1
|
Zhang H, Yan M, Ma L. Measurement of β-nuclides in various solutions using plastic scintillation microspheres. Anal Chim Acta 2025; 1335:343454. [PMID: 39643308 DOI: 10.1016/j.aca.2024.343454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/30/2024] [Accepted: 11/20/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Scintillation cocktails cannot directly measure samples with extreme acidity or alkalinity in β-nuclide liquid scintillation analysis. Plastic scintillation microspheres (PSm), as a novel scintillation material, offer the potential to overcome these limitations by allowing direct mixing with a variety of solutions for measurement, particularly in challenging chemical environments. RESULTS This study evaluated the performance of PSm in various chemical environments, including four acids (nitric, hydrochloric, sulfuric, and phosphoric acids), an alkaline solution (NaOH), a high-salinity solution, and methanol. PSm formed stable mixtures with most solutions and exhibited excellent chemical stability in high-concentration NaOH, with minimal chemiluminescence interference. However, concentrated nitric and sulfuric acids caused chemical reactions with PSm, leading to discoloration and potential color quenching. Efficiency calibration was performed using ultrapure water, allowing for accurate measurement of 14C activity across different solutions with simple efficiency corrections. SIGNIFICANCE The findings of this study highlight the advantages of PSm for β-nuclide measurement in a variety of complex chemical environments. PSm's stability in highly acidic, alkaline, and saline conditions makes it a promising tool for applications such as radioactive waste monitoring and pharmacokinetic research, providing a reliable and efficient alternative to conventional scintillation cocktails.
Collapse
Affiliation(s)
- Hui Zhang
- China Institute for Radiation Protection, Taiyuan, Shanxi, 030006, China; Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi, 030006, China.
| | - Ma Yan
- China Institute for Radiation Protection, Taiyuan, Shanxi, 030006, China; Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi, 030006, China
| | - Lina Ma
- China Institute for Radiation Protection, Taiyuan, Shanxi, 030006, China; Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision Protection, Taiyuan, Shanxi, 030006, China
| |
Collapse
|
2
|
Isomura T, Kamizawa S, Takada K, Mori Y, Sakae T. Real-time measurement of two-dimensional LET distributions of proton beams using scintillators. Phys Med Biol 2024; 69:215017. [PMID: 39383888 DOI: 10.1088/1361-6560/ad8546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Objective.The linear energy transfer (LET) of proton therapy beams increases rapidly from the Bragg peak to the end of the beam. Although the LET can be determined using analytical or computational methods, a technique for efficiently measuring its spatial distribution has not yet been established. Thus, the purpose of this study is to develop a technique to measure the two-dimensional LET distribution in proton therapy in real time using a combination of multiple scintillators with different quenching.Approach.Inorganic and organic scintillator sheets were layered and irradiated with proton beams. Two-color signals of the CMOS sensor were obtained from the scintillation light and calibration curves were generated using LET. LET was calculated using Monte Carlo simulations asLETtandLETdweighted by fluence and dose, respectively. The accuracy of the calibration curve was evaluated by comparing the calculated and measured LET values for the 200 MeV monoenergetic and spread-out Bragg peak (SOBP) beams. LET distributions were obtained from the calibration curves.Main results.The deviation between the calculated and measured LET values was evaluated. For bothLETtandLETd, the deviation in the plateau region of the monoenergetic and SOBP beams tended to be larger than those in the peak region. The deviation was smaller forLETd. In the obtainedLETddistribution, the deviation between the calculated and measured values agreed within 3% in the peak region, while the deviation was larger in other regions.Significance.The LET distribution can be measured with a single irradiation using two scintillator sheets. This method may be effective for verifying LET in daily clinical practice and for quality control.
