1
|
Parlato S, Centracchio J, Esposito D, Bifulco P, Andreozzi E. Heartbeat Detection in Gyrocardiography Signals without Concurrent ECG Tracings. SENSORS (BASEL, SWITZERLAND) 2023; 23:6200. [PMID: 37448046 DOI: 10.3390/s23136200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
A heartbeat generates tiny mechanical vibrations, mainly due to the opening and closing of heart valves. These vibrations can be recorded by accelerometers and gyroscopes applied on a subject's chest. In particular, the local 3D linear accelerations and 3D angular velocities of the chest wall are referred to as seismocardiograms (SCG) and gyrocardiograms (GCG), respectively. These signals usually exhibit a low signal-to-noise ratio, as well as non-negligible amplitude and morphological changes due to changes in posture and the sensors' location, respiratory activity, as well as other sources of intra-subject and inter-subject variability. These factors make heartbeat detection a complex task; therefore, a reference electrocardiogram (ECG) lead is usually acquired in SCG and GCG studies to ensure correct localization of heartbeats. Recently, a template matching technique based on cross correlation has proven to be particularly effective in recognizing individual heartbeats in SCG signals. This study aims to verify the performance of this technique when applied on GCG signals. Tests were conducted on a public database consisting of SCG, GCG, and ECG signals recorded synchronously on 100 patients with valvular heart diseases. The results show that the template matching technique identified heartbeats in GCG signals with a sensitivity and positive predictive value (PPV) of 87% and 92%, respectively. Regression, correlation, and Bland-Altman analyses carried out on inter-beat intervals obtained from GCG and ECG (assumed as reference) reported a slope of 0.995, an intercept of 4.06 ms (R2 > 0.99), a Pearson's correlation coefficient of 0.9993, and limits of agreement of about ±13 ms with a negligible bias. A comparison with the results of a previous study obtained on SCG signals from the same database revealed that GCG enabled effective cardiac monitoring in significantly more patients than SCG (95 vs. 77). This result suggests that GCG could ensure more robust and reliable cardiac monitoring in patients with heart diseases with respect to SCG.
Collapse
Affiliation(s)
- Salvatore Parlato
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Jessica Centracchio
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Daniele Esposito
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Paolo Bifulco
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Emilio Andreozzi
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| |
Collapse
|
2
|
Mohammadi I, Castro IF, Rahmim A, Veloso JFCA. Motion in nuclear cardiology imaging: types, artifacts, detection and correction techniques. Phys Med Biol 2021; 67. [PMID: 34826826 DOI: 10.1088/1361-6560/ac3dc7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/26/2021] [Indexed: 11/12/2022]
Abstract
In this paper, the authors review the field of motion detection and correction in nuclear cardiology with single photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging systems. We start with a brief overview of nuclear cardiology applications and description of SPECT and PET imaging systems, then explaining the different types of motion and their related artefacts. Moreover, we classify and describe various techniques for motion detection and correction, discussing their potential advantages including reference to metrics and tasks, particularly towards improvements in image quality and diagnostic performance. In addition, we emphasize limitations encountered in different motion detection and correction methods that may challenge routine clinical applications and diagnostic performance.
Collapse
Affiliation(s)
- Iraj Mohammadi
- Department of Physics, University of Aveiro, Aveiro, PORTUGAL
| | - I Filipe Castro
- i3n Physics Department, Universidade de Aveiro, Aveiro, PORTUGAL
| | - Arman Rahmim
- Radiology and Physics, The University of British Columbia, Vancouver, British Columbia, CANADA
| | | |
Collapse
|
3
|
A Respiratory Motion Estimation Method Based on Inertial Measurement Units for Gated Positron Emission Tomography. SENSORS 2021; 21:s21123983. [PMID: 34207864 PMCID: PMC8228885 DOI: 10.3390/s21123983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/15/2021] [Accepted: 05/22/2021] [Indexed: 01/12/2023]
Abstract
We present a novel method for estimating respiratory motion using inertial measurement units (IMUs) based on microelectromechanical systems (MEMS) technology. As an application of the method we consider the amplitude gating of positron emission tomography (PET) imaging, and compare the method against a clinically used respiration motion estimation technique. The presented method can be used to detect respiratory cycles and estimate their lengths with state-of-the-art accuracy when compared to other IMU-based methods, and is the first based on commercial MEMS devices, which can estimate quantitatively both the magnitude and the phase of respiratory motion from the abdomen and chest regions. For the considered test group consisting of eight subjects with acute myocardial infarction, our method achieved the absolute breathing rate error per minute of 0.44 ± 0.23 1/min, and the absolute amplitude error of 0.24 ± 0.09 cm, when compared to the clinically used respiratory motion estimation technique. The presented method could be used to simplify the logistics related to respiratory motion estimation in PET imaging studies, and also to enable multi-position motion measurements for advanced organ motion estimation.
