- Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, Urumqi, 830054, People's Republic of China
- Xinjiang Hu Suan Research Institute (Co., Ltd), Urumqi, 830020, People's Republic of China
- Key Laboratory of Garlic Medical Research in Xinjiang, 830020, People's Republic of China
| | - Lei Wang
- Pharmacy Academy of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
- Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, Urumqi, 830054, People's Republic of China
| | - Feiyan Jiao
- Pharmacy Academy of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
- Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, Urumqi, 830054, People's Republic of China
| | - Huixue Zhao
- Pharmacy Academy of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
- Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, Urumqi, 830054, People's Republic of China
| | - Tingwei Liu
- Shanghai Simp Bio-Science Co., Ltd, Shanghai, 201800, People's Republic of China
| | - Shijiao Sun
- Changji Hui Autonomous Prefecture Disease Prevention and Control Center, 831100, People's Republic of China
| | - Hao Zhou
- Shanghai Simp Bio-Science Co., Ltd, Shanghai, 201800, People's Republic of China
| | - Jiutong Li
- Pharmacy Academy of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
- Shanghai Simp Bio-Science Co., Ltd, Shanghai, 201800, People's Republic of China
| | - Xinxia Li
- Pharmacy Academy of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
- Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, Urumqi, 830054, People's Republic of China
| |
Collapse
|
6
|
Majdinasab M, Lamy de la Chapelle M, Marty JL. Recent Progresses in Optical Biosensors for Interleukin 6 Detection. BIOSENSORS 2023; 13:898. [PMID: 37754132 PMCID: PMC10526799 DOI: 10.3390/bios13090898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Interleukin 6 (IL-6) is pleiotropic cytokine with pathological pro-inflammatory effects in various acute, chronic and infectious diseases. It is involved in a variety of biological processes including immune regulation, hematopoiesis, tissue repair, inflammation, oncogenesis, metabolic control, and sleep. Due to its important role as a biomarker of many types of diseases, its detection in small amounts and with high selectivity is of particular importance in medical and biological fields. Laboratory methods including enzyme-linked immunoassays (ELISAs) and chemiluminescent immunoassays (CLIAs) are the most common conventional methods for IL-6 detection. However, these techniques suffer from the complexity of the method, the expensiveness, and the time-consuming process of obtaining the results. In recent years, too many attempts have been conducted to provide simple, rapid, economical, and user-friendly analytical approaches to monitor IL-6. In this regard, biosensors are considered desirable tools for IL-6 detection because of their special features such as high sensitivity, rapid detection time, ease of use, and ease of miniaturization. In this review, current progresses in different types of optical biosensors as the most favorable types of biosensors for the detection of IL-6 are discussed, evaluated, and compared.
Collapse
Affiliation(s)
- Marjan Majdinasab
- Department of Food Science & Technology, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran;
| | - Marc Lamy de la Chapelle
- Institut des Molécules et Matériaux du Mans (IMMM—UMR 6283 CNRS), Le Mans Université, Avenue Olivier Messiaen, CEDEX 9, 72085 Le Mans, France;
| | - Jean Louis Marty
- BAE: Biocapteurs-Analyses-Environnement, University of Perpignan Via Domitia, 52 Avenue Paul Alduy, CEDEX 9, 66860 Perpignan, France
| |
Collapse
|
7
|
Zou B, Lou S, Duan J, Zhou S, Wang Y. Design of Raman reporter-embedded magnetic/plasmonic hybrid nanostirrers for reliable microfluidic SERS biosensors. NANOSCALE 2023; 15:8424-8431. [PMID: 37093062 DOI: 10.1039/d3nr00303e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Magnetic-based microfluidic SERS biosensors hold great potential in various biological analyses due to their integrated advantages including easy manipulation, miniaturization and ultrasensitivity. However, it remains challenging to collect reliable SERS nanoprobe signals for quantitative analysis due to the irregular aggregation of magnetic carriers in a microfluidic chamber. Here, magnetic/plasmonic hybrid nanostirrers embedded with a Raman reporter are developed as capture carriers to improve the reliability of microfluidic SERS biosensors. Experimental results revealed that SERS signals from magnetic hybrid nanostirrers could serve as microenvironment beacons of their irregular aggregation, and a signal filtering method was proposed through exploring the relationship between the intensity range of beacons and the signal reproducibility of SERS nanoprobes using interleukin 6 as a model target analyte. Using the signal filtering method, reliable SERS nanoprobe signals with high reproducibility could be picked out from similar microenvironments according to their beacon intensity, and then the influence of irregular aggregation of magnetic carriers on the SERS nanoprobe could be eliminated. The filtered SERS nanoprobe signals also exhibited excellent repeatability from independent tests, which lay a solid foundation for a reliable working curve and subsequent accurate bioassay. This study provides a simple but promising route for reliable microfluidic SERS biosensors, which will further promote their practical application in biological analysis.