Collapse
Affiliation(s)
- Taiki Isomura
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8577, Japan
- Medipolis Proton Therapy and Research Center, 4423, Higashikata, Ibusuki, Kagoshima 891-0403, Japan
- Shin Nippon Biomedical Laboratories, 2438 Miyanoura, Kagoshima, Kagoshima 891-1394, Japan
| | - Satoshi Kamizawa
- Proton Medical Research Center, University of Tsukuba Hospital, 2-1-1, Amakubo, Tsukuba, Ibaraki 305-8576, Japan
| | - Kenta Takada
- Gunma Prefectural College of Health Sciences, 323-1, Kamiokimachi, Maebashi, Gunma 371-0052, Japan
| | - Yutaro Mori
- Proton Medical Research Center, University of Tsukuba Hospital, 2-1-1, Amakubo, Tsukuba, Ibaraki 305-8576, Japan
- Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takeji Sakae
- Proton Medical Research Center, University of Tsukuba Hospital, 2-1-1, Amakubo, Tsukuba, Ibaraki 305-8576, Japan
- Institute of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
3
|
Wahabi JM, Ung NM, Mahdiraji GA, Wong JHD. Development and characterisation of a plastic scintillator dosemeter in high-energy photon beams. RADIATION PROTECTION DOSIMETRY 2024; 200:264-273. [PMID: 38123475 DOI: 10.1093/rpd/ncad303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/22/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
The radioluminescent (RL) dosemeter is excellent for real-time radiation measurement and can be used in various applications. A plastic scintillator is often the choice sensor because of its size and tissue equivalency. This study aims to characterise a novel plastic scintillator irradiated with high-energy photon beams. An RL dosimetry system was developed using the plastic scintillator. The RL dosimetry system was irradiated using a linear accelerator to characterise the dose linearity, dose rate, energy dependency and depth dose. The developed system showed a linear response toward the dose and dose rate. An energy dependency factor of 1.06 was observed. Depth dose measurement showed a mean deviation of 1.21% from the treatment planning system. The response and characteristics of the plastic scintillator show that it may be used as an alternative in an RL dosimetry system.
Collapse
Affiliation(s)
- Janatul M Wahabi
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Ministry of Health Malaysia, Putrajaya 62590, Malaysia
| | - N M Ung
- Clinical Oncology Unit, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Jeannie H D Wong
- Department of Biomedical Imaging, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia
| |
Collapse
|
4
|
Ocampo J, Heyes G, Dehghani H, Scanlon T, Jolly S, Gibson A. Determination of output factor for CyberKnife using scintillation dosimetry and deep learning. Phys Med Biol 2024; 69:025024. [PMID: 38181420 DOI: 10.1088/1361-6560/ad1b69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/05/2024] [Indexed: 01/07/2024]
Abstract
Objective. Small-field dosimetry is an ongoing challenge in radiotherapy quality assurance (QA) especially for radiosurgery systems such as CyberKnifeTM. The objective of this work is to demonstrate the use of a plastic scintillator imaged with a commercial camera to measure the output factor of a CyberKnife system. The output factor describes the dose on the central axis as a function of collimator size, and is a fundamental part of CyberKnife QA and integral to the data used in the treatment planning system.Approach. A self-contained device consisting of a solid plastic scintillator and a camera was build in a portable Pelicase. Photographs were analysed using classical methods and with convolutional neural networks (CNN) to predict beam parameters which were then compared to measurements.Main results. Initial results using classical image processing to determine standard QA parameters such as percentage depth dose (PDD) were unsuccessful, with 34% of points failing to meet the Gamma criterion (which measures the distance between corresponding points and the relative difference in dose) of 2 mm/2%. However, when images were processed using a CNN trained on simulated data and a green scintillator sheet, 92% of PDD curves agreed with measurements with a microdiamond detector to within 2 mm/2% and 78% to 1%/1 mm. The mean difference between the output factors measured using this system and a microdiamond detector was 1.1%. Confidence in the results was enhanced by using the algorithm to predict the known collimator sizes from the photographs which it was able to do with an accuracy of less than 1 mm.Significance. With refinement, a full output factor curve could be measured in less than an hour, offering a new approach for rapid, convenient small-field dosimetry.
