1
|
Kim T, Millares RH, Kim T, Eom M, Kim J, Ye SJ. Nanoscale dosimetry for a radioisotope-labeled metal nanoparticle using MCNP6.2 and Geant4. Med Phys 2024; 51:9290-9302. [PMID: 39225623 DOI: 10.1002/mp.17371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/16/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Metal nanoparticles (MNPs) labeled with radioisotopes (RIs) are utilized as radio-enhancers due to their ability to amplify the radiation dose in their immediate vicinity. A thorough understanding of nanoscale dosimetry around MNPs enables their effective application in radiotherapy. However, nanoscale dosimetry around MNPs still requires further investigation. PURPOSE This study aims to provide insight into the radio-enhancement effects of MNPs by elucidating nanoscale dosimetry surrounding MNPs labeled with Auger-emitting RIs. We particularly focus on distinguishing the respective dose contributions of photons and electrons emitted by Auger-emitting RIs in the context of dose enhancement. METHODS A 50 nm diameter NP of silver (Ag) core and gold (Au) shell (Ag@Au NP) was assumed to emit mono-energetic electrons and photons (3, 5, 10, 20, and 30 keV), or the energy spectrum corresponding to one of three Auger-emitting RIs (103Pd, 125I, and 131Cs) from the Ag core. Nanoscale radial dose distributions around a single radioactive Ag@Au NP were evaluated in spherical shells of water. Monte Carlo simulations were conducted using single-event and track structure transport methods implemented in MCNP6.2 and Geant4-DNA-Au physics, respectively. To evaluate the extent of radio-enhancement by the Ag@Au NP, two scenarios were considered: Ag@Au NPs (Au shell included) and Ag@water NPs (Au shell replaced by water). RESULTS The radial doses of 10, 20, and 30 keV electrons estimated by both codes were comparable. However, the radial doses of 3 and 5 keV electrons by MCNP6.2 were much larger near the NP surface than those by Geant4. There was a dose enhancement of a few % to tens % by the Au shell in the region of the NP surface to 10 µm, depending on the electron energy. The radial doses of photons with the Au shell were higher up to their secondary electron ranges than those without the Au shell. The maximum dose enhancement factor of photons occurred at 20 keV and was 63.4 by MCNP6.2 and 50.5 by Geant4. The overall radial doses of electrons were 1-2 orders of magnitude larger than those of photons. As a result, in cases of RIs emitting both electrons and photons, the radial doses up to electron ranges were dominantly governed by electrons. The dose enhancement estimated by both codes for the RIs ranged from a few % except in the immediate vicinity of the NP surface. CONCLUSION Given the dominant contribution of electrons to radial doses of MNP labeled with Auger-emitting RIs, physical dose enhancement expected by interactions with photons was hindered. Since there are no available RIs emitting exclusively photons, achieving enhanced physical doses within a cell through a combination of MNPs and RIs appears currently unattainable. The radial doses of photons near the NP surface exhibited considerable discrepancies between the codes, primarily attributed to low-energy electrons. The difference may arise from higher cross-sections of Au inelastic scattering in Geant4-DNA-Au compared to MCNP6.2.
Collapse
Affiliation(s)
- Taeyun Kim
- Department of Applied Bioengineering and Research Institute for Convergence Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Rodrigo Hernández Millares
- Department of Applied Bioengineering and Research Institute for Convergence Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Taewan Kim
- Department of Applied Bioengineering and Research Institute for Convergence Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Mingi Eom
- Department of Applied Bioengineering and Research Institute for Convergence Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Jiwon Kim
- Department of Applied Bioengineering and Research Institute for Convergence Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
| | - Sung-Joon Ye
- Department of Applied Bioengineering and Research Institute for Convergence Science, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Republic of Korea
- Research Institute for Convergence Science, Seoul National University, Seoul, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
2
|
Schäfer M, Hildenbrand G, Hausmann M. Impact of Gold Nanoparticles and Ionizing Radiation on Whole Chromatin Organization as Detected by Single-Molecule Localization Microscopy. Int J Mol Sci 2024; 25:12843. [PMID: 39684554 DOI: 10.3390/ijms252312843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
In radiation tumor therapy, irradiation, on one hand, should cause cell death to the tumor. On the other hand, the surrounding non-tumor tissue should be maintained unaffected. Therefore, methods of local dose enhancements are highly interesting. Gold nanoparticles, which are preferentially uptaken by very-fast-proliferating tumor cells, may enhance damaging. However, the results in the literature obtained from cell culture and animal tissue experiments are very contradictory, i.e., only some experiments reveal increased cell killing but others do not. Thus, a better understanding of cellular mechanisms is required. Using the breast cancer cell model SkBr3, the effects of gold nanoparticles in combination with ionizing radiation on chromatin network organization were investigated by Single-Molecule Localization Microscopy (SMLM) and applications of mathematical topology calculations (e.g., Persistent Homology, Principal Component Analysis, etc.). The data reveal a dose and nanoparticle dependent re-organization of chromatin, although colony forming assays do not show a significant reduction of cell survival after the application of gold nanoparticles to the cells. In addition, the spatial organization of γH2AX clusters was elucidated, and characteristic changes were obtained depending on dose and gold nanoparticle application. The results indicate a complex response of ALU-related chromatin and heterochromatin organization correlating to ionizing radiation and gold nanoparticle incorporation. Such complex whole chromatin re-organization is usually associated with changes in genome function and supports the hypothesis that, with the application of gold nanoparticles, not only is DNA damage increasing but also the efficiency of DNA repair may be increased. The understanding of complex chromatin responses might help to improve the gold nanoparticle efficiency in radiation treatment.
