1
|
Marin T, Belov V, Chemli Y, Ouyang J, Najmaoui Y, Fakhri GE, Duvvuri S, Iredale P, Guehl NJ, Normandin MD, Petibon Y. PET Mapping of Receptor Occupancy Using Joint Direct Parametric Reconstruction. IEEE Trans Biomed Eng 2025; 72:1057-1066. [PMID: 39446540 PMCID: PMC11875991 DOI: 10.1109/tbme.2024.3486191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Receptor occupancy (RO) studies using PET neuroimaging play a critical role in the development of drugs targeting the central nervous system (CNS). The conventional approach to estimate drug receptor occupancy consists in estimation of binding potential changes between two PET scans (baseline and post-drug injection). This estimation is typically performed separately for each scan by first reconstructing dynamic PET scan data before fitting a kinetic model to time activity curves. This approach fails to properly model the noise in PET measurements, resulting in poor RO estimates, especially in low receptor density regions. OBJECTIVE In this work, we evaluate a novel joint direct parametric reconstruction framework to directly estimate distributions of RO and other kinetic parameters in the brain from a pair of baseline and post-drug injection dynamic PET scans. METHODS The proposed method combines the use of regularization on RO maps with alternating optimization to enable estimation of occupancy even in low binding regions. RESULTS Simulation results demonstrate the quantitative improvement of this method over conventional approaches in terms of accuracy and precision of occupancy. The proposed method is also evaluated in preclinical in-vivo experiments using 11C-MK-6884 and a muscarinic acetylcholine receptor 4 positive allosteric modulator drug, showing improved estimation of receptor occupancy as compared to traditional estimators. CONCLUSION The proposed joint direct estimation framework improves RO estimation compared to conventional methods, especially in intermediate to low-binding regions. SIGNIFICANCE This work could potentially facilitate the evaluation of new drug candidates targeting the CNS.
Collapse
|
2
|
Yang B, Wang X, Li A, Moody JB, Tang J. Dictionary Learning Constrained Direct Parametric Estimation in Dynamic Myocardial Perfusion PET. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3485-3497. [PMID: 34125672 DOI: 10.1109/tmi.2021.3089112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In myocardial perfusion imaging with dynamic positron emission tomography (PET), direct parametric reconstruction from the projection data allows accurate modeling of the Poisson noise in the projection domain to provide more reliable estimate of the parametric images. In this study, we propose to incorporate a superior denoiser to efficiently suppress the unfavorable noise propagation during the direct reconstruction. The dictionary learning (DL) based sparse representation serves as a regularization term to constrain the intermediate K1 estimation. We rewrite the DL regularizer into a voxel-separable form to facilitate the decoupling of a DL penalized curve fitting from the reconstruction of dynamic frames. The nonlinear fitting is then solved by a damped Newton method with uniform initialization. Using simulated and patient 82Rb dynamic PET data, we study the performance of the proposed DL direct algorithm and quantitatively compare it with the indirect method with or without post-filtering, the direct reconstruction without regularization, and the quadratic penalty regularized direct algorithm. The DL regularized direct reconstruction achieves improved noise versus bias performance in the reconstructed K1 images as well as superior recovery of a reduced myocardial blood flow defect. The dictionary learned from a 3D self-created hollow sphere image yields comparable results to those using the dictionary learned from the corresponding magnetic resonance image. The uniform initializations converge to K1 estimations similar to the result from initializing with the indirect reconstruction. To summarize, we demonstrate the potential of the proposed DL constrained direct parametric reconstruction in improving quantitative dynamic PET imaging.
Collapse
|
3
|
Xie N, Gong K, Guo N, Qin Z, Wu Z, Liu H, Li Q. Rapid high-quality PET Patlak parametric image generation based on direct reconstruction and temporal nonlocal neural network. Neuroimage 2021; 240:118380. [PMID: 34252526 DOI: 10.1016/j.neuroimage.2021.118380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 11/25/2022] Open
Abstract
Parametric imaging based on dynamic positron emission tomography (PET) has wide applications in neurology. Compared to indirect methods, direct reconstruction methods, which reconstruct parametric images directly from the raw PET data, have superior image quality due to better noise modeling and richer information extracted from the PET raw data. For low-dose scenarios, the advantages of direct methods are more obvious. However, the wide adoption of direct reconstruction is inevitably impeded by the excessive computational demand and deficiency of the accessible raw data. In addition, motion modeling inside dynamic PET image reconstruction raises more computational challenges for direct reconstruction methods. In this work, we focused on the 18F-FDG Patlak model, and proposed a data-driven approach which can estimate the motion corrected full-dose direct Patlak images from the dynamic PET reconstruction series, based on a proposed novel temporal non-local convolutional neural network. During network training, direct reconstruction with motion correction based on full-dose dynamic PET sinograms was performed to obtain the training labels. The reconstructed full-dose /low-dose dynamic PET images were supplied as the network input. In addition, a temporal non-local block based on the dynamic PET images was proposed to better recover the structural information and reduce the image noise. During testing, the proposed network can directly output high-quality Patlak parametric images from the full-dose /low-dose dynamic PET images in seconds. Experiments based on 15 full-dose and 15 low-dose 18F-FDG brain datasets were conducted and analyzed to validate the feasibility of the proposed framework. Results show that the proposed framework can generate better image quality than reference methods.