Collapse
Affiliation(s)
- Jeremy Ocampo
- UCL Physics and Astronomy, London, WC1E 6BT, United Kingdom
| | - Geoff Heyes
- Radiotherapy Physics, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, United Kingdom
| | - Hamid Dehghani
- School of Computer Science, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Tim Scanlon
- UCL Physics and Astronomy, London, WC1E 6BT, United Kingdom
| | - Simon Jolly
- UCL Physics and Astronomy, London, WC1E 6BT, United Kingdom
| | - Adam Gibson
- UCL Medical Physics & Biomedical Engineering, London, WC1E 6BT, United Kingdom
| |
Collapse
|
5
|
Li Y, Liu H, Huang N, Wang Z, Zhang C. The Measurement of the Surface Dose in Regular and Small Radiation Therapy Fields Using Cherenkov Imaging. Technol Cancer Res Treat 2022; 21:15330338211073432. [PMID: 35119327 PMCID: PMC8819764 DOI: 10.1177/15330338211073432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Purpose: The aim of this study is to measure the output factor (OF)
and profile of surface dose in regular and small radiation therapy fields using
Cherenkov imaging (CI). Methods: A medical linear accelerator
(linac) was employed to generate radiation fields, including regular open photon
field (ROPF), regular wedge photon field (RWPF), regular electron field (REF)
and small photon field (SPF). The photon beams consisted of two filter modes
including flattening filter (FF) and flattening filter free (FFF). All fields
were delivered to a solid water phantom. Cherenkov light was captured using a
charge-coupled device system during phantom irradiation. The OF and profile of
surface dose measured by CI were compared with those determined by film
measurement, ionization chamber measurement and treatment planning system
calculation in order to examine the feasibility of measuring surface dose OF and
profile using CI. Results: The discrepancy between surface dose OF
measured by CI and that determined by other methods is less than 6% in ROPFs
with size less than 10 × 10 cm2, REFs with size less than 10 × 10
cm2, and SPFs except for 1 × 1 cm2 field. In the flat
profile region, the discrepancy between surface dose profile measured by CI and
that determined by other methods is less than 4% in REFs and less than 3% in
ROPFs, RWPFs, and SPFs except for 1 × 1 cm2 field. The discrepancy of the
surface dose profile is in compliance with the recommendation by IAEA TRS 430
reports. The discrepancy between field width measured by CI and that determined
by film measurement is equal to or less than 2 mm, which is within the tolerance
recommend by the guidelines of linac quality assurance in regular open FF photon
fields, SPFs, and REFs with cone size of 10 × 10 cm2 in area.
Conclusion: CI can be used to quantitatively measure the OF and
profile of surface dose. It is feasible to use CI to measure the surface dose
profile and field width in regular open FF photon fields and SPFs except for
1 × 1 cm2 field.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Transient Optics and Photonics, Xi’an
Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an
710119, China
- School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
- University of Chinese Academy of Sciences, Beijing 100049,
China
| | - HongJun Liu
- State Key Laboratory of Transient Optics and Photonics, Xi’an
Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an
710119, China
- Collaborative Innovation Center of Extreme Optics, Shanxi
University, Taiyuan 030006, China
- Hongjun Liu, PhD, State Key Laboratory of
Transient Optics and Photonics, Xi’an Institute of Optics and Precision
Mechanics, Chinese Academy of Sciences, Xi’an 710119, China.
Chunmin Zhang, PhD, School of Physics,
Xi’an Jiaotong University, Xi’an 710049, China.
| | - Nan Huang
- State Key Laboratory of Transient Optics and Photonics, Xi’an
Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an
710119, China
| | - Zhaolu Wang
- State Key Laboratory of Transient Optics and Photonics, Xi’an
Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an
710119, China
| | - Chunmin Zhang
- School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
- Hongjun Liu, PhD, State Key Laboratory of
Transient Optics and Photonics, Xi’an Institute of Optics and Precision
Mechanics, Chinese Academy of Sciences, Xi’an 710119, China.
Chunmin Zhang, PhD, School of Physics,
Xi’an Jiaotong University, Xi’an 710049, China.
| |
Collapse
|
6
|
Yogo K, Tsuneda M, Horita R, Souda H, Matsumura A, Ishiyama H, Hayakawa K, Kanai T, Yamamoto S. Three-dimensional dose-distribution measurement of therapeutic carbon-ion beams using a ZnS scintillator sheet. JOURNAL OF RADIATION RESEARCH 2021; 62:825-832. [PMID: 33998657 PMCID: PMC8438245 DOI: 10.1093/jrr/rrab036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/19/2021] [Indexed: 05/30/2023]
Abstract
The accurate measurement of the 3D dose distribution of carbon-ion beams is essential for safe carbon-ion therapy. Although ionization chambers scanned in a water tank or air are conventionally used for this purpose, these measurement methods are time-consuming. We thus developed a rapid 3D dose-measurement tool that employs a silver-activated zinc sulfide (ZnS) scintillator with lower linear energy transfer (LET) dependence than gadolinium-based (Gd) scintillators; this tool enables the measurement of carbon-ion beams with small corrections. A ZnS scintillator sheet was placed vertical to the beam axis and installed in a shaded box. Scintillation images produced by incident carbon-ions were reflected with a mirror and captured with a charge-coupled device (CCD) camera. A 290 MeV/nucleon mono-energetic beam and spread-out Bragg peak (SOBP) carbon-ion passive beams were delivered at the Gunma University Heavy Ion Medical Center. A water tank was installed above the scintillator with the water level remotely adjusted to the measurement depth. Images were recorded at various water depths and stacked in the depth direction to create 3D scintillation images. Depth and lateral profiles were analyzed from the images. The ZnS-scintillator-measured depth profile agreed with the depth dose measured using an ionization chamber, outperforming the conventional Gd-based scintillator. Measurements were realized with smaller corrections for a carbon-ion beam with a higher LET than a proton. Lateral profiles at the entrance and the Bragg peak depths could be measured with this tool. The proposed method would make it possible to rapidly perform 3D dose-distribution measurements of carbon-ion beams with smaller quenching corrections.
