1
|
Song X, Liu L, Yang H, Chen Y, Huang X, Huang Z, Yang H, Zhang T, Huang Y, Gao HJ, Wang Y. Unusual Geometric and Electronic Structures at Domain Boundaries in a Heterochiral Charge Density Wave Superlattice. ACS NANO 2024. [PMID: 39325018 DOI: 10.1021/acsnano.4c09426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Domain boundaries (DBs) in charge density wave (CDW) systems not only are important for understanding the mechanism of how CDW interplays with other quantum phases but also have potential for future CDW-based nanodevices. However, current research on DBs in CDW materials has been mainly limited to those between homochiral CDW domains, whereas DBs between heterochiral CDW domains, especially in the atomic layers, remain largely unexplored. Here, we have studied the geometric and electronic states of heterochiral DBs in single-layer and bilayer 1T-NbSe2 using scanning tunneling microscopy/spectroscopy. We observe the existence of diverse CDW configurations in a single heterochiral CDW DB with atomic resolution and reveal the corresponding electronic states. In addition, interlayer stacking further enriches the electronic properties of the DB. Our results offer deep insights into the relationship between the detailed CDW nanostructures and electronic behaviors, which has significant implications for DB engineering in strongly correlated CDW systems and related nanodevices.
Collapse
Affiliation(s)
- Xuan Song
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Liwei Liu
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Han Yang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Yaoyao Chen
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Xinyu Huang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Zeping Huang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Huixia Yang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Teng Zhang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Yuan Huang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| | - Hong-Jun Gao
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yeliang Wang
- School of Integrated Circuits and Electronics, MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Szałowski K. Janus Monolayer of 1T-TaSSe: A Computational Study. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4591. [PMID: 39336331 PMCID: PMC11433230 DOI: 10.3390/ma17184591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Materials exhibiting charge density waves are attracting increasing attention owing to their complex physics and potential for applications. In this paper, we present a computational, first principles-based study of the Janus monolayer of 1T-TaSSe transition metal dichalcogenide. We extensively compare the results with those obtained for parent compounds, TaS2 and TaSe2 monolayers, with confirmed presence of 13×13 charge density waves. The structural and electronic properties of the normal (undistorted) phase and distorted phase with 13×13 periodic lattice distortion are discussed. In particular, for a normal phase, the emergence of dipolar moment due to symmetry breaking is demonstrated, and its sensitivity to an external electric field perpendicular to the monolayer is investigated. Moreover, the appearance of imaginary energy phonon modes suggesting structural instability is shown. For the distorted phase, we predict the presence of a flat, weakly dispersive band related to the appearance of charge density waves, similar to the one observed in parent compounds. The results suggest a novel platform for studying charge density waves in two-dimensional transition metal dichalcogenides.
Collapse
Affiliation(s)
- Karol Szałowski
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, Ulica Pomorska 149/153, 90-236 Lodz, Poland
| |
Collapse
|
3
|
Wang L, Wang S, Niu Y, Liu X, Wu Y, Zhang B, Liu Z, Li XP, Chen XQ. Intercalating Architecture for the Design of Charge Density Wave in Metallic MA 2Z 4 Materials. NANO LETTERS 2024; 24:11279-11285. [PMID: 39145763 DOI: 10.1021/acs.nanolett.4c02998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
We present a novel approach to induce charge density waves (CDWs) in metallic MA2Z4 materials, resembling the behavior observed in transition metal dichalcogenides (TMDCs). This method leverages the intercalating architecture to maintain the same crystal field and Fermi surface topologies. Our investigation reveals that CDW instability in these materials arises from electron-phonon coupling (EPC) between the d band and longitudinal acoustic (LA) phonons, mirroring TMDC's behavior. By combining α-MA2Z4 with 1H-MX2 materials in a predictive CDW phase diagram using critical EPC constants, we demonstrate the feasibility of extending CDW across material families with comparable crystal fields and reveal the crucial role in CDW instability of the competition between ionic charge transfer and electron correlation. We further uncover a strain-induced Mott transition in β2-NbGe2N4 monolayer featuring star-of-David patterns. This work highlights the potential of intercalating architecture to engineer CDW materials, expanding our understanding of CDW instability and correlation physics.
