1
|
Zhang X, Zhang L, Tian J, Li Y, Wu M, Zhang L, Qin X, Gong L. The application and prospects of drug delivery systems in idiopathic pulmonary fibrosis. BIOMATERIALS ADVANCES 2025; 168:214123. [PMID: 39615374 DOI: 10.1016/j.bioadv.2024.214123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease primarily affecting elderly individuals aged >65 years and has a poor prognosis. No effective treatment is currently available for IPF. The two antipulmonary fibrosis drugs nintedanib and pirfenidone approved by the FDA in the United States have somewhat decelerated IPF progression. However, the side effects of these drugs can lead to poor patient tolerance and compliance with the medications. Researchers have recently developed various methods for IPF treatment, such as gene silencing and pathway inhibitors, which hold great promise in IPF treatment. Nevertheless, the nonselectivity and nonspecificity of drugs often affect their efficacies. Drug delivery systems (DDS) are crucial for delivering drugs to specific target tissues or cells, thereby minimizing potential side effects, enhancing drug bioavailability, and reducing lung deposition. This review comprehensively summarizes the current state of DDS and various delivery strategies for IPF treatment (e.g., nano-delivery, hydrogel delivery, and biological carrier delivery) to completely expound the delivery mechanisms of different drug delivery carriers. Subsequently, the advantages and disadvantages of different DDS are fully discussed. Finally, the challenges and difficulties associated with the use of different DDS are addressed so as to accelerate their rapid clinical translation.
Collapse
Affiliation(s)
- Xi Zhang
- School of Biological Engineering, Zunyi Medical University, Guangdong 519000, China; Department of Clinical Medicine, The Fifth Clinical Institution, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Ling Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Jiahua Tian
- Department of Clinical Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yunfei Li
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Manli Wu
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Longju Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Xiaofei Qin
- School of Biological Engineering, Zunyi Medical University, Guangdong 519000, China.
| | - Ling Gong
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China.
| |
Collapse
|
2
|
Moussaei M, Tajik E, Haddadi-Asl V, Mazloumi SA, Heydarinasab H, Abdollahi E, Haj-Sadeghi F, Ahmadi H, Gholizadeh MR. Achieving enhanced stabilization and controlled release of curcumin via cross-linked polydopamine particles. Heliyon 2025; 11:e41379. [PMID: 39811346 PMCID: PMC11729636 DOI: 10.1016/j.heliyon.2024.e41379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Development of efficient drug delivery systems remains a critical challenge in pharmaceutical applications, necessitating novel approaches to improve drug loading and release profiles. In this study, a novel method is presented for fabricating crosslinked polydopamine particles (XPDPs) using a water/water Pickering emulsion system. The emulsion is composed of poly(ethylene glycol) and dextran, stabilized by polydopamine (PDA) particles. This method yields XPDPs with a mean particle size of 0.55 μm, significantly smaller than PDA particles (1.025 μm), resulting in a higher surface area favorable for drug loading. The adsorption mechanism involves electron sharing and covalent bonding between the carrier and drug molecules. The adsorption, release, and drug delivery kinetics of the XPDPs are compared with those of the non-crosslinked PDA particles. The results demonstrate that XPDPs exhibit improved adsorption properties due to their crosslinked structure and increased positive charge due to presence of secondary amines. During a 28-h period, curcumin release from PDA declines from around 80 %-40 %, while for XPDA, it decreases from approximately 60 %-35 % as the pH shifts from 7.4 to 5. While PDA particles display a burst release profile, XPDPs show a more gradual and sustained release, attributed to their enhanced structural stability. Molecular simulations were conducted to estimate the solubility parameters, confirming the compatibility between PDA and dextran for effective drug loading.
Collapse
Affiliation(s)
- Majid Moussaei
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Ebrahim Tajik
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Vahid Haddadi-Asl
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - S. Ali Mazloumi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Helia Heydarinasab
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Elahe Abdollahi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Fatemeh Haj-Sadeghi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Hanie Ahmadi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| | - Mohammad Reza Gholizadeh
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran, Iran
| |
Collapse
|
3
|
Zheng Y, Chen X, Wang Y, Chen Z, Wu D. Phenolic-enabled nanotechnology: a new strategy for central nervous system disease therapy. J Zhejiang Univ Sci B 2024; 25:890-913. [PMID: 39420524 PMCID: PMC11494163 DOI: 10.1631/jzus.b2300839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/30/2024] [Indexed: 10/19/2024]
Abstract
Polyphenolic compounds have received tremendous attention in biomedicine because of their good biocompatibility and unique physicochemical properties. In recent years, phenolic-enabled nanotechnology (PEN) has become a hotspot of research in the medical field, and many promising studies have been reported, especially in the application of central nervous system (CNS) diseases. Polyphenolic compounds have superior anti-inflammatory and antioxidant properties, and can easily cross the blood‒brain barrier, as well as protect the nervous system from metabolic damage and promote learning and cognitive functions. However, although great advances have been made in this field, a comprehensive review regarding PEN-based nanomaterials for CNS therapy is lacking. A systematic summary of the basic mechanisms and synthetic strategies of PEN-based nanomaterials is beneficial for meeting the demand for the further development of novel treatments for CNS diseases. This review systematically introduces the fundamental physicochemical properties of PEN-based nanomaterials and their applications in the treatment of CNS diseases. We first describe the different ways in which polyphenols interact with other substances to form high-quality products with controlled sizes, shapes, compositions, and surface chemistry and functions. The application of PEN-based nanomaterials in the treatment of CNS diseases is then described, which provides a reference for subsequent research on the treatment of CNS diseases.