Collapse
Affiliation(s)
- Katsunori Yogo
- Corresponding author. Katsunori Yogo, Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-minami, Higashi-ku, Nagoya, Aichi 461-8673, Japan. E-mail: ; Fax: (81) 52-719-3172
| | - Masato Tsuneda
- Graduate School of Medical Science, Kitasato University, Kanagawa 252-0373, Japan
| | - Ryo Horita
- Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-minami, Higashi-ku, Nagoya, Aichi 461-8673, Japan
| | - Hikaru Souda
- Gunma University Heavy Ion Medical Center, Gunma University, Gunma 371-8511, Japan
| | - Akihiko Matsumura
- Gunma University Heavy Ion Medical Center, Gunma University, Gunma 371-8511, Japan
| | - Hiromichi Ishiyama
- Graduate School of Medical Science, Kitasato University, Kanagawa 252-0373, Japan
| | - Kazushige Hayakawa
- Graduate School of Medical Science, Kitasato University, Kanagawa 252-0373, Japan
| | - Tatsuaki Kanai
- Gunma University Heavy Ion Medical Center, Gunma University, Gunma 371-8511, Japan
| | - Seiichi Yamamoto
- Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-minami, Higashi-ku, Nagoya, Aichi 461-8673, Japan
| |
Collapse
|
7
|
Yogo K, Noguchi Y, Okudaira K, Nozawa M, Ishiyama H, Okamoto H, Yasuda H, Oguchi H, Yamamoto S. Source position measurement by Cherenkov emission imaging from applicators for high-dose-rate brachytherapy. Med Phys 2020; 48:488-499. [PMID: 33216999 DOI: 10.1002/mp.14606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/19/2020] [Accepted: 11/12/2020] [Indexed: 11/12/2022] Open
Abstract
PURPOSE We developed a novel and simple method to measure the source positions in applicators directly for high-dose-rate (HDR) brachytherapy based on Cherenkov emission imaging, and evaluated the performance. METHODS The light emission from plastic applicators used in cervical cancer treatments, irradiated by an 192 Ir γ-ray source, was captured using a charge-coupled device camera. Moreover, we attached plastics of different shapes, including tapes, tubes, and plates to a metal applicator, to use as screens for the Cherenkov imaging. We determined the source positions and dwell intervals from the light profiles along with the applicator and compared these with preset values and dummy marker measurements. RESULTS The source positions and dwell intervals measured from the light images were comparable to the dummy marker measurements and preset values. The distance from the applicator tip to the first source positions agreed with the dummy marker measurements within 0.2 mm for the plastic tandem. The dwell intervals measured using the Cherenkov method agreed with the preset values within 0.6 mm. The distances measured with three plastic types on the metal applicator also agreed with the dummy marker measurements within 0.2 mm. The dwell intervals measured using the plastic tape agreed with the preset values within 0.7 mm. CONCLUSIONS The proposed method should be suitable for rapid and easy quality assurance (QA) investigations in HDR brachytherapy, as it enables source position using a single image. The method allows for real-time, filmless measurements of the source positions to be obtained and is useful for rapid feedback in QA procedures.
