1
|
Debnath SBC, Tonneau D, Fauquet C, Tallet A, Darréon J. Cerenkov free micro-dosimetry in small-field radiation therapy technique. Phys Med Biol 2024; 69:125018. [PMID: 38810619 DOI: 10.1088/1361-6560/ad51c6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/29/2024] [Indexed: 05/31/2024]
Abstract
Objective. Optical fiber-based scintillating dosimetry is a recent promising technique owing to the miniature size dosimeter and quality measurement in modern radiation therapy treatment. Despite several advantages, the major issue of using scintillating dosimeters is the Cerenkov effect and predominantly requires extra measurement corrections. Therefore, this work highlighted a novel micro-dosimetry technique to ensure Cerenkov-free measurement in radiation therapy treatment protocol by investigating several dosimetric characteristics.Approach.A micro-dosimetry technique was proposed with the performance evaluation of a novel infrared inorganic scintillator detector (IR-ISD). The detector essentially consists of a micro-scintillating head based on IR-emitting micro-clusters with a sensitive volume of 1.5 × 10-6mm3. The proposed system was evaluated under the 6 MV LINAC beam used in patient treatment. Overall measurements were performed using IBATMwater tank phantoms by following TRS-398 protocol for radiotherapy. Cerenkov measurements were performed for different small fields from 0.5 × 0.5 cm2to 10 × 10 cm2under LINAC. In addition, several dosimetric parameters such as percentage depth dose (PDD), high lateral resolution beam profiling, dose linearity, dose rate linearity, repeatability, reproducibility, and field output factor were investigated to realize the performance of the novel detector.Main results. This study highlighted a complete removal of the Cerenkov effect using a point-like miniature detector, especially for small field radiation therapy treatment. Measurements demonstrated that IR-ISD has acceptable behavior with dose rate variability (maximum standard deviation ∼0.18%) for the dose rate of 20-1000 cGy s-1. An entire linear response (R2= 1) was obtained for the dose delivered within the range of 4-1000 cGy, using a selected field size of 1 × 1 cm2. Perfect repeatability (max 0.06% variation from average) with day-to-day reproducibility (0.10% average variation) was observed. PDD profiles obtained in the water tank present almost identical behavior to the reference dosimeter with a build-up maximum depth dose at 1.5 cm. The small field of 0.5 × 0.5 cm2profiles have been characterized with a high lateral resolution of 100µm.Significance. Unlike recent plastic scintillation detector systems, the proposed micro-dosimetry system in this study requires no Cerenkov corrections and showed efficient performance for several dosimetric parameters. Therefore, it is expected that considering the detector correction factors, the IR-ISD system can be a suitable dose measurement tool, such as in small-field dose measurements, high and low gradient dose verification, and, by extension, in microbeam radiation and FLASH radiation therapy.
Collapse
Affiliation(s)
- Sree Bash Chandra Debnath
- Aix-Marseille University, CNRS, LP3 UMR 7341, 13288 Marseille, France
- Aix Marseille University, CNRS, CINaM UMR 7325, Marseille, 13288, France
| | - Didier Tonneau
- Aix Marseille University, CNRS, CINaM UMR 7325, Marseille, 13288, France
| | - Carole Fauquet
- Aix Marseille University, CNRS, CINaM UMR 7325, Marseille, 13288, France
| | - Agnes Tallet
- Institut Paoli-Calmettes, 13009 Marseille, France
| | | |
Collapse
|
2
|
Caccia M, Giaz A, Galoppo M, Santoro R, Martyn M, Bianchi C, Novario R, Woulfe P, O’Keeffe S. Characterisation of a Silicon Photomultiplier Based Oncological Brachytherapy Fibre Dosimeter. SENSORS (BASEL, SWITZERLAND) 2024; 24:910. [PMID: 38339627 PMCID: PMC10856931 DOI: 10.3390/s24030910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 02/12/2024]
Abstract
Source localisation and real-time dose verification are at the forefront of medical research in brachytherapy, an oncological radiotherapy procedure based on radioactive sources implanted in the patient body. The ORIGIN project aims to respond to this medical community's need by targeting the development of a multi-point dose mapping system based on fibre sensors integrating a small volume of scintillating material into the tip and interfaced with silicon photomultipliers operated in counting mode. In this paper, a novel method for the selection of the optimal silicon photomultipliers to be used is presented, as well as a laboratory characterisation based on dosimetric figures of merit. More specifically, a technique exploiting the optical cross-talk to maintain the detector linearity in high-rate conditions is demonstrated. Lastly, it is shown that the ORIGIN system complies with the TG43-U1 protocol in high and low dose rate pre-clinical trials with actual brachytherapy sources, an essential requirement for assessing the proposed system as a dosimeter and comparing the performance of the system prototype against the ORIGIN project specifications.