Collapse
|
4
|
Kyme AZ, Fulton RR. Motion estimation and correction in SPECT, PET and CT. Phys Med Biol 2021; 66. [PMID: 34102630 DOI: 10.1088/1361-6560/ac093b] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/08/2021] [Indexed: 11/11/2022]
Abstract
Patient motion impacts single photon emission computed tomography (SPECT), positron emission tomography (PET) and X-ray computed tomography (CT) by giving rise to projection data inconsistencies that can manifest as reconstruction artifacts, thereby degrading image quality and compromising accurate image interpretation and quantification. Methods to estimate and correct for patient motion in SPECT, PET and CT have attracted considerable research effort over several decades. The aims of this effort have been two-fold: to estimate relevant motion fields characterizing the various forms of voluntary and involuntary motion; and to apply these motion fields within a modified reconstruction framework to obtain motion-corrected images. The aims of this review are to outline the motion problem in medical imaging and to critically review published methods for estimating and correcting for the relevant motion fields in clinical and preclinical SPECT, PET and CT. Despite many similarities in how motion is handled between these modalities, utility and applications vary based on differences in temporal and spatial resolution. Technical feasibility has been demonstrated in each modality for both rigid and non-rigid motion, but clinical feasibility remains an important target. There is considerable scope for further developments in motion estimation and correction, and particularly in data-driven methods that will aid clinical utility. State-of-the-art machine learning methods may have a unique role to play in this context.
Collapse
Affiliation(s)
- Andre Z Kyme
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales, AUSTRALIA
| | - Roger R Fulton
- Sydney School of Health Sciences, The University of Sydney, Sydney, New South Wales, AUSTRALIA
| |
Collapse
|
5
|
Sieciński S, Kostka PS, Tkacz EJ. Gyrocardiography: A Review of the Definition, History, Waveform Description, and Applications. SENSORS (BASEL, SWITZERLAND) 2020; 20:E6675. [PMID: 33266401 PMCID: PMC7700364 DOI: 10.3390/s20226675] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023]
Abstract
Gyrocardiography (GCG) is a non-invasive technique of analyzing cardiac vibrations by a MEMS (microelectromechanical system) gyroscope placed on a chest wall. Although its history is short in comparison with seismocardiography (SCG) and electrocardiography (ECG), GCG becomes a technique which may provide additional insight into the mechanical aspects of the cardiac cycle. In this review, we describe the summary of the history, definition, measurements, waveform description and applications of gyrocardiography. The review was conducted on about 55 works analyzed between November 2016 and September 2020. The aim of this literature review was to summarize the current state of knowledge in gyrocardiography, especially the definition, waveform description, the physiological and physical sources of the signal and its applications. Based on the analyzed works, we present the definition of GCG as a technique for registration and analysis of rotational component of local cardiac vibrations, waveform annotation, several applications of the gyrocardiography, including, heart rate estimation, heart rate variability analysis, hemodynamics analysis, and classification of various cardiac diseases.