Collapse
Affiliation(s)
- Lei Wang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, People's Republic of China
- Inner Mongolia Key Lab of Nanoscience and Nanotechnology, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - ShuaiYu Wang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Yuekun Niu
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Xiuying Liu
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Yapeng Wu
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Bing Zhang
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Zhifeng Liu
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Xiao-Ping Li
- School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Xing-Qiu Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016 Shenyang, People's Republic of China
| |
Collapse
|
4
|
Hwang J, Ruan W, Chen Y, Tang S, Crommie MF, Shen ZX, Mo SK. Charge density waves in two-dimensional transition metal dichalcogenides. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:044502. [PMID: 38518359 DOI: 10.1088/1361-6633/ad36d3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/22/2024] [Indexed: 03/24/2024]
Abstract
Charge density wave (CDW is one of the most ubiquitous electronic orders in quantum materials. While the essential ingredients of CDW order have been extensively studied, a comprehensive microscopic understanding is yet to be reached. Recent research efforts on the CDW phenomena in two-dimensional (2D) materials provide a new pathway toward a deeper understanding of its complexity. This review provides an overview of the CDW orders in 2D with atomically thin transition metal dichalcogenides (TMDCs) as the materials platform. We mainly focus on the electronic structure investigations on the epitaxially grown TMDC samples with angle-resolved photoemission spectroscopy and scanning tunneling microscopy/spectroscopy as complementary experimental tools. We discuss the possible origins of the 2D CDW, novel quantum states coexisting with them, and exotic types of charge orders that can only be realized in the 2D limit.
Collapse
Affiliation(s)
- Jinwoong Hwang
- Department of Physics and Institute of Quantum Convergence Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Wei Ruan
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, People's Republic of China
| | - Yi Chen
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, People's Republic of China
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, People's Republic of China
| | - Shujie Tang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, People's Republic of China
| | - Michael F Crommie
- Department of Physics, University of California, Berkeley, CA, United States of America
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States of America
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, CA 94720, United States of America
| | - Zhi-Xun Shen
- Geballe Laboratory for Advanced Materials, Departments of Physics and Applied Physics, Stanford University, Stanford, CA, United States of America
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, United States of America
| | - Sung-Kwan Mo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 United States of America
| |
Collapse
|
5
|
Pouget JP, Canadell E. Structural approach to charge density waves in low-dimensional systems: electronic instability and chemical bonding. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:026501. [PMID: 38052072 DOI: 10.1088/1361-6633/ad124f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
The charge density wave (CDW) instability, usually occurring in low-dimensional metals, has been a topic of interest for longtime. However, some very fundamental aspects of the mechanism remain unclear. Recently, a plethora of new CDW materials, a substantial fraction of which is two-dimensional or even three-dimensional, has been prepared and characterised as bulk and/or single-layers. As a result, the need for revisiting the primary mechanism of the instability, based on the electron-hole instability established more than 50 years ago for quasi-one-dimensional (quasi-1D) conductors, has clearly emerged. In this work, we consider a large number of CDW materials to revisit the main concepts used in understanding the CDW instability, and emphasise the key role of the momentum dependent electron-phonon coupling in linking electronic and structural degrees of freedom. We argue that for quasi-1D systems, earlier weak coupling theories work appropriately and the energy gain due to the CDW and the concomitant periodic lattice distortion (PLD) remains primarily due to a Fermi surface nesting mechanism. However, for materials with higher dimensionality, intermediate and strong coupling regimes are generally at work and the modification of the chemical bonding network by the PLD is at the heart of the instability. We emphasise the need for a microscopic approach blending condensed matter physics concepts and state-of-the-art first-principles calculations with quite fundamental chemical bonding ideas in understanding the CDW phenomenon in these materials.