Collapse
Affiliation(s)
- Massimo Caccia
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100 Como, Italy; (A.G.); (M.G.); (R.S.)
| | - Agnese Giaz
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100 Como, Italy; (A.G.); (M.G.); (R.S.)
| | - Marco Galoppo
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100 Como, Italy; (A.G.); (M.G.); (R.S.)
| | - Romualdo Santoro
- Dipartimento di Scienza e Alta Tecnologia, Università degli Studi dell’Insubria, via Valleggio 11, 22100 Como, Italy; (A.G.); (M.G.); (R.S.)
| | - Micheal Martyn
- Radiotherapy Department, Galway Clinic, Doughiska Road, H91 HHT0 Galway, Ireland;
| | - Carla Bianchi
- Ospedale di Circolo di Varese, Università degli Studi dell’Insubria, Viale Borri, 57, 21100 Varese, Italy; (C.B.); (R.N.); (P.W.)
| | - Raffaele Novario
- Ospedale di Circolo di Varese, Università degli Studi dell’Insubria, Viale Borri, 57, 21100 Varese, Italy; (C.B.); (R.N.); (P.W.)
| | - Peter Woulfe
- Ospedale di Circolo di Varese, Università degli Studi dell’Insubria, Viale Borri, 57, 21100 Varese, Italy; (C.B.); (R.N.); (P.W.)
| | - Sinead O’Keeffe
- Optical Fibre Sensors Research Centre, University of Limerick, V94 T9PX Limerick, Ireland;
| |
Collapse
|
3
|
Tarasenko MS, Kiryakov AS, Ryadun AA, Kuratieva NV, Malyutina-Bronskaya VV, Fedorov VE, Wang HC, Naumov NG. Facile synthesis, structure, and properties of Gd2O2Se. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Dosimetry procedure to verify dose in High Dose Rate (HDR) brachytherapy treatment of cancer patients: A systematic review. Phys Med 2022; 96:70-80. [DOI: 10.1016/j.ejmp.2022.02.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 01/12/2023] Open
|
5
|
Xie T, He B, Shi Q, Qian J, Hao W, Li S, Lewis E, Sun W. Measurement of scattered rays from different materials using an inorganic scintillator based optical fiber sensor and its application in radiotherapy. Biomed Phys Eng Express 2022; 8. [PMID: 34991079 DOI: 10.1088/2057-1976/ac48e3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/06/2022] [Indexed: 11/12/2022]
Abstract
Measurements using an Optical Fiber OFS including an inorganic scintillator placed on the surface of a phantom show that the particle energy distribution inside the phantom remains unchanged. The backscattered intensity measured using an Optical Fiber Sensor (OFS) exhibits a linear relationship with the total radiation dose delivered to the phantom, and this relationship shows that the OFS can be used for indirect dose measurement when located on the surface of the phantom i.e. that arising from the energetic backscattered electrons and photons. Such a device can therefore be used as a clinicalin-vivodosimeter, being located on the patient's body surface. In addition, the measurement results for the same OFS located inside and outside the radiation field of a compound water based phantom are analyzed. The differences in measurement of the fluorescence signal in response to various tissue materials representing bone or tumor tissue in the irradiation field are strongly related to the material's ability to block the scattered rays from the water phantom, as well as the scattered x-rays generated by the material located within the phantom.