Collapse
Affiliation(s)
- Bingfang Zou
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China
| | - Shiyun Lou
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Jie Duan
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Shaomin Zhou
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Yongqiang Wang
- Key Lab for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
8
|
Zhao G, Wang Y, Wang H, Bai G, Zhang N, Wang Y, Wei Q. Ultrasensitive Photoelectrochemical Immunoassay Strategy Based on Bi 2S 3/Ag 2S for the Detection of the Inflammation Marker Procalcitonin. BIOSENSORS 2023; 13:366. [PMID: 36979578 PMCID: PMC10046654 DOI: 10.3390/bios13030366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/22/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
As an inflammatory marker, procalcitonin (PCT) is more representative than other traditional inflammatory markers. In this work, a highly efficient photoelectrochemical (PEC) immunosensor was constructed based on the photoactive material Bi2S3/Ag2S to realize the sensitive detection of PCT. Bi2S3 was prepared by a hydrothermal method, and Ag2S quantum dots were deposited on the ITO/Bi2S3 surface via in situ reduction. Bi2S3 is a kind of admirable photoelectric semiconductor nanomaterial on account of its moderate bandgap width and low binding rate of photogenerated electron holes, which can effectively convert light energy into electrical energy. Therefore, based on the energy level matching principle of Bi2S3 and Ag2S, a labeled Bi2S3/Ag2S PEC immunosensor was constructed, and the sensitive detection of PCT was successfully established. The linear detection range of the PEC immunosensor was 0.50 pg∙mL-1 to 50 ng∙mL-1, and the minimum detection limit was 0.18 pg∙mL-1. Compared with the traditional PEC strategy, the proposed PEC immunosensor is simple, convenient, and has good anti-interference, sensitivity, and specificity, which could provide a meaningful theoretical basis and reference value for the clinical detection of PCT.
Collapse
Affiliation(s)
- Guanhui Zhao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yingying Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Huixin Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guozhen Bai
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Nuo Zhang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yaoguang Wang
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
9
|
Gupta Y, Pandey CM, Ghrera AS. Reduced Graphene Oxide‐Gold Nanoparticle Nanohybrid Modified Cost‐Effective Paper‐Based Biosensor for Procalcitonin Detection. ChemistrySelect 2022. [DOI: 10.1002/slct.202202642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yachana Gupta
- Applied Science Department The NorthCap University, HUDA-Sector 23A Gurugram India
| | - Chandra Mouli Pandey
- Department of Chemistry Faculty of Science Shree Guru Gobind Singh Tricentenary University Gurugram 122505 Haryana India
| | - Aditya Sharma Ghrera
- Applied Science Department The NorthCap University, HUDA-Sector 23A Gurugram India
| |
Collapse
|
10
|
Zhao H, Song B, Sun S, Zhou H, Liu T, Jiao F, Wang L, Li X, Li J. Synchronous detection of IgG subtypes based on SERS combined with immunoassay. NANOTECHNOLOGY 2022; 33:255101. [PMID: 35276683 DOI: 10.1088/1361-6528/ac5cfb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
In this study, a rapid, simple, highly sensitive and anti-interference method for the joint detection of four IgG subtypes is established by using Raman microspheres with four characteristic Raman spectra. The results show that the concentrations of IgG1 in the range of 0-1500 ng ml-1, IgG2 in the range of 0-1100 ng ml-1, IgG3 in the range of 0-88.7 ng ml-1, IgG4 in the range of 0-77.2 ng ml-1, it shows a good correlation with the response value of The Raman signal. The lowest detection limits are 25.4 ng ml-1, 21.7 ng ml-1, 1.6 ng ml-1, 1.7 ng ml-1, respectively. Reproducibility is good, the coefficient of variation of low, medium and high concentration standard solution are within 10%. The recoveries of four IgG subtypes are in the range of 90%-110%, and the accuracy of the method is good. The