Collapse
Affiliation(s)
- Jean-Paul Pouget
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405 Orsay, France
| | - Enric Canadell
- Institut de Ciencia de Materials de Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Spain, and Royal Academy of Sciences and Arts of Barcelona, Chemistry Section, La Rambla 115, 08002 Barcelona, Spain
| |
Collapse
|
6
|
Bai Y, Jian T, Pan Z, Deng J, Lin X, Zhu C, Huo D, Cheng Z, Liu Y, Cui P, Zhang Z, Zou Q, Zhang C. Realization of Multiple Charge-Density Waves in NbTe 2 at the Monolayer Limit. NANO LETTERS 2023; 23:2107-2113. [PMID: 36881543 DOI: 10.1021/acs.nanolett.2c04306] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Layered transition-metal dichalcogenides down to the monolayer (ML) limit provide a fertile platform for exploring charge-density waves (CDWs). Here, we experimentally unveil the richness of the CDW phases in ML-NbTe2 for the first time. Not only the theoretically predicted 4 × 4 and 4 × 1 phases but also two unexpected 28×28 and 19×19 phases are realized. For such a complex CDW system, we establish an exhaustive growth phase diagram via systematic efforts in the material synthesis and scanning tunneling microscope characterization. Moreover, the energetically stable phase is the larger-scale order (19×19), which is surprisingly in contradiction to the prior prediction (4 × 4). These findings are confirmed using two different kinetic pathways: i.e., direct growth at proper growth temperatures (T) and low-T growth followed by high-T annealing. Our results provide a comprehensive diagram of the "zoo" of CDW orders in ML-NbTe2.
Collapse
Affiliation(s)
- Yusong Bai
- School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Tao Jian
- School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Wuhan Institute of Quantum Technology, Wuhan 430206, People's Republic of China
| | - Zemin Pan
- School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jinghao Deng
- School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xiaoyu Lin
- School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Chao Zhu
- School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Da Huo
- School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Zhengbo Cheng
- School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yong Liu
- School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Ping Cui
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Zhenyu Zhang
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Qiang Zou
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Chendong Zhang
- School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
7
|
Correa L, Ferreira PP, de Faria LR, Fim VM, da Luz MS, Torikachvili MS, Heil C, Eleno LTF, Machado AJS. Superconductivity in Te-Deficient ZrTe 2. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:5162-5168. [PMID: 36960103 PMCID: PMC10026068 DOI: 10.1021/acs.jpcc.2c08836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/27/2023] [Indexed: 06/18/2023]
Abstract
We present structural, electrical, and thermoelectric potential measurements on high-quality single crystals of ZrTe1.8 grown from isothermal chemical vapor transport. These measurements show that the Te-deficient ZrTe1.8, which forms the same structure as the nonsuperconducting ZrTe2, is superconducting below 3.2 K. The temperature dependence of the upper critical field (H c2) deviates from the behavior expected in conventional single-band superconductors, being best described by an electron-phonon two-gap superconducting model with strong intraband coupling. For the ZrTe1.8 single crystals, the Seebeck potential measurements suggest that the charge carriers are predominantly negative, in agreement with the ab initio calculations. Through first-principles calculations within DFT, we show that the slight reduction of Te occupancy in ZrTe2 unexpectedly gives origin to density of states peaks at the Fermi level due to the formation of localized Zr-d bands, possibly promoting electronic instabilities at the Fermi level and an increase at the critical temperature according to the standard BCS theory. These findings highlight that the Te deficiency promotes the electronic conditions for the stability of the superconducting ground state, suggesting that defects can fine-tune the electronic structure to support superconductivity.