Collapse
Affiliation(s)
- Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China. ,
- Zhejiang Rehabilitation Medical Center, the Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310009, China. ,
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China. ,
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
4
|
Zhang J, Tian S, Zhu C, Han L, Zhang X. The synthesis of polydopamine nano- and microspheres in microdroplets. Chem Commun (Camb) 2024; 60:11068-11071. [PMID: 39206971 DOI: 10.1039/d4cc03017f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Here we developed a microdroplet-based strategy for the rapid synthesis of uniform polydopamine nano- and microspheres. Polydopamine spheres with controllable sizes were generated within hundreds of microseconds by simply spraying water solutions of dopamine into microdroplets. Mass spectrometry revealed that dopamine was primarily oxidized into aminochrome, acting as the major building block for polydopamine. We anticipate that microdroplet chemistry will be rich in opportunities for the synthesis of functional nano- and micromaterials.
Collapse
Affiliation(s)
- Jianze Zhang
- College of Chemistry, Frontiers Science Center for New Organic Matter, State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Renewable Energy Conversion and Storage Center (ReCAST), Nankai University, Tianjin, 300071, China.
| | - Shufang Tian
- School of Energy Science and Technology, Henan University, Zhengzhou, 450046, China.
| | - Chenghui Zhu
- College of Chemistry, Frontiers Science Center for New Organic Matter, State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Renewable Energy Conversion and Storage Center (ReCAST), Nankai University, Tianjin, 300071, China.
| | - Lifeng Han
- State Key Laboratory of Component-Based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xinxing Zhang
- College of Chemistry, Frontiers Science Center for New Organic Matter, State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Renewable Energy Conversion and Storage Center (ReCAST), Nankai University, Tianjin, 300071, China.
| |
Collapse
|
5
|
Zhou Y, Kou J, Zhang Y, Ma R, Wang Y, Zhang J, Zhang C, Zhan W, Li K, Li X. Magnetic-guided nanocarriers for ionizing/non-ionizing radiation synergistic treatment against triple-negative breast cancer. Biomed Eng Online 2024; 23:67. [PMID: 39003472 PMCID: PMC11245775 DOI: 10.1186/s12938-024-01263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is a subtype of breast cancer with the worst prognosis. Radiotherapy (RT) is one of the core modalities for the disease; however, the ionizing radiation of RT has severe side effects. The consistent development direction of RT is to achieve better therapeutic effect with lower radiation dose. Studies have demonstrated that synergistic effects can be achieved by combining RT with non-ionizing radiation therapies such as light and magnetic therapy, thereby achieving the goal of dose reduction and efficacy enhancement. METHODS In this study, we applied FeCo NPs with magneto thermal function and phototherapeutic agent IR-780 to construct an ionizing and non-ionizing radiation synergistic nanoparticle (INS NPs). INS NPs are first subjected to morphology, size, colloidal stability, loading capacity, and photothermal conversion tests. Subsequently, the cell inhibitory and cellular internalization were evaluated using cell lines in vitro. Following comprehensive assessment of the NPs' in vivo biocompatibility, tumor-bearing mouse model was established to evaluate their distribution, targeted delivery, and anti-tumor effects in vivo. RESULTS INS NPs have a saturation magnetization exceeding 72 emu/g, a hydrodynamic particle size of approximately 40 nm, a negatively charged surface, and good colloidal stability and encapsulation properties. INS NPs maintain the spectral characteristics of IR-780 at 808 nm. Under laser irradiation, the maximum temperature was 92 °C, INS NPs also achieved the effective heat temperature in vivo. Both in vivo and in vitro tests have proven that INS NPs have good biocompatibility. INS NPs remained effective for more than a week after one injection in vivo, and can also be guided and accumulated in tumors through permanent magnets. Later, the results exhibited that under low-dose RT and laser irradiation, the combined intervention group showed significant synergetic effects, and the ROS production rate was much higher than that of the RT and phototherapy-treated groups. In the mice model, 60% of the tumors were completely eradicated. CONCLUSIONS INS NPs effectively overcome many shortcomings of RT for TNBC and provide experimental basis for the development of novel clinical treatment methods for TNBC.