Collapse
Affiliation(s)
- Szymon Sieciński
- Department of Biosensors and Processing of Biomedical Signals, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland; (P.S.K.); (E.J.T.)
| | | | | |
Collapse
|
6
|
Sztechman D, Żera T, Czarzasta K, Wojciechowska M, Szczepańska-Sadowska E, Cudnoch-Jędrzejewska A. Transthoracic echocardiography: from guidelines for humans to cardiac ultrasound of the heart in rats. Physiol Meas 2020; 41:10TR02. [PMID: 33164918 DOI: 10.1088/1361-6579/abb3a3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ultrasound examination of the heart is a cornerstone of clinical evaluation of patients with established or suspected cardiovascular conditions. Advancements in ultrasound imaging technology have brought transthoracic echocardiography to preclinical murine models of cardiovascular diseases. The translational potential of cardiac ultrasound is critically important in rat models of myocardial infarction and ischemia-reperfusion injury, congestive heart failure, arterial hypertension, cardiac hypertrophy, pulmonary hypertension, right heart failure, Takotsubo cardiomyopathy, hypertrophic and dilated cardiomyopathies, developmental disorders, and metabolic syndrome. Modern echocardiographic machines capable of high-frame-rate image acquisition and fitted with high-frequency transducers allow for cardiac ultrasound in rats that yields most of the echocardiographic measurements and indices recommended by international guidelines for cardiac ultrasound in human patients. Among them are dimensions of cardiac chambers and walls, indices of systolic and diastolic cardiac function, and valvular function. In addition, measurements of cardiac dimensions and ejection fraction can be significantly improved by intravenous administration of ultrasound enhancing agents (UEAs). In this article we discuss echocardiography in rats, describe a technique for minimally invasive intravenous administration of UEAs via the saphenous vein and present a step-by-step approach to cardiac ultrasound in rats.
Collapse
Affiliation(s)
- Dorota Sztechman
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | | | | | | | | | | |
Collapse
|
7
|
A Computational Framework for Data Fusion in MEMS-Based Cardiac and Respiratory Gating. SENSORS 2019; 19:s19194137. [PMID: 31554282 PMCID: PMC6811750 DOI: 10.3390/s19194137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/06/2019] [Accepted: 09/18/2019] [Indexed: 12/25/2022]
Abstract
Dual cardiac and respiratory gating is a well-known technique for motion compensation in nuclear medicine imaging. In this study, we present a new data fusion framework for dual cardiac and respiratory gating based on multidimensional microelectromechanical (MEMS) motion sensors. Our approach aims at robust estimation of the chest vibrations, that is, high-frequency precordial vibrations and low-frequency respiratory movements for prospective gating in positron emission tomography (PET), computed tomography (CT), and radiotherapy. Our sensing modality in the context of this paper is a single dual sensor unit, including accelerometer and gyroscope sensors to measure chest movements in three different orientations. Since accelerometer- and gyroscope-derived respiration signals represent the inclination of the chest, they are similar in morphology and have the same units. Therefore, we use principal component analysis (PCA) to combine them into a single signal. In contrast to this, the accelerometer- and gyroscope-derived cardiac signals correspond to the translational and rotational motions of the chest, and have different waveform characteristics and units. To combine these signals, we use independent component analysis (ICA) in order to obtain the underlying cardiac motion. From this cardiac motion signal, we obtain the systolic and diastolic phases of cardiac cycles by using an adaptive multi-scale peak detector and a short-time autocorrelation function. Three groups of subjects, including healthy controls (n = 7), healthy volunteers (n = 12), and patients with a history of coronary artery disease (n = 19) were studied to establish a quantitative framework for assessing the performance of the presented work in prospective imaging applications. The results of this investigation showed a fairly strong positive correlation (average r = 0.73 to 0.87) between the MEMS-derived (including corresponding PCA fusion) respiration curves and the reference optical camera and respiration belt sensors. Additionally, the mean time offset of MEMS-driven triggers from camera-driven triggers was 0.23 to 0.3 ± 0.15 to 0.17 s. For each cardiac cycle, the feature of the MEMS signals indicating a systolic time interval was identified, and its relation to the total cardiac cycle length was also reported. The findings of this study suggest that the combination of chest angular velocity and accelerations using ICA and PCA can help to develop a robust dual cardiac and respiratory gating solution using only MEMS sensors. Therefore, the methods presented in this paper should help improve predictions of the cardiac and respiratory quiescent phases, particularly with the clinical patients. This study lays the groundwork for future research into clinical PET/CT imaging based on dual inertial sensors.