Collapse
Affiliation(s)
- Lucas
E. Correa
- Universidade
de São Paulo, Escola de Engenharia
de Lorena, DEMAR, 12612-550 Lorena, Brazil
| | - Pedro P. Ferreira
- Universidade
de São Paulo, Escola de Engenharia
de Lorena, DEMAR, 12612-550 Lorena, Brazil
- Institute
of Theoretical and Computational Physics, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
| | - Leandro R. de Faria
- Universidade
de São Paulo, Escola de Engenharia
de Lorena, DEMAR, 12612-550 Lorena, Brazil
| | - Vitor M. Fim
- Universidade
de São Paulo, Escola de Engenharia
de Lorena, DEMAR, 12612-550 Lorena, Brazil
| | - Mario S. da Luz
- Instituto
de Ciências Tecnológicas e Exatas, Universidade Federal do Triângulo Mineiro, 38025-180 Uberaba, Minas Gerais, Brazil
| | - Milton S. Torikachvili
- Department
of Physics, San Diego State University, San Diego, California 92182-1233, United States
| | - Christoph Heil
- Institute
of Theoretical and Computational Physics, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
| | - Luiz T. F. Eleno
- Universidade
de São Paulo, Escola de Engenharia
de Lorena, DEMAR, 12612-550 Lorena, Brazil
| | - Antonio J. S. Machado
- Universidade
de São Paulo, Escola de Engenharia
de Lorena, DEMAR, 12612-550 Lorena, Brazil
| |
Collapse
|
8
|
Zhang T, Li R, Hao X, Zhang Q, Yang H, Hou Y, Hou B, Jia L, Jiang K, Zhang Y, Wu X, Zhuang X, Liu L, Yao Y, Guo W, Wang Y. Ullmann-Like Covalent Bond Coupling without Participation of Metal Atoms. ACS NANO 2023; 17:4387-4395. [PMID: 36802507 DOI: 10.1021/acsnano.2c09467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ullmann-like on-surface synthesis is one of the most appropriate approaches for the bottom-up fabrication of covalent organic nanostructures and many successes have been achieved. The Ullmann reaction requires the oxidative addition of a catalyst (a metal atom in most cases): the metal atom will insert into a carbon-halogen bond, forming organometallic intermediates, which are then reductively eliminated and form C-C covalent bonds. As a result, traditional Ullmann coupling involves reactions of multiple steps, making it difficult to control the final product. Moreover, forming the organometallic intermediates will potentially poison the metal surface catalytic reactivity. In the study, we used the 2D hBN, an atomically thin sp2-hybridized sheet with a large band gap, to protect the Rh(111) metal surface. It is an ideal 2D platform to decouple the molecular precursor from the Rh(111) surface while maintaining the reactivity of Rh(111). We realize an Ullmann-like coupling of a planar biphenylene-based molecule, i.e., 1,8-dibromobiphenylene (BPBr2), on an hBN/Rh(111) surface with an ultrahigh selectivity of the biphenylene dimer product, containing 4-, 6-, and 8-membered rings. The reaction mechanism, including electron wave penetration and the template effect of the hBN, is elucidated by combining low-temperature scanning tunneling microscopy and density functional theory calculations. Our findings are expected to play an essential role regarding the high-yield fabrication of functional nanostructures for future information devices.
