1
|
Parviz M, Shokorlou YM, Heidarzadeh H. Structure of plasmonic multi spectral Apta sensor and analyzing of bulk and surface sensitivity. Sci Rep 2024; 14:13245. [PMID: 38853163 PMCID: PMC11163006 DOI: 10.1038/s41598-024-64249-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
In this work, a multispectral aptasensor structure, including a sub-layer and two side walls, was presented. The cells are positioned at the down and top of the structure, with the down cells oriented perpendicular to the walls and the top cells aligned parallel to the walls. The validity of the findings was verified by the utilization of a numerical simulation technique known as 3D Finite Difference Time Domain (FDTD). The biosensor under consideration exhibits sensitivities of 1093.7 nm/RIU, 754 nm/RIU, and 707.43 nm/RIU in mode III, mode II, and mode I, respectively. In the majority of instances, the quantity of analyte available is insufficient to coat the surface of the sensor thoroughly. Consequently, in this study, the evaluation of surface sensitivity was undertaken alongside bulk sensitivity. The surface sensitivity of the suggested structure for mode II in the sensor layer, with thicknesses of 10, 20, 30, and 70 nm, is measured to be 25, 78, 344, and 717.636 nm/RIU, respectively. Our design incorporates a unique arrangement of sub-layer and side walls, with cells positioned to maximize interaction with the target analyte. This innovative configuration, combined with Ag for its superior plasmonic properties, enables the detection of E. coli O157 with remarkable sensitivity.
Collapse
Affiliation(s)
- Mahya Parviz
- Department of Electrical Engineering, University of Kurdistan, Sanandaj, Kurdistan, Iran
| | - Younes Majd Shokorlou
- Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hamid Heidarzadeh
- Department of Electrical and Computer Engineering, University of Mohaghegh Ardabili, Ardabil, Iran.
| |
Collapse
|
2
|
Shi G, Si L, Cai J, Jiang H, Liu Y, Luo W, Ma H, Guan J. Photonic Nanochains for Continuous Glucose Monitoring in Physiological Environment. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:964. [PMID: 38869588 PMCID: PMC11174108 DOI: 10.3390/nano14110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
Diabetes is a common disease that seriously endangers human health. Continuous glucose monitoring (CGM) is important for the prevention and treatment of diabetes. Glucose-sensing photonic nanochains (PNCs) have the advantages of naked-eye colorimetric readouts, short response time and noninvasive detection of diabetes, showing immense potential in CGM systems. However, the developed PNCs cannot disperse in physiological environment at the pH of 7.4 because of their poor hydrophilicity. In this study, we report a new kind of PNCs that can continuously and reversibly detect the concentration of glucose (Cg) in physiological environment at the pH of 7.4. Polyacrylic acid (PAA) added to the preparation of PNCs forms hydrogen bonds with polyvinylpyrrolidone (PVP) in Fe3O4@PVP colloidal nanoparticles and the hydrophilic monomer N-2-hydroxyethyl acrylamide (HEAAm), which increases the content of PHEAAm in the polymer shell of prepared PNCs. Moreover, 4-(2-acrylamidoethylcarbamoyl)-3-fluorophenylboronic acid (AFPBA), with a relatively low pKa value, is used as the glucose-sensing monomer to further improve the hydrophilicity and glucose-sensing performances of PNCs. The obtained Fe3O4@(PVP-PAA)@poly(AFPBA-co-HEAAm) PNCs disperse in artificial serum and change color from yellow-green to red when Cg increases from 3.9 mM to 11.4 mM, showing application potential for straightforward CGM.
Collapse
Affiliation(s)
- Gongpu Shi
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (G.S.); (L.S.); (H.J.); (Y.L.); (J.G.)
| | - Luying Si
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (G.S.); (L.S.); (H.J.); (Y.L.); (J.G.)
| | - Jinyang Cai
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China;
| | - Hao Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (G.S.); (L.S.); (H.J.); (Y.L.); (J.G.)
| | - Yun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (G.S.); (L.S.); (H.J.); (Y.L.); (J.G.)
| | - Wei Luo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China;
| | - Huiru Ma
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (G.S.); (L.S.); (H.J.); (Y.L.); (J.G.)