Collapse
Affiliation(s)
- Yun Zhou
- College of Clinical Medicine, Xi'an Medical University, Xi'an, 710021, China
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Junhao Kou
- College of Pharmacy, Xi'an Medical University, Xi'an, 710021, China
| | - Yuhuang Zhang
- College of Clinical Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Rongze Ma
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yao Wang
- Department of Radiation Oncology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Junfeng Zhang
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Chunhong Zhang
- Xi'an Key Laboratory of Advanced Control and Intelligent Process, School of Automation, Xi'an University of Posts & Telecommunications, Xi'an, 710121, China
| | - Wenhua Zhan
- Department of Radiotherapy, General Hospital of Ningxia Medical University, Yinchuan, 750004, China.
| | - Ke Li
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China.
| | - Xueping Li
- College of Clinical Medicine, Xi'an Medical University, Xi'an, 710021, China.
- Xi'an Key Laboratory for Prevention and Treatment of Common Aging Diseases, Translational and Research Centre for Prevention and Therapy of Chronic Disease, Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China.
| |
Collapse
|
6
|
Zhou C, Zhao S, Zhang Y, Cheng J, Shi J, Du G. Mesoporous polydopamine Targeting CDK4/6 Inhibitor toward Brilliant Synergistic Immunotherapy of Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310565. [PMID: 38396273 DOI: 10.1002/smll.202310565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/11/2024] [Indexed: 02/25/2024]
Abstract
Immunotherapy utilizing anti-PD-L1 blockade has achieved dramatic success in clinical breast cancer management but is often hampered by the limited immune response. Increasing evidence shows that immunogenic cell death (ICD) recently arises as a promising strategy for enlarging tumor immunogenicity and eliciting systemic anti-tumor immunity effectively. However, developing simple but versatile, highly efficient but low-toxic, biosafe, and clinically available transformed ICD inducers remains a huge demand and is highly desirable. Herein, a multifunctional ICD inducer is purposefully developed A6-MPDA@PAL by integrating photothermal therapy (PTT) nanoplatforms mesoporous polydopamine (MPDA), CDK4/6 inhibitor palbociclib (PAL), and CD44-specific targeting A6 peptide in a simple way for augmenting the immune antitumor efficacy of anti-PD-L1 therapy. Remarkably, the light-inducible nanoplatforms exhibit multiple favorable therapeutic features ensuring a superior and biosafe PTT/chemotherapy efficacy. Together with stronger accumulative ICD induction, single administration of A6-MPDA@PAL can trigger robust systemic antitumor immunity and abscopal effect with the assistance of anti-PD-L1 blockade by fascinating the intratumoral infiltration of T lymphocytes and reversing the immunosuppressive tumor microenvironment simultaneously, therapy achieving brilliant synergistic immunotherapy with effective tumor ablation. This study presents a simple and smart ICD inducer opening up attractive clinical possibilities for reinforcing the anti-PD-L1 therapy against breast cancer.
Collapse
Affiliation(s)
- Conglei Zhou
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Shuang Zhao
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Yongbo Zhang
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Jianjun Cheng
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, Henan, 475004, China
- State Key Laboratory of Antiviral Drugs, Henan University, China
| | - Jiahua Shi
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, Henan, 475004, China
- State Key Laboratory of Antiviral Drugs, Henan University, China
| | - Guanhua Du
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, Kaifeng, Henan, 475004, China
- State Key Laboratory of Antiviral Drugs, Henan University, China
- Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
7
|
Han J, Zheng S, Jin J, Wu T, Shi Y, Yang K, Zhang H, Li Y, Sun Y, Lv Y, Yao C, Lin T, Zhu C, Liu H. Polydopamine-loaded prunetin nanomaterials activate DRD2 to reduce UV-induced inflammation by stabilizing and promoting Nrf2 nuclear translocation. Acta Biomater 2023; 169:556-565. [PMID: 37532131 DOI: 10.1016/j.actbio.2023.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/04/2023]
Abstract
Skin damage caused by exposure to ultraviolet (UV) light has been well documented clinically and histologically. Dopamine receptor D2 (DRD2) possesses various biological functions. However, no study has reported the possible association of DRD2 with UV-induced skin damage. We established DRD2 conditional knockout and UV damage models in this work. The results showed that DRD2 played an important role in the treatment of UV-induced skin damage. The findings of the molecular mechanism study revealed that the internalization of DRD2 after activation can stabilize nuclear factor erythroid 2-related factor 2 (Nrf2). However, the entry of Nrf2 into the nucleus did not increase. We prepared and characterized hyaluronic acid (HA)-coated mesoporous polydopamine (MPDA) nanoparticles (H@P@M). HA facilitated skin epidermal penetration of the nanoparticles to reach the site of inflammation smoothly. Meanwhile, MPDA activated DRD2 internalization to stabilize Nrf2. The release of prunetin inhibited the interaction of Kelch-like ECH-associated protein 1 with Nrf2 and promoted the nuclear translocation of Nrf2. In summary, this study unveiled that in skin inflammation, H@P@M activated and internalized DRD2, which subsequently formed a protein complex with arrestin beta 1-ubiquitin specific protease 8 (USP8)-Nrf2. Deubiquitination was performed to stabilize Nrf2 while promoting the nuclear translocation of Nrf2 to exert anti-inflammatory and antioxidant functions. STATEMENT OF SIGNIFICANCE: Skin is the body's largest physical barrier, always protecting the body from the interference of the external environment. However, excessive exposure to ultraviolet rays in the sun can cause skin inflammation, leading to skin erythema, itching, edema and pain, which can be troublesome in our daily lives. The complex mechanism of skin inflammation caused by ultraviolet radiation has not been fully clarified. In this study, the role of DRD2 in UV-induced skin inflammation was explored, and nano-composite particles HA@Prunetin@MPDA, which act on multiple targets in the anti-inflammatory pathway of DRD2, were developed to maximize the effect of the drug. It provides a new way to treat skin inflammation caused by UV.