Collapse
Affiliation(s)
- Teng Zhang
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Renyi Li
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Frontiers Science Center for High Energy Material (MOE), State Key Laboratory of Explosion Science and Technology, School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xiaoyu Hao
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Quanzhen Zhang
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Huixia Yang
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yanhui Hou
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Baofei Hou
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Liangguang Jia
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Kaiyue Jiang
- The Meso-Entropy Matter Lab., The State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yu Zhang
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xu Wu
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Xiaodong Zhuang
- The Meso-Entropy Matter Lab., The State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Liwei Liu
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yugui Yao
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Frontiers Science Center for High Energy Material (MOE), State Key Laboratory of Explosion Science and Technology, School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Wei Guo
- Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), Frontiers Science Center for High Energy Material (MOE), State Key Laboratory of Explosion Science and Technology, School of Physics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Yeliang Wang
- MIIT Key Laboratory for Low-Dimensional Quantum Structure and Devices, School of Integrated Circuits and Electronics, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
9
|
Trallero-Giner C, Santiago-Pérez DG, Fomin VM. New magneto-polaron resonances in a monolayer of a transition metal dichalcogenide. Sci Rep 2023; 13:292. [PMID: 36609670 PMCID: PMC9822968 DOI: 10.1038/s41598-023-27404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/02/2023] [Indexed: 01/08/2023] Open
Abstract
Transition metal dichalcogenide (TMD) semiconductors are two-dimensional materials with great potential for the future of nano-optics and nano-optoelectronics as well as the rich and exciting development of basic research. The influence of an external magnetic field on a TMD monolayer raises a new question: to unveil the behavior of the magneto-polaron resonances (MPRs) associated with the phonon symmetry inherent in the system. It is shown that the renormalized Landau energy levels are modified by the interplay of the long-range Pekar-Fröhlich (PF) and short-range deformation potential (DP) interactions. This leads to a new series of MPRs involving the optical phonons at the center of the Brillouin zone. The coupling of the two Landau levels with the LO and [Formula: see text] optical phonon modes provokes resonant splittings of double avoided-crossing levels giving rise to three excitation branches. This effect appears as bigger energy gaps at the anticrossing points in the renormalized Landau levels. To explore the interplay between the MPRs, the electron-phonon interactions (PF and DP) and the couplings between adjacent Landau levels, a full Green's function treatment for the evaluation of the energy and its life-time broadening is developed. A generalization of the two-level approach is performed for the description of the new MPR branches. The obtained results are a guideline for the magneto-optical experiments in TMDs, where three MPR peaks should be observable.
Collapse
Affiliation(s)
- Carlos Trallero-Giner
- grid.14841.380000 0000 9972 3583Institute for Integrative Nanosciences (IIN), Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstraße 20, D-01069 Dresden, Germany
| | - Darío G. Santiago-Pérez
- grid.412873.b0000 0004 0484 1712Universidad Autónoma del Estado de Morelos, Ave. Universidad 1001, CP 62209 Cuernavaca, Morelos, México
| | - Vladimir M. Fomin
- grid.14841.380000 0000 9972 3583Institute for Integrative Nanosciences (IIN), Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstraße 20, D-01069 Dresden, Germany ,grid.38926.360000 0001 2297 8198Laboratory of Physics and Engineering of Nanomaterials, Department of Theoretical Physics, Moldova State University, str. A. Mateevici 60, MD-2009 Chişinău, Republic of Moldova
| |
Collapse
|
10
|
Goodwin ZAH, Fal'ko VI. Moiré modulation of charge density waves. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:494001. [PMID: 36223792 DOI: 10.1088/1361-648x/ac99ca] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Here we investigate how charge density waves (CDWs), inherent to a monolayer, are effected by creating twisted van der Waals structures. Homobilayers of metallic transition metal dichalcogenides (TMDs), at small twist angles where there is significant atomic reconstruction, are utilised as an example to investigate the interplay between the moiré domain structure and CDWs of different periods. For3×3CDWs, there is no geometric constraint to prevent the CDWs from propagating throughout the moiré structure. Whereas for2×2CDWs, to ensure the CDWs in each layer have the most favourable interactions in the domains, the CDW phase must be destroyed in the connecting domain walls. For3×3CDWs with twist angles close to 180∘, moiré-scale triangular structures can form; while close to 0∘, moiré-scale dimer domains occur. The star-of-David CDW (13×13) is found to host CDWs in the domains only, since there is one low energy stacking configuration, similar to the2×2CDWs. These predictions are offered for experimental verification in twisted bilayer metallic TMDs which host CDWs, and we hope this will stimulate further research on the interplay between the moiré superlattice and CDW phases intrinsic to the comprising 2D materials.