Collapse
Affiliation(s)
- Katsunori Yogo
- Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-minami, Higashi-ku, Nagoya, Aichi, 461-8673, Japan
| | - Yumiko Noguchi
- Department of Radiological Technology, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Kuniyasu Okudaira
- Department of Radiological Technology, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8560, Japan
| | - Marika Nozawa
- School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Hiromichi Ishiyama
- School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Hiroyuki Okamoto
- Department of Medical Physics, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hiroshi Yasuda
- Department of Radiation Biophysics, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
| | - Hiroshi Oguchi
- Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-minami, Higashi-ku, Nagoya, Aichi, 461-8673, Japan
| | - Seiichi Yamamoto
- Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-minami, Higashi-ku, Nagoya, Aichi, 461-8673, Japan
| |
Collapse
|
8
|
Verification system for intensity-modulated radiation therapy with scintillator. Phys Eng Sci Med 2020; 44:9-21. [PMID: 33206366 DOI: 10.1007/s13246-020-00946-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 11/06/2020] [Indexed: 10/23/2022]
Abstract
In the preparation of intensity-modulated radiation therapy (IMRT), patient-specific verification is widely employed to optimize the treatment. To accurately estimate the accumulated dose and obtain the field-by-field or segment-by-segment verification, an original IMRT verification tool using scintillator light and an analysis workflow was developed in this study. The raw light distribution was calibrated with respect to the irradiated field size dependency and light diffusion in the water. The calibrated distribution was converted to dose quantity and subsequently compared with the results of the clinically employed plan. A criterion of 2-mm dose-to-agreement and 3% dose difference was specified in the gamma analysis with a 10% dose threshold. By applying the light diffusion calibration, the maximum dose difference was corrected from 7.7 cGy to 3.9 cGy around the field edge for a 60 cGy dose, 7 × 7 cm2 irradiation field, and 10 MV beam energy. Equivalent performance was confirmed in the chromodynamic film. The average dose difference and gamma pass rate of the accumulated dose distributions in six patients were 0.8 ± 4.5 cGy and 97.4%, respectively. In the field-by-field analysis, the average dose difference and gamma pass rate in seven fields of Patient 1 were 0.2 ± 1.2 cGy and 93.9%, respectively. In the segment-by-segment analysis, the average dose difference and gamma pass rate in nine segments of Patient 1 and a 305° gantry angle were - 0.03 ± 0.2 cGy and 93.9%, respectively. This system allowed the simultaneous and independent analysis of each field or segment in the accumulated dose analysis.
Collapse
|
9
|
Yogo K, Tatsuno Y, Souda H, Matsumura A, Tsuneda M, Hirano Y, Ishiyama H, Saito A, Ozawa S, Nagata Y, Nakano T, Hayakawa K, Kanai T. Scintillator screen for measuring low-dose halo in scanning carbon-ion therapy. RADIAT MEAS 2020. [DOI: 10.1016/j.radmeas.2020.106299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Yogo K, Matsushita A, Tatsuno Y, Shimo T, Hirota S, Nozawa M, Ozawa S, Ishiyama H, Yasuda H, Nagata Y, Hayakawa K. Imaging Cherenkov emission for quality assurance of high-dose-rate brachytherapy. Sci Rep 2020; 10:3572. [PMID: 32108157 PMCID: PMC7046619 DOI: 10.1038/s41598-020-60519-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 02/12/2020] [Indexed: 11/26/2022] Open
Abstract
With advances in high-dose-rate (HDR) brachytherapy, the importance of quality assurance (QA) is increasing to ensure safe delivery of the treatment by measuring dose distribution and positioning the source with much closer intervals for highly active sources. However, conventional QA is time-consuming, involving the use of several different measurement tools. Here, we developed simple QA method for HDR brachytherapy based on the imaging of Cherenkov emission and evaluated its performance. Light emission from pure water irradiated by an 192Ir γ-ray source was captured using a charge-coupled device camera. Monte Carlo calculations showed that the observed light was primarily Cherenkov emissions produced by Compton-scattered electrons from the γ-rays. The uncorrected Cherenkov light distribution, which was 5% on average except near the source (within 7 mm from the centre), agreed with the dose distribution calculated using the treatment planning system. The accuracy was attributed to isotropic radiation and short-range Compton electrons. The source positional interval, as measured from the light images, was comparable to the expected intervals, yielding spatial resolution similar to that permitted by conventional film measurements. The method should be highly suitable for quick and easy QA investigations of HDR brachytherapy as it allows simultaneous measurements of dose distribution, source strength, and source position using a single image.
Collapse
Affiliation(s)
- Katsunori Yogo
- Graduate School of Medicine, Nagoya University, 1-1-20 Daiko-minami, Higashi-ku, Nagoya, Aichi, 461-8673, Japan.