Collapse
Affiliation(s)
- Jingxia Han
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China; State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Shaoting Zheng
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China; State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Jing Jin
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
| | - Ting Wu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yue Shi
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Kai Yang
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
| | - Heng Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yinan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yu Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Ying Lv
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China; Tianjin Key Laboratory of Molecular Drug Research, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Cheng Yao
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China.
| | - Tingting Lin
- Medical Plastic and Cosmetic Center, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Medical University Eye Hospital, Tianjin, China.
| | - Caibin Zhu
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China.
| | - Huijuan Liu
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China; State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.
| |
Collapse
|
8
|
Mavridi-Printezi A, Menichetti A, Mordini D, Montalti M. Functionalization of and through Melanin: Strategies and Bio-Applications. Int J Mol Sci 2023; 24:9689. [PMID: 37298641 PMCID: PMC10253489 DOI: 10.3390/ijms24119689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
A unique feature of nanoparticles for bio-application is the ease of achieving multi-functionality through covalent and non-covalent functionalization. In this way, multiple therapeutic actions, including chemical, photothermal and photodynamic activity, can be combined with different bio-imaging modalities, such as magnetic resonance, photoacoustic, and fluorescence imaging, in a theragnostic approach. In this context, melanin-related nanomaterials possess unique features since they are intrinsically biocompatible and, due to their optical and electronic properties, are themselves very efficient photothermal agents, efficient antioxidants, and photoacoustic contrast agents. Moreover, these materials present a unique versatility of functionalization, which makes them ideal for the design of multifunctional platforms for nanomedicine integrating new functions such as drug delivery and controlled release, gene therapy, or contrast ability in magnetic resonance and fluorescence imaging. In this review, the most relevant and recent examples of melanin-based multi-functionalized nanosystems are discussed, highlighting the different methods of functionalization and, in particular, distinguishing pre-functionalization and post-functionalization. In the meantime, the properties of melanin coatings employable for the functionalization of a variety of material substrates are also briefly introduced, especially in order to explain the origin of the versatility of melanin functionalization. In the final part, the most relevant critical issues related to melanin functionalization that may arise during the design of multifunctional melanin-like nanoplatforms for nanomedicine and bio-application are listed and discussed.
Collapse
Affiliation(s)
| | | | | | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.-P.); (A.M.); (D.M.)
| |
Collapse
|
9
|
Li Q, Hou Y, Cao P, Bi R, Zhu S. Near-Infrared Light-Activated Mesoporous Polydopamine for Temporomandibular Joint Osteoarthritis Combined Photothermal-Chemo Therapy. Int J Mol Sci 2023; 24:ijms24109055. [PMID: 37240401 DOI: 10.3390/ijms24109055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The treatments generally employed for temporomandibular joint osteoarthritis (TMJOA) involve physical therapy and chemotherapy, etc., whose therapeutic efficacies are impaired by the side effects and suboptimal stimulus responsiveness. Although the intra-articular drug delivery system (DDS) has shown effectiveness in addressing osteoarthritis, there is currently little reported research regarding the use of stimuli-responsive DDS in managing TMJOA. Herein, we prepared a novel near-infrared (NIR) light-sensitive DDS (DS-TD/MPDA) by using mesoporous polydopamine nanospheres (MPDA) as NIR responders and drug carriers; diclofenac sodium (DS) as the anti-inflammatory medication; and 1-tetradecanol (TD) with a phase-inversion temperature of 39 °C as the drug administrator. Upon exposure to 808 nm NIR laser, DS-TD/MPDA could raise the temperature up to the melting point of TD through photothermal conversion, and intelligently trigger DS release. The resultant nanospheres exhibited an excellent photothermal effect and effectively controlled the release of DS through laser irradiation to accommodate the multifunctional therapeutic effect. More importantly, the biological evaluation of DS-TD/MPDA for TMJOA treatment was also performed for the first time. The experiments' results demonstrated that DS-TD/MPDA displayed a good biocompatibility in vitro and in vivo during metabolism. After injection into the TMJ of rats afflicted with TMJOA induced by unilateral anterior crossbite for 14 days, DS-TD/MPDA could alleviate the deterioration of TMJ cartilage, thus ameliorating osteoarthritis. Therefore, DS-TD/MPDA could be a promising candidate for photothermal-chemotherapy for TMJOA.