Collapse
Affiliation(s)
- Zachary A H Goodwin
- National Graphene Institute, University of Manchester, Booth St. E., Manchester M13 9PL, United Kingdom
- School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Vladimir I Fal'ko
- National Graphene Institute, University of Manchester, Booth St. E., Manchester M13 9PL, United Kingdom
- School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- Henry Royce Institute for Advanced Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
11
|
John Mukkattukavil D, Hellsvik J, Ghosh A, Chatzigeorgiou E, Nocerino E, Wang Q, von Arx K, Huang SW, Ekholm V, Hossain Z, Thamizhavel A, Chang J, Månsson M, Nordström L, Såthe C, Agåker M, Rubensson JE, Sassa Y. Resonant inelastic soft x-ray scattering on LaPt 2Si 2. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:324003. [PMID: 35640576 DOI: 10.1088/1361-648x/ac7500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
X-ray absorption and resonant inelastic x-ray scattering spectra of LaPt2Si2single crystal at the Si 2pand La 4dedges are presented. The data are interpreted in terms of density functional theory, showing that the Si spectra can be described in terms of Sisanddlocal partial density of states (LPDOS), and the La spectra are due to quasi-atomic local 4fexcitations. Calculations show that Ptd-LPDOS dominates the occupied states, and a sharp localized Lafstate is found in the unoccupied states, in line with the observations.
Collapse
Affiliation(s)
| | - Johan Hellsvik
- PDC Center for High Performance Computing, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
- Nordita, KTH Royal Institute of Technology and Stockholm University, Hannes Alfvéns väg 12, SE-106 91 Stockholm, Sweden
| | - Anirudha Ghosh
- MAX IV Laboratory, Lund University, SE-221 00 Lund, Sweden
| | | | - Elisabetta Nocerino
- Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Qisi Wang
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Karin von Arx
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Department of Physics, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| | - Shih-Wen Huang
- MAX IV Laboratory, Lund University, SE-221 00 Lund, Sweden
| | - Victor Ekholm
- MAX IV Laboratory, Lund University, SE-221 00 Lund, Sweden
| | - Zakir Hossain
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| | | | - Johan Chang
- Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Martin Månsson
- Department of Applied Physics, KTH Royal Institute of Technology, SE-106 91 Stockholm, Sweden
| | - Lars Nordström
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Conny Såthe
- MAX IV Laboratory, Lund University, SE-221 00 Lund, Sweden
| | - Marcus Agåker
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
- MAX IV Laboratory, Lund University, SE-221 00 Lund, Sweden
| | - Jan-Erik Rubensson
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden
| | - Yasmine Sassa
- Department of Physics, Chalmers University of Technology, Göteborg, SE-412 96, Sweden
| |
Collapse
|
12
|
Ren Y, Zhang L, Zhu X, Li H, Dong Q, Liu S. Synthesis of transition metal dichalcogenide van der Waals heterostructures through chemical vapor deposition. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:254002. [PMID: 35358958 DOI: 10.1088/1361-648x/ac6309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Transition metal dichalcogenide (TMD) van der Waals (vdW) heterostructures show great potential in the exploration of novel physical phenomena and practical applications. Compared to the traditional mechanical stacking techniques, chemical vapor deposition (CVD) method exhibits more advantages in preparing TMD vdW heterostructures. CVD enables the large-scale production of high-quality materials with clean interfaces in the future. Herein, CVD methods for the synthesis of TMD vdW heterostructures are summarized. These methods are categorized in two major strategies, multi-step process and one-step process. The effects of various factors are demonstrated, including the temperature, nucleation, and precursors. Finally, the remaining challenges are discussed.