Collapse
|
8
|
Yao J, Tridandapani S, Bhatti PT. Near Real-Time Implementation of An Adaptive Seismocardiography – ECG Multimodal Framework for Cardiac Gating. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2019; 7:1900404. [PMID: 32309054 PMCID: PMC6906082 DOI: 10.1109/jtehm.2019.2923353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/07/2019] [Accepted: 06/03/2019] [Indexed: 11/06/2022]
Abstract
Objective: Accurate gating for data acquisition of computed tomography (CT) is crucial to obtaining high quality images for diagnosing cardiovascular diseases. To illustrate the feasibility of an optimized cardiac gating strategy, we present a near real-time implementation based on fusing seismocardiography (SCG) and ECG. Methods: The implementation was achieved via integrating commercial hardware and software platforms. Testing was performed on five healthy subjects (age: 24–27; m/f: 4/1) and three cardiac patients (age: 41–71; m/f: 2/1), and compared with baseline quiescence derived from echocardiography. Results: The average latency introduced by computerized processing was 5.1 ms, well within a 100 ms tolerance bounded by data accumulation time for quiescence prediction. The average prediction error associated with conventional ECG-only versus SCG-ECG-based method over all subjects were 59.58 ms and 27.24 ms, respectively. Discussion: The results demonstrate that the multimodal framework can achieve improved quiescence prediction accuracy over the ECG-only-based method in near real-time.
Collapse
Affiliation(s)
- J Yao
- 1School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGA30332-0250USA
| | - S Tridandapani
- 2Department of RadiologyUniversity of Alabama at BirminghamBirminghamAL35294USA
| | - P T Bhatti
- 1School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGA30332-0250USA
| |
Collapse
|
9
|
Yao J, Tridandapani S, Auffermann WF, Wick CA, Bhatti PT. An Adaptive Seismocardiography (SCG)-ECG Multimodal Framework for Cardiac Gating Using Artificial Neural Networks. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2018; 6:1900611. [PMID: 30405976 PMCID: PMC6204924 DOI: 10.1109/jtehm.2018.2869141] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/29/2018] [Accepted: 08/05/2018] [Indexed: 12/11/2022]
Abstract
To more accurately trigger data acquisition and reduce radiation exposure of coronary computed tomography angiography (CCTA), a multimodal framework utilizing both electrocardiography (ECG) and seismocardiography (SCG) for CCTA prospective gating is presented. Relying upon a three-layer artificial neural network that adaptively fuses individual ECG- and SCG-based quiescence predictions on a beat-by-beat basis, this framework yields a personalized quiescence prediction for each cardiac cycle. This framework was tested on seven healthy subjects (age: 22-48; m/f: 4/3) and eleven cardiac patients (age: 31-78; m/f: 6/5). Seventeen out of 18 benefited from the fusion-based prediction as compared to the ECG-only-based prediction, the traditional prospective gating method. Only one patient whose SCG was compromised by noise was more suitable for ECG-only-based prediction. On average, our fused ECG-SCG-based method improves cardiac quiescence prediction by 47% over ECG-only-based method; with both compared against the gold standard, B-mode echocardiography. Fusion-based prediction is also more resistant to heart rate variability than ECG-only- or SCG-only-based prediction. To assess the clinical value, the diagnostic quality of the CCTA reconstructed volumes from the quiescence derived from ECG-, SCG- and fusion-based predictions were graded by a board-certified radiologist using a Likert response format. Grading results indicated the fusion-based prediction improved diagnostic quality. ECG may be a sub-optimal modality for quiescence prediction and can be enhanced by the multimodal framework. The combination of ECG and SCG signals for quiescence prediction bears promise for a more personalized and reliable approach than ECG-only-based method to predict cardiac quiescence for prospective CCTA gating.
Collapse
Affiliation(s)
- J. Yao
- School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - S. Tridandapani
- Department of RadiologyThe University of Alabama at BirminghamBirminghamAL35294USA
| | - W. F. Auffermann
- Department of Radiology and Imaging SciencesSchool of MedicineThe University of UtahSalt LakeUT84132USA
| | - C. A. Wick
- Camerad TechnologiesGlobal Center for Medical InnovationAtlantaGA30318USA
| | - P. T. Bhatti
- School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| |
Collapse
|