Collapse
Affiliation(s)
- Qianli Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yi Hou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Pinyin Cao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Li B, Zhang J, Zhu Q, Xiang T, Wang R, Hu T, Jin R, Yang J. Nanoreactor of Fe, N Co-Doped Hollow Carbon Spheres for Oxygen Reduction Catalysis. Inorg Chem 2023; 62:6510-6517. [PMID: 37027781 DOI: 10.1021/acs.inorgchem.3c00582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
A simple template strategy was applied to prepare a Fe, N co-doped hollow carbon (Fe-NHC) nanoreactor for the oxygen reduction reaction (ORR) by coating Fe nanoparticles (Fe-NPs) with polydopamine (PDA), followed by high temperature pyrolysis and acid-leaching. With this method, Fe-NPs were used as both the template and the metal precursor, so that the nanoreactors can preserve the original spherical morphology and embed Fe single atoms on the inner walls. The carbonized PDA contained abundant N content, offering an ideal coordination environment for Fe atoms. By regulating the mass ratio of Fe-NPs and PDA, an optimal sample with a carbon layer thickness of 12 nm (Fe-NHC-3) was obtained. The hollow spherical structure of the nanoreactors and the atomically dispersed Fe were verified by various physical characterizations. As a result, Fe-NHC-3 performed well in ORR tests under alkaline conditions, with high catalytic activity, durability, and methanol resistance, demonstrating that the as-fabricated materials have the potential to be applied in the cathodic catalysis of fuel cells.
Collapse
Affiliation(s)
- Bing Li
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiali Zhang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qingchao Zhu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tingting Xiang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ruibo Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Tieyu Hu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ran Jin
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juan Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
11
|
Xu L, Luo Y, Du Q, Zhang W, Hu L, Fang N, Wang J, Liu J, Zhou J, Zhong Y, Liu Y, Ran H, Guo D, Xu J. Magnetic Response Combined with Bioactive Ion Therapy: A RONS-Scavenging Theranostic Nanoplatform for Thrombolysis and Renal Ischemia-Reperfusion Injury. ACS NANO 2023; 17:5695-5712. [PMID: 36930590 DOI: 10.1021/acsnano.2c12091] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Currently, the limited efficacy of antithrombotic treatments is attributed to the inadequacy of pure drugs and the low ability of drugs to target the thrombus site. More importantly, timely thrombolysis is essential to reduce the sequelae of cardiovascular disease, but ischemia-reperfusion injury (IRI) remains a major challenge that must be solved after blood flow recovery. Herein, a multifunctional therapeutic nanoparticle (NP) based on Fe3O4 and strontium ions encapsulated in mesoporous polydopamine was successfully constructed and then loaded with TNK-tPA (FeM@Sr-TNK NPs). The NPs (59.9 min) significantly prolonged the half-life of thrombolytic drugs, which was 3.04 times that of TNK (19.7 min), and they had good biological safety. The NPs were shown to pass through vascular models with different inner diameters, curvatures, and stenosis under magnetic targeting and to enable accurate diagnosis of thrombi by photoacoustic imaging. NPs combined with the magnetic hyperthermia technique were used to accelerate thrombolysis and quickly open blocked blood vessels. Then, renal IRI-induced functional metabolic disorder and tissue damage were evidently attenuated by scavenging toxic reactive oxygen and nitrogen species and through the protective effects of bioactive ion therapy, including reduced apoptosis, increased angiogenesis, and inhibited fibrosis. In brief, we constructed a multifunctional nanoplatform for integrating a "diagnosis-therapy-protection" approach to achieve comprehensive management from thrombus to renal IRI, promoting the advancement of related technologies.
Collapse
Affiliation(s)
- Lian Xu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing 400016, PR China
| | - Ying Luo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Qianying Du
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Wenli Zhang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Liu Hu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Ni Fang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Junrui Wang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Jia Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Jun Zhou
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Yixin Zhong
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Yun Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging and Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Dajing Guo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| | - Jie Xu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, PR China
| |
Collapse
|
12
|
Sviridenko A, di Santo G, Virgolini I. Imaging Fibrosis. PET Clin 2023:S1556-8598(23)00017-2. [PMID: 36990946 DOI: 10.1016/j.cpet.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Tissue injury in nonmalignant human disease can develop from either disproportionate inflammation or exaggerated fibrotic responses. The molecular and cellular fundamental of these 2 processes, their impact on disease prognosis and the treatment concept deviates fundamentally. Consequently, the synchronous assessment and quantification of these 2 processes in vivo is extremely desirable. Although noninvasive molecular techniques such as 18F-fluorodeoxyglucose PET offer insights into the degree of inflammatory activity, the assessment of the molecular dynamics of fibrosis remains challenging. The 68Ga-fibroblast activation protein inhibitor-46 may improve noninvasive clinical diagnostic performance in patients with both fibroinflammatory pathology and long-term CT-abnormalities after severe COVID-19.