Collapse
Affiliation(s)
- Nuobei Xie
- College of Optical Science and Engineering, Zhejiang University, 38 Zheda Road, Building 3, Hangzhou 310027, China; Center for Advanced Medical Computing and Analysis, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, White 427, 125 Nashua Street, Suite 660, Boston, MA 02114, United States.
| | - Kuang Gong
- Center for Advanced Medical Computing and Analysis, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, White 427, 125 Nashua Street, Suite 660, Boston, MA 02114, United States.
| | - Ning Guo
- Center for Advanced Medical Computing and Analysis, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, White 427, 125 Nashua Street, Suite 660, Boston, MA 02114, United States
| | - Zhixing Qin
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhifang Wu
- Department of Nuclear Medicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Huafeng Liu
- College of Optical Science and Engineering, Zhejiang University, 38 Zheda Road, Building 3, Hangzhou 310027, China.
| | - Quanzheng Li
- Center for Advanced Medical Computing and Analysis, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, White 427, 125 Nashua Street, Suite 660, Boston, MA 02114, United States.
| |
Collapse
|
4
|
Baessato F, Guglielmo M, Muscogiuri G, Baggiano A, Fusini L, Scafuri S, Babbaro M, Mollace R, Collevecchio A, Guaricci AI, Pontone G. Stress CMR in Known or Suspected CAD: Diagnostic and Prognostic Role. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6678029. [PMID: 33511208 PMCID: PMC7822671 DOI: 10.1155/2021/6678029] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/23/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
The recently published 2019 guidelines on chronic coronary syndromes (CCS) focus on the need for noninvasive imaging modalities to accurately establish the diagnosis of coronary artery disease (CAD) and assess the risk of clinical scenario occurrence. Appropriate patient management should rely on controlling symptoms, improving prognosis, and guiding each therapeutic strategy as well as monitoring disease progress. Among the noninvasive imaging modalities, cardiovascular magnetic resonance (CMR) has gained broad acceptance in past years due to its unique features in providing a complete assessment of CAD through data on cardiac anatomy and function and myocardial viability, with high spatial and temporal resolution and without ionizing radiation. In detail, evaluation of the presence and extent of myocardial ischemia through stress CMR (S-CMR) has shown a high rule-in power in detecting functionally significant coronary artery stenosis in patients suspected of CCS. Moreover, S-CMR technique may add significant prognostic value, as demonstrated by different studies which have progressively evidenced the valuable power of this multiparametric imaging modality in predicting adverse cardiac events. The latest scientific progress supports a greater expansion of S-CMR with improvement of quantitative myocardial perfusion analysis, myocardial strain, and native mapping within the same examination. Although further study is warranted, these techniques, which are currently mostly restricted to the research field, are likely to become increasingly prevalent in the clinical setting with the scope of increasing accuracy in the selection of patients to be sent to invasive revascularization. This review investigates the diagnostic and prognostic role of S-CMR in the context of CAD, by analysing a strong, long-standing, scientific evidence together with an appraisal of new advanced techniques which may potentially enrich CAD management in the next future.
Collapse
Affiliation(s)
- Francesca Baessato
- Department of Cardiology, San Maurizio Regional Hospital, Bolzano, Italy
| | - Marco Guglielmo
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Giuseppe Muscogiuri
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Andrea Baggiano
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Laura Fusini
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Stefano Scafuri
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Mario Babbaro
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Rocco Mollace
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Ada Collevecchio
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | - Andrea I. Guaricci
- Institute of Cardiovascular Disease, Department of Emergency and Organ Transplantation, University Hospital Policlinico of Bari, Bari, Italy
| | - Gianluca Pontone
- Cardiovascular Imaging Department, Centro Cardiologico Monzino IRCCS, Milan, Italy
| |
Collapse
|
5
|
Petibon Y, Alpert NM, Ouyang J, Pizzagalli DA, Cusin C, Fava M, El Fakhri G, Normandin MD. PET imaging of neurotransmission using direct parametric reconstruction. Neuroimage 2020; 221:117154. [PMID: 32679252 PMCID: PMC7800040 DOI: 10.1016/j.neuroimage.2020.117154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 11/18/2022] Open
Abstract
Receptor ligand-based dynamic Positron Emission Tomography (PET) permits the measurement of neurotransmitter release in the human brain. For single-scan paradigms, the conventional method of estimating changes in neurotransmitter levels relies on fitting a pharmacokinetic model to activity concentration histories extracted after PET image reconstruction. However, due to the statistical fluctuations of activity concentration data at the voxel scale, parametric images computed using this approach often exhibit low signal-to-noise ratio, impeding characterization of neurotransmitter release. Numerous studies have shown that direct parametric reconstruction (DPR) approaches, which combine image reconstruction and kinetic analysis in a unified framework, can improve the signal-to-noise ratio of parametric mapping. However, there is little experience with DPR in imaging of neurotransmission and the performance of the approach in this application has not been evaluated before in humans. In this report, we present and evaluate a DPR methodology that computes 3-D distributions of ligand transport, binding potential (BPND) and neurotransmitter release magnitude (γ) from a dynamic sequence of PET sinograms. The technique employs the linear simplified reference region model (LSRRM) of Alpert et al. (2003), which represents an extension of the simplified reference region model that incorporates time-varying binding parameters due to radioligand displacement by release of neurotransmitter. Estimation of parametric images is performed by gradient-based optimization of a Poisson log-likelihood function incorporating LSRRM kinetics and accounting for the effects of head movement, attenuation, detector sensitivity, random and scattered coincidences. A 11C-raclopride simulation study showed that the proposed approach substantially reduces the bias and variance of voxel-wise γ estimates as compared to standard methods. Moreover, simulations showed that detection of release could be made more reliable and/or conducted using a smaller sample size using the proposed DPR estimator. Likewise, images of BPND computed using DPR had substantially improved bias and variance properties. Application of the method in human subjects was demonstrated using 11C-raclopride dynamic scans and a reward task, confirming the improved quality of the estimated parametric images using the proposed approach.