coefficients of variation between and within the three batches of reagents are all less than 11%, showing good precision. There is no cross reaction with Procalcitonin (20 ng ml-1), Interleukin-6 (1 ng ml-1) and bovine serum albumin (10 mg ml-1), and the specificity is good. Common interfering substances such as bilirubin, triglyceride and trisodium citrate do not affect the determination results, and heparin sodium only affects the determination results of IgG1. This method has good anti-interference ability. The method has high sensitivity, simple operation and strong anti-interference ability, and has good correlation with the IgG detection methods commonly used in clinic. This simple and quantitative method can be used for the rapid detection of IgG subtypes in the future, which can improve the efficiency of clinical diagnosis.
Collapse
Affiliation(s)
- Huixue Zhao
- Pharmacy Academy of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
- Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, Urumqi, 830054, People's Republic of China
| | - Bailing Song
- Pharmacy Academy of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
- Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, Urumqi, 830054, People's Republic of China
- Xinjiang Hu Suan Research Institute (Co., LTD), Urumqi, 830020, People's Republic of China
| | - Shijiao Sun
- Shanghai Simp Bio-Science Co., Ltd, Shanghai, 201800, People's Republic of China
| | - Hao Zhou
- Shanghai Simp Bio-Science Co., Ltd, Shanghai, 201800, People's Republic of China
| | - Tingwei Liu
- Shanghai Simp Bio-Science Co., Ltd, Shanghai, 201800, People's Republic of China
| | - Feiyan Jiao
- Pharmacy Academy of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
- Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, Urumqi, 830054, People's Republic of China
| | - Lei Wang
- Pharmacy Academy of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
- Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, Urumqi, 830054, People's Republic of China
| | - Xinxia Li
- Pharmacy Academy of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
- Xinjiang Key Laboratory of Natural Medicine Active Components and Drug Release Technology, Urumqi, 830054, People's Republic of China
| | - Jiutong Li
- Pharmacy Academy of Xinjiang Medical University, Urumqi, 830054, People's Republic of China
- Shanghai Simp Bio-Science Co., Ltd, Shanghai, 201800, People's Republic of China
| |
Collapse
|
11
|
Quantitative Detection of Mastitis Factor IL-6 in Dairy Cow Using the SERS Improved Immunofiltration Assay. NANOMATERIALS 2022; 12:nano12071091. [PMID: 35407209 PMCID: PMC9000223 DOI: 10.3390/nano12071091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023]
Abstract
Interleukin-6 (IL-6) is generally used as a biomarker for the evaluation of inflammatory infection in humans and animals. However, there is no approach for the on-site and rapid detection of IL-6 for the monitoring of mastitis in dairy farm scenarios. A rapid and highly sensitive surface enhanced Raman scattering (SERS) immunofiltration assay (IFA) for IL-6 detection was developed in the present study. In this assay, a high sensitivity gold core silver shell SERS nanotag with Raman molecule 4-mercaptobenzoic acid (4-MBA) embedded into the gap was fabricated for labelling. Through the immuno-specific combination of the antigen and antibody, antibody conjugated SERS nanotags were captured on the test zone, which facilitated the SERS measurement. The quantitation of IL-6 was performed by the readout Raman signal in the test region. The results showed that the detection limit (LOD) of IL-6 in milk was 0.35 pg mL−1, which was far below the threshold value of 254.32 pg mL−1. The recovery of the spiking experiment was 87.0–102.7%, with coefficients of variation below 9.0% demonstrating high assay accuracy and precision. We believe the immunosensor developed in the current study could be a promising tool for the rapid assessment of mastitis by detecting milk IL-6 in dairy cows. Moreover, this versatile immunosensor could also be applied for the detection of a wide range of analytes in dairy cow healthy monitoring.