Collapse
|
13
|
Frontiers in Preparations and Promising Applications of Mesoporous Polydopamine for Cancer Diagnosis and Treatment. Pharmaceutics 2022; 15:pharmaceutics15010015. [PMID: 36678644 PMCID: PMC9861962 DOI: 10.3390/pharmaceutics15010015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Polydopamine (PDA) is a natural melanin derived from marine mussels that has good biocompatibility, biodegradability, and photothermal conversion ability. As a new coating material, it offers a novel way to modify the surface of various substances. The drug loading capacity and encapsulation efficiency of PDA are greatly improved via the use of mesoporous materials. The abundant pore canals on mesoporous polydopamine (MPDA) exhibit a uniquely large surface area, which provides a structural basis for drug delivery. In this review, we systematically summarized the characteristics and manufacturing process of MPDA, introduced its application in the diagnosis and treatment of cancer, and discussed the existing problems in its development and clinical application. This comprehensive review will facilitate further research on MPDA in the fields of medicine including cancer therapy, materials science, and biology.
Collapse
|
14
|
Chen L, Huang C, Zhong Y, Chen Y, Zhang H, Zheng Z, Jiang Z, Wei X, Peng Y, Huang L, Niu L, Gao Y, Ma J, Yang L. Multifunctional sponge scaffold loaded with concentrated growth factors for promoting wound healing. iScience 2022; 26:105835. [PMID: 36624841 PMCID: PMC9823238 DOI: 10.1016/j.isci.2022.105835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Although both are applied in regenerative medicine, acellular dermal matrix (ADM) and concentrated growth factor (CGF) have their respective shortcoming: The functioning of CGF is often hindered by sudden release effects, among other problems, and ADM can only be used in outer dressing for wound healing. In this study, a compound network with physical-chemical double cross-linking was constructed using chemical cross-linking and the intertwining of ADM and chitosan chains under freezing conditions; equipped with good biocompatibility and cell/tissue affinity, the heparin-modified composite scaffold was able to significantly promote cell adhesion and proliferation to achieve adequate fixation and slow down the release of CGF; polydopamine nanoparticles having excellent near-infrared light photothermal conversion ability could significantly promote the survival of rat autologous skin grafts. In a word, this multifunctional composite scaffold is a promising new type of implant biomaterial capable of delivering CGF to promote the healing of full-thickness skin defects.
Collapse
Affiliation(s)
- Lianglong Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Chaoyang Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Yu Zhong
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Yujia Chen
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Huihui Zhang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Zijun Zheng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Ziwei Jiang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Xuerong Wei
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Yujie Peng
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Lei Huang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Libin Niu
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China
| | - Yanbin Gao
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China,Corresponding author
| | - Jun Ma
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China,Corresponding author
| | - Lei Yang
- Department of Burns, Nanfang Hospital, Southern Medical University, Jingxi Street, Baiyun District, Guangzhou 510515, P.R. China,Corresponding author
| |
Collapse
|
15
|
Molecular Dynamics Simulations of Polydopamine Nanosphere's Structure Based on Experimental Evidence. Polymers (Basel) 2022; 14:polym14245486. [PMID: 36559853 PMCID: PMC9785874 DOI: 10.3390/polym14245486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
In this work, we show how to obtain internal monodispersed gold nanoparticles inside polydopamine (PDA) nanospheres that are also externally decorated with gold. The number of internal nanoparticles is affected by the size of the PDA nanosphere used, and the lower limit in the number of gold nanoparticles in the center of decorated nanospheres, one single gold nanoparticle, has been reached. In addition, extensive molecular dynamics simulations of PDA nanospheres based on four different chemical motifs, in the presence of water and with different sizes, have been performed to gain insight into the arrangements capable of accommodating cavities. In particular, PDA nanospheres based on pyranoacridinotrione (PYR) units provide good agreement with the experimental attainment of internal metal nanoparticles. In these, the stacking of PYR units leads to a particular morphology, with large portions of space occupied by the solvent, that would explain the observed formation of gold nanoparticles inside the PDA nanosphere.