- Graduate School of Medical Science, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan.
| | - Akihiro Matsushita
- Graduate School of Medical Science, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Yuya Tatsuno
- Graduate School of Medical Science, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Takahiro Shimo
- Department of Radiology, Tokyo Nishi Tokushukai Hospital, 3-1-1 Matsubara-cho, Akishima, Tokyo, 196-0003, Japan
| | - Seiko Hirota
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
| | - Marika Nozawa
- School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Shuichi Ozawa
- Hiroshima High Precision Radiotherapy Cancer Center, 3-2-2 Futabanosato, Higashi-ku, Hiroshima, 732-0057, Japan
- Department of Radiation Oncology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hiromichi Ishiyama
- Graduate School of Medical Science, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
- School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| | - Hiroshi Yasuda
- Department of Radiation Biophysics, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi 1-2-3, Minami-ku, Hiroshima, 734-8553, Japan
| | - Yasushi Nagata
- Hiroshima High Precision Radiotherapy Cancer Center, 3-2-2 Futabanosato, Higashi-ku, Hiroshima, 732-0057, Japan
- Department of Radiation Oncology, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazushige Hayakawa
- Graduate School of Medical Science, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
- School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0373, Japan
| |
Collapse
|
11
|
Yogo K, Tatsuno Y, Souda H, Matsumura A, Tsuneda M, Hirano Y, Ishiyama H, Saito A, Ozawa S, Nagata Y, Nakano T, Hayakawa K, Kanai T. Scintillator screen for measuring dose distribution in scanned carbon-ion therapy. RADIAT MEAS 2019. [DOI: 10.1016/j.radmeas.2019.106207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Horita R, Yamamoto S, Yogo K, Hirano Y, Okudaira K, Kawabata F, Nakaya T, Komori M, Oguchi H. Estimation of the three-dimensional (3D) dose distribution of electron beams from medical linear accelerator (LINAC) using plastic scintillator plate. RADIAT MEAS 2019. [DOI: 10.1016/j.radmeas.2019.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Tsuneda M, Nishio T, Saito A, Tanaka S, Suzuki T, Kawahara D, Matsushita K, Nishio A, Ozawa S, Karasawa K, Nagata Y. A novel verification method using a plastic scintillator imagining system for assessment of gantry sag in radiotherapy. Med Phys 2018; 45:2411-2424. [DOI: 10.1002/mp.12922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/15/2018] [Accepted: 04/05/2018] [Indexed: 11/09/2022] Open
Affiliation(s)
- Masato Tsuneda
- Department of Radiation Oncology; Graduate School of Biomedical & Health Sciences; Hiroshima University; 1-2-3 Kasumi, Minami-ku Hiroshima 734-8551 Japan
- Department of Radiation Oncology; Tokyo Women's Medical University; 8-1 Kawada-cho, Shinjuku-ku Tokyo 162-8666 Japan
| | - Teiji Nishio
- Department of Medical Physics; Graduate School of Medicine; Tokyo Women's Medical University; 8-1 Kawada-cho, Shinjuku-ku Tokyo 162-8666 Japan
| | - Akito Saito
- Department of Radiation Oncology; Hiroshima University Hospital; 1-2-3 Kasumi, Minami-ku Hiroshima 734-8551 Japan
| | - Sodai Tanaka
- Department of Nuclear Engineering and Management; School of Engineering; The University of Tokyo; 7-3-1 Hongo, Bunkyo-ku Tokyo 113-8656 Japan
| | - Tatsuhiko Suzuki
- Department of Radiation Oncology; Graduate School of Biomedical & Health Sciences; Hiroshima University; 1-2-3 Kasumi, Minami-ku Hiroshima 734-8551 Japan
| | - Daisuke Kawahara
- Department of Radiation Oncology; Graduate School of Biomedical & Health Sciences; Hiroshima University; 1-2-3 Kasumi, Minami-ku Hiroshima 734-8551 Japan
| | - Keiichiro Matsushita
- Department of Radiology; Kyoto Prefecture University of Medicine; 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku Kyoto 602-8566 Japan
| | - Aya Nishio
- Department of Radiation Oncology; Tokyo Women's Medical University; 8-1 Kawada-cho, Shinjuku-ku Tokyo 162-8666 Japan
| | - Shuichi Ozawa
- Hiroshima High-Precision Radiotherapy Cancer Center; 2-2 Hutabanosato, Higashi-ku Hiroshima 732-0057 Japan
| | - Kumiko Karasawa
- Department of Radiation Oncology; Tokyo Women's Medical University; 8-1 Kawada-cho, Shinjuku-ku Tokyo 162-8666 Japan
| | - Yasushi Nagata
- Department of Radiation Oncology; Graduate School of Biomedical & Health Sciences; Hiroshima University; 1-2-3 Kasumi, Minami-ku Hiroshima 734-8551 Japan
- Hiroshima High-Precision Radiotherapy Cancer Center; 2-2 Hutabanosato, Higashi-ku Hiroshima 732-0057 Japan
| |
Collapse
|