Collapse
Affiliation(s)
- Yizhang Ren
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Ling Zhang
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Xukun Zhu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People's Republic of China
| | - Huimin Li
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Qizhi Dong
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Song Liu
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China
| |
Collapse
|
13
|
Atomic-scale visualization of chiral charge density wave superlattices and their reversible switching. Nat Commun 2022; 13:1843. [PMID: 35383190 PMCID: PMC8983771 DOI: 10.1038/s41467-022-29548-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 03/16/2022] [Indexed: 11/08/2022] Open
Abstract
Chirality is essential for various phenomena in life and matter. However, chirality and its switching in electronic superlattices, such as charge density wave (CDW) superlattices, remain elusive. In this study, we characterize the chirality switching with atom-resolution imaging in a single-layer NbSe2 CDW superlattice by the technique of scanning tunneling microscopy. The atomic arrangement of the CDW superlattice is found continuous and intact although its chirality is switched. Several intermediate states are tracked by time-resolved imaging, revealing the fast and dynamic chirality transition. Importantly, the switching is reversibly realized with an external electric field. Our findings unveil the delicate switching process of chiral CDW superlattice in a two-dimensional (2D) crystal down to the atomic scale.
Collapse
|
14
|
elAttar MM, Allam NK. Untapped potential of 2D charge density wave chalcogenides as negative supercapacitor electrode materials. RSC Adv 2022; 12:6433-6439. [PMID: 35424643 PMCID: PMC8982093 DOI: 10.1039/d2ra00457g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/18/2022] [Indexed: 11/21/2022] Open
Abstract
Two-dimensional (2D) materials have opened new avenues for the fabrication of ultrathin, transparent, and flexible functional devices. However, the conventional inorganic graphene analogues are either semiconductors or insulators with low electronic conductivity, hindering their use as supercapacitor electrode materials, which require high conductivity and large surface area. Recently, 2D charge density wave (CDW) materials, such as 2D chalcogenides, have attracted extensive attention as high performance functional nanomaterials in sensors, energy conversion, and spintronic devices. Herein, TaS2 is investigated as a potential CDW material for supercapacitors. The quantum capacitance (C Q) of the different TaS2 polymorphs (1T, 2H, and 3R) was estimated using density functional theory calculations for different numbers of TaS2 layers and alkali-metal ion (Li, Na and K) intercalants. The results demonstrate the potential of 2H- and 3R-polymorphs as efficient negative electrode materials for supercapacitor devices. The intercalation of K and Na ions in 1T-TaS2 led to an increase in the CQ with the intercalation of Li ions resulting in a decrease in the C Q. In contrast, Li ions were found to be the best intercalant for the 2H-TaS2 phase (highest C Q), while K ion intercalation was the best for the 3R-TaS2 phase. Moreover, increasing the number of layers of the1T-TaS2 resulted in the highest CQ. In contrast, C Q increases upon decreasing the number of layers of 2H-TaS2. Both 1T-MoS2 and 2H-TaS2 can be combined to construct a highly performing supercapacitor device as the positive and negative electrodes, respectively.
Collapse
Affiliation(s)
- Mahmoud M elAttar
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
| | - Nageh K Allam
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo New Cairo 11835 Egypt
| |
Collapse
|
15
|
Abstract
Low-dimensional (LD) transition metal dichalcogenides (TMDs) in the form of nanoflakes, which consist of one or several layers, are the subject of intensive fundamental and applied research. The tuning of the electronic properties of the LD-TMDs are commonly related with applied strains and strain gradients, which can strongly affect their polar properties via piezoelectric and flexoelectric couplings. Using the density functional theory and phenomenological Landau approach, we studied the bended 2H-MoS2 monolayer and analyzed its flexoelectric and piezoelectric properties. The dependences of the dipole moment, strain, and strain gradient on the coordinate along the layer were calculated. From these dependences, the components of the flexoelectric and piezoelectric tensors have been determined and analyzed. Our results revealed that the contribution of the flexoelectric effect dominates over the piezoelectric effect in both in-plane and out-of-plane directions of the monolayer. In accordance with our calculations, a realistic strain gradient of about 1 nm−1 can induce an order of magnitude higher than the flexoelectric response in comparison with the piezoelectric reaction. The value of the dilatational flexoelectric coefficient is almost two times smaller than the shear component. It appeared that the components of effective flexoelectric and piezoelectric couplings can be described by parabolic dependences of the corrugation. Obtained results are useful for applications of LD-TMDs in strain engineering and flexible electronics.
Collapse
|