Collapse
|
12
|
Xu X, Lei X, Ye L, Song S, Liu L, Xu L, Xu C, Kuang H. Gold-based paper sensor for sensitive detection of procalcitonin in clinical samples. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Dual-enhancement and dual-tag design for SERS-based sandwich immunoassays: evaluation of a metal-metal effect in 3D architecture. Mikrochim Acta 2021; 189:32. [PMID: 34932168 PMCID: PMC8692285 DOI: 10.1007/s00604-021-05125-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 12/02/2021] [Indexed: 01/07/2023]
Abstract
The design of a sandwich-type SERS immunoassay (surface-enhanced Raman spectroscopy) is demonstrated operating in dual surface enhancement and dual-tag paradigm. The capture and detection antibodies are linked to two SERS-active substrates and form together the three-dimensional (3D) structure after specific binding to interleukin 6. A variety of metal combinations is tested (Au–Ag, Au–Au, and Ag–Ag), but an enhanced electromagnetic field is generated only due to coupling of Ag and Au nanoparticles with an Au hexagonal nanoarray. The amplified in that way Raman signals improve the limit of detection over 3 times in comparison to the assay with only one SERS-active substrate. It is also shown that the proper readout of the true-positive signal can be achieved in assays with two Raman tags, and this approach also improves LOD. For the optimal combination of the metal–metal junction and Raman tags, a linear relationship between the Raman signal and the concentration of IL-6 is obtained in the range 0–1000 pg⋅mL−1with LOD of 25.2 pg mL−1and RSD < 10%. The presented proof-of-concept of the SERS immunoassay with the dual-enhancement and dual-tag opens additional opportunities for engineering reliable SERS biosensing.
Collapse
|
14
|
Lin C, Li L, Feng J, Zhang Y, Lin X, Guo H, Li R. Aptamer-modified magnetic SERS substrate for label-based determination of cardiac troponin I. Mikrochim Acta 2021; 189:22. [PMID: 34882274 DOI: 10.1007/s00604-021-05121-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022]
Abstract
A sensitive label-based SERS strategy composed of magnetic bimetallic nanoparticles Fe3O4@Ag@Au, specific aptamer, and Bradford method was developed for the quantitative determination of cardiac troponin I (cTnI) in human serum. The prepared substrate with high magnetic character, signal enhancement, and uniformity exhibited significant Raman response. After the substrate was bound to the aptamer, the target protein cTnI was specifically captured, and it showed the Raman signal when the signal reporter Coomassie Brilliant Blue G-250 (CBBG) was supplied. The Raman signal intensity at 1621 cm-1 showed a wide linear relationship with the log value of the cTnI concentration in the range 0.01 to 100 ng·mL-1, and the estimated limit of detection (LOD) was 5.50 pg·mL-1. The recovery and relative standard deviation (RSD) of the spike experiment in human serum samples were 92-115% and 7.4-12.7%, respectively.
Collapse
Affiliation(s)
- Chubing Lin
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No.268 Donghuan Road, Chengzhong District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, China.,Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi Zhuang Autonomous Region, China
| | - Lijun Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No.268 Donghuan Road, Chengzhong District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, China. .,Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi Zhuang Autonomous Region, China.
| | - Jun Feng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No.268 Donghuan Road, Chengzhong District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, China.,Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi Zhuang Autonomous Region, China
| | - Yan Zhang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No.268 Donghuan Road, Chengzhong District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, China.,Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi Zhuang Autonomous Region, China
| | - Xin Lin
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No.268 Donghuan Road, Chengzhong District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, China.,Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi Zhuang Autonomous Region, China
| | - Heyuanxi Guo
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No.268 Donghuan Road, Chengzhong District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, China.,Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi Zhuang Autonomous Region, China
| | - Rui Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, No.268 Donghuan Road, Chengzhong District, Liuzhou City, 545006, Guangxi Zhuang Autonomous Region, China.,Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning, 530004, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|