Collapse
|
16
|
Peng L, Peng H, Li W, Zhao D. Monomicellar assembly to synthesize structured and functional mesoporous carbonaceous nanomaterials. Nat Protoc 2022; 18:1155-1178. [PMID: 36517608 DOI: 10.1038/s41596-022-00784-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/07/2022] [Indexed: 12/23/2022]
Abstract
The large pores of functional mesoporous carbonaceous nanomaterials have broad accessibility, making them efficient substrates for the mass transport of chemicals in biomedical applications, gas separation, catalysis, sensing, and energy storage and conversion. Recently, the assembly of monomicelles has been used to control the nanostructure and mesoporosity of carbonaceous nanomaterials, where the structure-oriented unit is a single micelle made up of block copolymers/surfactants and of precursor species (via hydrogen bonds, Coulombic and/or other noncovalent interactions). Each monomicelle then represents a template for a single mesopore, and multiple monomicelles can be stacked like LEGO blocks. After polymerization of the precursor species (in this case dopamine), carbonization results in the carbonaceous nanomaterial. The micellar size, structure and shape can be easily tuned by altering the synthetic conditions, providing a high degree of control over the structure of the final product, which can therefore be shaped into original nanostructures otherwise difficult to synthesize using conventional templating methods. Here we provide a detailed procedure for the preparation of the monomicelles, the monomicellar assembly into mesostructured polymeric samples and the conversion of polymeric samples to carbonaceous frameworks. We describe the functional characterization of two mesoporous carbonaceous nanomaterials that demonstrate excellent sodium-ion storage performance and oxygen reduction reactivity, respectively. The monomicellar assembly process for the synthesis of the ordered mesoporous polymers requires ~5 h; the synthesis, including subsequent centrifugation, freeze drying and carbonization, requires 2 d, whereas the entire procedure, including the characterization of the nanomaterials, requires ~4 d.
Collapse
|
17
|
Zhang L, Oudeng G, Wen F, Liao G. Recent advances in near-infrared-II hollow nanoplatforms for photothermal-based cancer treatment. Biomater Res 2022; 26:61. [PMID: 36348441 PMCID: PMC9641873 DOI: 10.1186/s40824-022-00308-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/16/2022] [Indexed: 11/10/2022] Open
Abstract
Near-infrared-II (NIR-II, 1000–1700 nm) light-triggered photothermal therapy (PTT) has been regarded as a promising candidate for cancer treatment, but PTT alone often fails to achieve satisfactory curative outcomes. Hollow nanoplatforms prove to be attractive in the biomedical field owing to the merits including good biocompatibility, intrinsic physical-chemical nature and unique hollow structures, etc. On one hand, hollow nanoplatforms themselves can be NIR-II photothermal agents (PTAs), the cavities of which are able to carry diverse therapeutic units to realize multi-modal therapies. On the other hand, NIR-II PTAs are capable of decorating on the surface to combine with the functions of components encapsulated inside the hollow nanoplatforms for synergistic cancer treatment. Notably, PTAs generally can serve as good photoacoustic imaging (PAI) contrast agents (CAs), which means such kind of hollow nanoplatforms are also expected to be multifunctional all-in-one nanotheranostics. In this review, the recent advances of NIR-II hollow nanoplatforms for single-modal PTT, dual-modal PTT/photodynamic therapy (PDT), PTT/chemotherapy, PTT/catalytic therapy and PTT/gas therapy as well as multi-modal PTT/chemodynamic therapy (CDT)/chemotherapy, PTT/chemo/gene therapy and PTT/PDT/CDT/starvation therapy (ST)/immunotherapy are summarized for the first time. Before these, the typical synthetic strategies for hollow structures are presented, and lastly, potential challenges and perspectives related to these novel paradigms for future research and clinical translation are discussed.
Collapse
|
18
|
Fang Q, Liu S, Cui J, Zhao R, Han Q, Hou P, Li Y, Lv J, Zhang X, Luo Q, Wang X. Mesoporous Polydopamine Loaded Pirfenidone Target to Fibroblast Activation Protein for Pulmonary Fibrosis Therapy. Front Bioeng Biotechnol 2022; 10:920766. [PMID: 35957641 PMCID: PMC9363109 DOI: 10.3389/fbioe.2022.920766] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/16/2022] [Indexed: 11/15/2022] Open
Abstract
Recently, fibroblast activation protein (FAP), an overexpressed transmembrane protein of activated fibroblast in pulmonary fibrosis, has been considered as the new target for diagnosing and treating pulmonary fibrosis. In this work, mesoporous polydopamine (MPDA), which is facile prepared and easily modified, is developed as a carrier to load antifibrosis drug pirfenidone (PFD) and linking FAP inhibitor (FAPI) to realize lesion-targeted drug delivery for pulmonary fibrosis therapy. We have found that PFD@MPDA-FAPI is well biocompatible and with good properties of antifibrosis, when ICG labels MPDA-FAPI, the accumulation of the nanodrug at the fibrosis lung in vivo can be observed by NIR imaging, and the antifibrosis properties of PFD@MPDA-FAPI in vivo were also better than those of pure PFD and PFD@MPDA; therefore, the easily produced and biocompatible nanodrug PFD@MPDA-FAPI developed in this study is promising for further clinical translations in pulmonary fibrosis antifibrosis therapy.