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, China
| |
Collapse
|
3
|
Nanoparticles loaded with pharmacologically active plant-derived natural products: Biomedical applications and toxicity. Colloids Surf B Biointerfaces 2023; 225:113214. [PMID: 36893664 DOI: 10.1016/j.colsurfb.2023.113214] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
Pharmacologically active natural products have played a significant role in the history of drug development. They have acted as sources of therapeutic drugs for various diseases such as cancer and infectious diseases. However, most natural products suffer from poor water solubility and low bioavailability, limiting their clinical applications. The rapid development of nanotechnology has opened up new directions for applying natural products and numerous studies have explored the biomedical applications of nanomaterials loaded with natural products. This review covers the recent research on applying plant-derived natural products (PDNPs) nanomaterials, including nanomedicines loaded with flavonoids, non-flavonoid polyphenols, alkaloids, and quinones, especially their use in treating various diseases. Furthermore, some drugs derived from natural products can be toxic to the body, so the toxicity of them is discussed. This comprehensive review includes fundamental discoveries and exploratory advances in natural product-loaded nanomaterials that may be helpful for future clinical development.
Collapse
|
4
|
Kaur B, Kumar S, Kaushik BK. Novel Wearable Optical Sensors for Vital Health Monitoring Systems-A Review. BIOSENSORS 2023; 13:bios13020181. [PMID: 36831947 PMCID: PMC9954035 DOI: 10.3390/bios13020181] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 05/09/2023]
Abstract
Wearable sensors are pioneering devices to monitor health issues that allow the constant monitoring of physical and biological parameters. The immunity towards electromagnetic interference, miniaturization, detection of nano-volumes, integration with fiber, high sensitivity, low cost, usable in harsh environments and corrosion-resistant have made optical wearable sensor an emerging sensing technology in the recent year. This review presents the progress made in the development of novel wearable optical sensors for vital health monitoring systems. The details of different substrates, sensing platforms, and biofluids used for the detection of target molecules are discussed in detail. Wearable technologies could increase the quality of health monitoring systems at a nominal cost and enable continuous and early disease diagnosis. Various optical sensing principles, including surface-enhanced Raman scattering, colorimetric, fluorescence, plasmonic, photoplethysmography, and interferometric-based sensors, are discussed in detail for health monitoring applications. The performance of optical wearable sensors utilizing two-dimensional materials is also discussed. Future challenges associated with the development of optical wearable sensors for point-of-care applications and clinical diagnosis have been thoroughly discussed.
Collapse
Affiliation(s)
- Baljinder Kaur
- Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
- Correspondence: (S.K.); (B.K.K.)
| | - Brajesh Kumar Kaushik
- Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
- Correspondence: (S.K.); (B.K.K.)
| |
Collapse
|
5
|
Kumar S, Wang Z, Zhang W, Liu X, Li M, Li G, Zhang B, Singh R. Optically Active Nanomaterials and Its Biosensing Applications-A Review. BIOSENSORS 2023; 13:85. [PMID: 36671920 PMCID: PMC9855722 DOI: 10.3390/bios13010085] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 12/26/2022] [Accepted: 01/01/2023] [Indexed: 05/17/2023]
Abstract
This article discusses optically active nanomaterials and their optical biosensing applications. In addition to enhancing their sensitivity, these nanomaterials also increase their biocompatibility. For this reason, nanomaterials, particularly those based on their chemical compositions, such as carbon-based nanomaterials, inorganic-based nanomaterials, organic-based nanomaterials, and composite-based nanomaterials for biosensing applications are investigated thoroughly. These nanomaterials are used extensively in the field of fiber optic biosensing to improve response time, detection limit, and nature of specificity. Consequently, this article describes contemporary and application-based research that will be of great use to researchers in the nanomaterial-based optical sensing field. The difficulties encountered during the synthesis, characterization, and application of nanomaterials are also enumerated, and their future prospects are outlined for the reader's benefit.
Collapse
Affiliation(s)
- Santosh Kumar
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Zhi Wang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Wen Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Xuecheng Liu
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Muyang Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Guoru Li
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Bingyuan Zhang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Ragini Singh
- College of Agronomy, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|