Collapse
Affiliation(s)
- Yoann Petibon
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Nathaniel M Alpert
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jinsong Ouyang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Diego A Pizzagalli
- Center for Depression, Anxiety & Stress Research, McLean Hospital and Harvard Medical School, Belmont, MA, USA
| | - Cristina Cusin
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Maurizio Fava
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Marc D Normandin
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Klein R, deKemp RA. Selection of PET Camera and Implications on the Reliability and Accuracy of Absolute Myocardial Blood Flow Quantification. Curr Cardiol Rep 2020; 22:109. [DOI: 10.1007/s11886-020-01376-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Abstract
Cardiac imaging has a pivotal role in the prevention, diagnosis and treatment of ischaemic heart disease. SPECT is most commonly used for clinical myocardial perfusion imaging, whereas PET is the clinical reference standard for the quantification of myocardial perfusion. MRI does not involve exposure to ionizing radiation, similar to echocardiography, which can be performed at the bedside. CT perfusion imaging is not frequently used but CT offers coronary angiography data, and invasive catheter-based methods can measure coronary flow and pressure. Technical improvements to the quantification of pathophysiological parameters of myocardial ischaemia can be achieved. Clinical consensus recommendations on the appropriateness of each technique were derived following a European quantitative cardiac imaging meeting and using a real-time Delphi process. SPECT using new detectors allows the quantification of myocardial blood flow and is now also suited to patients with a high BMI. PET is well suited to patients with multivessel disease to confirm or exclude balanced ischaemia. MRI allows the evaluation of patients with complex disease who would benefit from imaging of function and fibrosis in addition to perfusion. Echocardiography remains the preferred technique for assessing ischaemia in bedside situations, whereas CT has the greatest value for combined quantification of stenosis and characterization of atherosclerosis in relation to myocardial ischaemia. In patients with a high probability of needing invasive treatment, invasive coronary flow and pressure measurement is well suited to guide treatment decisions. In this Consensus Statement, we summarize the strengths and weaknesses as well as the future technological potential of each imaging modality.
Collapse
|
8
|
An Y, Wang K, Tian J. Recent methodology advances in fluorescence molecular tomography. Vis Comput Ind Biomed Art 2018; 1:1. [PMID: 32240398 PMCID: PMC7098398 DOI: 10.1186/s42492-018-0001-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/30/2018] [Indexed: 12/26/2022] Open
Abstract
Molecular imaging (MI) is a novel imaging discipline that has been continuously developed in recent years. It combines biochemistry, multimodal imaging, biomathematics, bioinformatics, cell & molecular physiology, biophysics, and pharmacology, and it provides a new technology platform for the early diagnosis and quantitative analysis of diseases, treatment monitoring and evaluation, and the development of comprehensive physiology. Fluorescence Molecular Tomography (FMT) is a type of optical imaging modality in MI that captures the three-dimensional distribution of fluorescence within a biological tissue generated by a specific molecule of fluorescent material within a biological tissue. Compared with other optical molecular imaging methods, FMT has the characteristics of high sensitivity, low cost, and safety and reliability. It has become the research frontier and research hotspot of optical molecular imaging technology. This paper took an overview of the recent methodology advances in FMT, mainly focused on the photon propagation model of FMT based on the radiative transfer equation (RTE), and the reconstruction problem solution consist of forward problem and inverse problem. We introduce the detailed technologies utilized in reconstruction of FMT. Finally, the challenges in FMT were discussed. This survey aims at summarizing current research hotspots in methodology of FMT, from which future research may benefit.
Collapse
Affiliation(s)
- Yu An
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Kun Wang
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|