Collapse
Affiliation(s)
- Qi Fang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shaoyu Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jiangyu Cui
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ruiyue Zhao
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qian Han
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Peng Hou
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Youcai Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jie Lv
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaoyao Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qun Luo
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinlu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
19
|
Liang S, Liao G, Zhu W, Zhang L. Manganese-based hollow nanoplatforms for MR imaging-guided cancer therapies. Biomater Res 2022; 26:32. [PMID: 35794641 PMCID: PMC9258146 DOI: 10.1186/s40824-022-00275-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/10/2022] [Indexed: 12/13/2022] Open
Abstract
Theranostic nanoplatforms integrating diagnostic and therapeutic functions have received considerable attention in the past decade. Among them, hollow manganese (Mn)-based nanoplatforms are superior since they combine the advantages of hollow structures and the intrinsic theranostic features of Mn2+. Specifically, the hollow cavity can encapsulate a variety of small-molecule drugs, such as chemotherapeutic agents, photosensitizers and photothermal agents, for chemotherapy, photodynamic therapy (PDT) and photothermal therapy (PTT), respectively. After degradation in the tumor microenvironment (TME), the released Mn2+ is able to act simultaneously as a magnetic resonance (MR) imaging contrast agent (CA) and as a Fenton-like agent for chemodynamic therapy (CDT). More importantly, synergistic treatment outcomes can be realized by reasonable and optimized design of the hollow nanosystems. This review summarizes various Mn-based hollow nanoplatforms, including hollow MnxOy, hollow matrix-supported MnxOy, hollow Mn-doped nanoparticles, hollow Mn complex-based nanoparticles, hollow Mn-cobalt (Co)-based nanoparticles, and hollow Mn-iron (Fe)-based nanoparticles, for MR imaging-guided cancer therapies. Finally, we discuss the potential obstacles and perspectives of these hollow Mn-based nanotheranostics for translational applications. Mn-based hollow nanoplatforms such as hollow MnxOy nanoparticles, hollow matrix-supported MnxOy nanoparticles, Mn-doped hollow nanoparticles, Mn complex-based hollow nanoparticles, hollow Mn-Co-based nanoparticles and hollow Mn-Fe-based nanoparticles show great promise in cancer theranostics.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guangfu Liao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China.
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Li Zhang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
| |
Collapse
|
20
|
Hong J, Tang Y, Zhou M, Deng J, Hu H, Xu D. Polyethylene glycol-modified mesoporous polydopamine nanoparticles co-loaded with dimethylcurcumin and indocyanine green for combination therapy of castration-resistant prostate cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Zhu M, Shi Y, Shan Y, Guo J, Song X, Wu Y, Wu M, Lu Y, Chen W, Xu X, Tang L. Recent developments in mesoporous polydopamine-derived nanoplatforms for cancer theranostics. J Nanobiotechnology 2021; 19:387. [PMID: 34819084 PMCID: PMC8613963 DOI: 10.1186/s12951-021-01131-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/09/2021] [Indexed: 02/08/2023] Open
Abstract
Polydopamine (PDA), which is derived from marine mussels, has excellent potential in early diagnosis of diseases and targeted drug delivery owing to its good biocompatibility, biodegradability, and photothermal conversion. However, when used as a solid nanoparticle, the application of traditional PDA is restricted because of the low drug-loading and encapsulation efficiencies of hydrophobic drugs. Nevertheless, the emergence of mesoporous materials broaden our horizon. Mesoporous polydopamine (MPDA) has the characteristics of a porous structure, simple preparation process, low cost, high specific surface area, high light-to-heat conversion efficiency, and excellent biocompatibility, and therefore has gained considerable interest. This review provides an overview of the preparation methods and the latest applications of MPDA-based nanodrug delivery systems (chemotherapy combined with radiotherapy, photothermal therapy combined with chemotherapy, photothermal therapy combined with immunotherapy, photothermal therapy combined with photodynamic/chemodynamic therapy, and cancer theranostics). This review is expected to shed light on the multi-strategy antitumor therapy applications of MPDA-based nanodrug delivery systems. ![]()
Collapse
Affiliation(s)
- Menglu Zhu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Yi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China
| | - Yifan Shan
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Junyan Guo
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Xuelong Song
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Yuhua Wu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Miaolian Wu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Yan Lu
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China
| | - Wei Chen
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 200032, Shanghai, People's Republic of China.
| | - Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, 310004, Hangzhou, Zhejiang, People's Republic of China.
| | - Longguang Tang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China. .,International Institutes of Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, 322000, Yiwu, Zhejiang, People's Republic of China.
| |
Collapse
|