Collapse
Affiliation(s)
- Tianci Xie
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Bo He
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Qieming Shi
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Jinqian Qian
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Wenjing Hao
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Song Li
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| | - Elfed Lewis
- Optical Fiber Sensors Research Centre, University of Limerick, Castletroy, Limerick, Ireland
| | - Weimin Sun
- Key Lab of In-fiber Integrated Optics, Ministry Education of China, Harbin Engineering University, Harbin 150001, People's Republic of China
| |
Collapse
|
6
|
Debnath SBC, Tonneau D, Fauquet C, Tallet A, Goncalves A, Darreon J. Dosimetric characterization of a small-scale (Zn,Cd)S:Ag inorganic scintillating detector to be used in radiotherapy. Phys Med 2021; 84:15-23. [PMID: 33813200 DOI: 10.1016/j.ejmp.2021.03.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/14/2021] [Accepted: 03/20/2021] [Indexed: 12/01/2022] Open
Abstract
PURPOSE In modern radiotherapy techniques, to ensure an accurate beam modeling process, dosimeters with high accuracy and spatial resolution are required. Therefore, this work aims to propose a simple, robust, and a small-scale fiber-integrated X-ray inorganic detector and investigate the dosimetric characteristics used in radiotherapy. METHODS The detector is based on red-emitting silver-activated zinc-cadmium sulfide (Zn,Cd)S:Ag nanoclusters and the proposed system has been tested under 6 MV photons with standard dose rate used in the patient treatment protocol. The article presents the performances of the detector in terms of dose linearity, repeatability, reproducibility, percentage depth dose distribution, and field output factor. A comparative study is shown using a microdiamond dosimeter and considering data from recent literature. RESULTS We accurately measured a small field beam profile of 0.5 × 0.5 cm2 at a spatial resolution of 100 µm using a LINAC system. The dose linearity at 400 MU/min has shown less than 0.53% and 1.10% deviations from perfect linearity for the regular and smallest field. Percentage depth dose measurement agrees with microdiamond measurements within 1.30% and 2.94%, respectively for regular to small field beams. Besides, the stem effect analysis shows a negligible contribution in the measurements for fields smaller than 3x3 cm2. This study highlights the drastic decrease of the convolution effect using a point-like detector, especially in small dimension beam characterization. Field output factor has shown a good agreement while comparing it with the microdiamond dosimeter. CONCLUSION All the results presented here anticipated that the developed detector can accurately measure delivered dose to the region of interest, claim accurate depth dose distribution hence it can be a suitable candidate for beam characterization and quality assurance of LINAC system.
Collapse
Affiliation(s)
| | - Didier Tonneau
- Aix Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille, France
| | - Carole Fauquet
- Aix Marseille Université, CNRS, CINaM UMR 7325, 13288 Marseille, France
| | - Agnes Tallet
- Institut Paoli-Calmettes, 13009 Marseille, France
| | - Anthony Goncalves
- Institut Paoli-Calmettes, 13009 Marseille, France; Aix Marseille Université, CNRS UMR 7258, INSERM UMR 1068, CRCM, 13009 Marseille, France
| | | |
Collapse
|
7
|
Ding L, Wu Q, Wang Q, Li Y, Perks RM, Zhao L. Advances on inorganic scintillator-based optic fiber dosimeters. EJNMMI Phys 2020; 7:60. [PMID: 33025267 PMCID: PMC7538482 DOI: 10.1186/s40658-020-00327-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 09/03/2020] [Indexed: 12/19/2022] Open
Abstract
This article presents a new perspective on the development of inorganic scintillator-based fiber dosimeters (IOSFDs) for medical radiotherapy dosimetry (RTD) focusing on real-time in vivo dosimetry. The scintillator-based optical fiber dosimeters (SFD) are compact, free of electromagnetic interference, radiation-resistant, and robust. They have shown great potential for real-time in vivo RTD. Compared with organic scintillators (OSs), inorganic scintillators (IOSs) have larger X-ray absorption and higher light output. Variable IOSs with maximum emission peaks in the red part of the spectrum offer convenient stem effect removal. This article outlines the main advantages and disadvantages of utilizing IOSs for SFD fabrication. IOSFDs with different configurations are presented, and their use for dosimetry in X-ray RT, brachytherapy (BT), proton therapy (PT), and boron neutron capture therapy (BNCT) is reviewed. Challenges including the percentage depth dose (PDD) deviation from the standard ion chamber (IC) measurement, the angular dependence, and the Cherenkov effect are discussed in detail; methods to overcome these problems are also presented.
Collapse
Affiliation(s)
- Liang Ding
- School of Engineering, Cardiff University, Cardiff, UK
| | - Qiong Wu
- Department of Pharmacy, General Hospital of Southern Theatre Command, Guangzhou, China
| | - Qun Wang
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | - Yamei Li
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, China
| | | | - Liang Zhao
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, China
- Institute for Translational Medicine Research, Shanghai University, Shanghai, China
| |
Collapse
|
8
|
Cusumano D, Placidi L, D'Agostino E, Boldrini L, Menna S, Valentini V, De Spirito M, Azario L. Characterization of an inorganic scintillator for small-field dosimetry in MR-guided radiotherapy. J Appl Clin Med Phys 2020; 21:244-251. [PMID: 32841500 PMCID: PMC7497936 DOI: 10.1002/acm2.13012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/04/2020] [Accepted: 07/27/2020] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Aim of this study is to dosimetrically characterize a new inorganic scintillator designed for magnetic resonance-guided radiotherapy (MRgRT) in the presence of 0.35 tesla magnetic field (B). METHODS The detector was characterized in terms of signal to noise ratio (SNR), reproducibility, dose linearity, angular response, and dependence by energy, field size, and B orientation using a 6 MV magnetic resonance (MR)-Linac and a water tank. Field size dependence was investigated by measuring the output factor (OF) at 1.5 cm. The results were compared with those measured using other detectors (ion chamber and synthetic diamond) and those calculated using a Monte Carlo (MC) algorithm. Energy dependence was investigated by acquiring a percentage depth dose (PDD) curve at two field sizes (3.32 × 3.32 and 9.96 × 9.96 cm2 ) and repeating the OF measurements at 5 and 10 cm depths. RESULTS The mean SNR was 116.3 ± 0.6. Detector repeatability was within 1%, angular dependence was <2% and its response variation based on the orientation with respect to the B lines was <1%. The detector has a temporal resolution of 10 Hz and it showed a linear response (R2 = 1) in the dose range investigated. All the OF values measured at 1.5 cm depth using the scintillator are in accordance within 1% with those measured with other detectors and are calculated using the MC algorithm. PDD values are in accordance with MC algorithm only for 3.32 × 3.32 cm2 field. Numerical models can be applied to compensate for energy dependence in case of larger fields. CONCLUSION The inorganic scintillator in the present form can represent a valuable detector for small-field dosimetry and periodic quality controls at MR-Linacs such as dose stability, OFs, and dose linearity. In particular, the detector can be effectively used for small-field dosimetry at 1.5 cm depth and for PDD measurements if the field dimension of 3.32 × 3.32 cm2 is not exceeded.
Collapse
Affiliation(s)
- Davide Cusumano
- Fondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | | | - Luca Boldrini
- Fondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| | | | | | | | - Luigi Azario
- Fondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
| |
Collapse
|
9
|
Schuyt JJ, Donaldson J, Williams GVM, Chong SV. Modelling the radioluminescence of Sm 2+ and Sm 3+ in the dosimeter material NaMgF 3:Sm. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:025703. [PMID: 31530766 DOI: 10.1088/1361-648x/ab450d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Photoluminescence (PL) and radioluminescence (RL) measurements were made on NaMgF3:Sm before, during and after exposure to high doses of ionising radiation. Magnetic measurements prior to irradiation showed that approximately 10% of the total Sm concentration was in the divalent state. The RL from Sm3+ was found to increase while the Sm2+ RL decreased with increasing x-ray dose before reaching steady-state values for high doses. This behaviour is opposite to that previously reported for Sm3+ and Sm2+ PL. We show that this apparent discrepancy can be accounted for by a RL model where there is a hole trap, an electron trap, and direct x-ray induced carrier recombination at Sm2+ and Sm3+. Furthermore, a good fit to the dose-dependence of all of the Sm RL emissions can be obtained by assuming that the relevant electron and hole traps are close to Sm3+. Our model accounts for F3-centre production during irradiation that affects some of the Sm3+ RL emissions via reabsorption of the RL by the F3-centres. Thus, the rate of F3-centre production can be conveniently monitored by the RL intensity ratio, I RL(567 nm)/I RL(650 nm). Additionally, the Sm2+ RL emissions may be expressed as [1.94 × I RL(721 nm)] - I RL(695 nm) to determine the real-time dose rate, independent of dose history.
Collapse
Affiliation(s)
- J J Schuyt
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, SCPS, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
| | | | | | | |
Collapse
|
10
|
Alharbi M, Martyn M, O'Keeffe S, Therriault-Proulx F, Beaulieu L, Foley M. Benchmarking a novel inorganic scintillation detector for applications in radiation therapy. Phys Med 2019; 68:124-131. [DOI: 10.1016/j.ejmp.2019.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/29/2019] [Accepted: 11/18/2019] [Indexed: 11/29/2022] Open
|
11
|
Abstract
Many brachytherapy (BT) errors could be detected with real-time in vivo dosimetry technology. Inorganic scintillation detectors (ISDs) have demonstrated promising capabilities for BT, because some ISD materials can generate scintillation signals large enough that (a) the background signal emitted in the fiber-optic cable (stem signal) is insignificant, and (b) small detector volumes can be used to avoid volume averaging effects in steep dose gradients near BT sources. We investigated the characteristics of five ISD materials to identify one that is appropriate for BT. ISDs consisting of a 0.26 to 1.0 mm3 volume of ruby (Al2O3:Cr), a mixture of Y2O3:Eu and YVO4:Eu, ZnSe:O, or CsI:Tl coupled to a fiber-optic cable were irradiated in a water-equivalent phantom using a high-dose-rate 192Ir BT source. Detectors based on plastic scintillators BCF-12 and BCF-60 (0.8 mm3 volume) were used as a reference. Measurements demonstrated that the ruby, Y2O3:Eu+YVO4:Eu, ZnSe:O, and CsI:Tl ISDs emitted scintillation signals that were up to 19, 19, 250, and 880 times greater, respectively, than that of the BCF-12 detector. While the total signals of the plastic scintillation detectors were dominated by the stem signal for source positions 0.5 cm from the fiber-optic cable and >3.5 cm from the scintillator volume, the stem signal for the ruby and Y2O3:Eu+YVO4:Eu ISDs were <1% of the total signal for source positions <3.4 and <4.4 cm from the scintillator, respectively, and <0.7% and <0.5% for the ZnSe:O and CsI:Tl ISDs, respectively, for positions ⩽8.0 cm. In contrast to the other ISDs, the Y2O3:Eu+YVO4:Eu ISD exhibited unstable scintillation and significant afterglow. All ISDs exhibited significant energy dependence, i.e. their dose response to distance-dependent 192Ir energy spectra differed significantly from the absorbed dose in water. Provided that energy dependence is accounted for, ZnSe:O ISDs are promising for use in error detection and patient safety monitoring during BT.
Collapse
Affiliation(s)
- Gustavo Kertzscher
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | | |
Collapse
|
12
|
Belley MD, Craciunescu O, Chang Z, Langloss BW, Stanton IN, Yoshizumi TT, Therien MJ, Chino JP. Real-time dose-rate monitoring with gynecologic brachytherapy: Results of an initial clinical trial. Brachytherapy 2018; 17:1023-1029. [DOI: 10.1016/j.brachy.2018.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 06/10/2018] [Accepted: 07/16/2018] [Indexed: 12/25/2022]
|