Collapse
Affiliation(s)
- Myriam Schäfer
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
- Faculty of Engineering, University of Applied Sciences Aschaffenburg, Würzburger Str. 45, 63743 Aschaffenburg, Germany
| | - Georg Hildenbrand
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
- Faculty of Engineering, University of Applied Sciences Aschaffenburg, Würzburger Str. 45, 63743 Aschaffenburg, Germany
| | - Michael Hausmann
- Kirchhoff-Institute for Physics, Heidelberg University, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Ma J, Shen H, Mi Z. Enhancing Proton Therapy Efficacy Through Nanoparticle-Mediated Radiosensitization. Cells 2024; 13:1841. [PMID: 39594590 PMCID: PMC11593106 DOI: 10.3390/cells13221841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Proton therapy, characterized by its unique Bragg peak, offers the potential to optimize the destruction of cancer cells while sparing healthy tissues, positioning it as one of the most advanced cancer treatment modalities currently available. However, in comparison to heavy ions, protons exhibit a relatively lower relative biological effectiveness (RBE), which limits the efficacy of proton therapy. The incorporation of nanoparticles for radiosensitization presents a novel approach to enhance the RBE of protons. This review provides a comprehensive discussion of the recent advancements in augmenting the biological effects of proton therapy through the use of nanoparticles. It examines the various types of nanoparticles that have been the focus of extensive research, elucidates their mechanisms of radiation sensitization, and evaluates the factors influencing the efficiency of this sensitization process. Furthermore, this review discusses the latest synergistic therapeutic strategies that integrate nanoparticle-mediated radiosensitization and outlines prospective directions for the future application of nanoparticles in conjunction with proton therapy.
Collapse
Affiliation(s)
| | | | - Zhaohong Mi
- Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE), Institute of Modern Physics, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Tudor M, Popescu RC, Irimescu IN, Rzyanina A, Tarba N, Dinischiotu A, Craciun L, Esanu TR, Vasile E, Hotnog AT, Radu M, Mytsin G, Mihailescu M, Savu DI. Enhancing Proton Radiosensitivity of Chondrosarcoma Using Nanoparticle-Based Drug Delivery Approaches: A Comparative Study of High- and Low-Energy Protons. Int J Mol Sci 2024; 25:11481. [PMID: 39519034 PMCID: PMC11546389 DOI: 10.3390/ijms252111481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
To overcome chondrosarcoma's (CHS) high chemo- and radioresistance, we used polyethylene glycol-encapsulated iron oxide nanoparticles (IONPs) for the controlled delivery of the chemotherapeutic doxorubicin (IONPDOX) to amplify the cytotoxicity of proton radiation therapy. Human 2D CHS SW1353 cells were treated with protons (linear energy transfer (LET): 1.6 and 12.6 keV/µm) with and without IONPDOX. Cell survival was assayed using a clonogenic test, and genotoxicity was tested through the formation of micronuclei (MN) and γH2AX foci, respectively. Morphology together with spectral fingerprints of nuclei were measured using enhanced dark-field microscopy (EDFM) assembled with a hyperspectral imaging (HI) module and an axial scanning fluorescence module, as well as scanning electron microscopy (SEM) coupled with energy-dispersive X-Ray spectroscopy (EDX). Cell survival was also determined in 3D SW3153 spheroids following treatment with low-LET protons with/without the IONPDOX compound. IONPDOX increased radiosensitivity following proton irradiation at both LETs in correlation with DNA damage expressed as MN or γH2AX. The IONPDOX-low-LET proton combination caused a more lethal effect compared to IONPDOX-high-LET protons. CHS cell biological alterations were reflected by the modifications in the hyperspectral images and spectral profiles, emphasizing new possible spectroscopic markers of cancer therapy effects. Our findings show that the proposed treatment combination has the potential to improve the management of CHS.
Collapse
Affiliation(s)
- Mihaela Tudor
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, 077125 Magurele, Romania; (M.T.); (R.C.P.); (M.R.)
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania;
| | - Roxana Cristina Popescu
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, 077125 Magurele, Romania; (M.T.); (R.C.P.); (M.R.)
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, National University for Science and Technology Politehnica of Bucharest, Gheorghe Polizu Street, 1-7, 011061 Bucharest, Romania
| | - Ionela N. Irimescu
- Applied Sciences Doctoral School, National University for Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Ann Rzyanina
- Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, 6 Joliot-Curie Street, 141980 Dubna, Moscow Region, Russia; (A.R.); (G.M.)
| | - Nicolae Tarba
- Doctoral School of Computer Sciences, National University for Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Anca Dinischiotu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91-95, 050095 Bucharest, Romania;
| | - Liviu Craciun
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute of Physics and Nuclear Engineering, 077125 Magurele, Romania; (L.C.); (T.R.E.)
| | - Tiberiu Relu Esanu
- Radiopharmaceutical Research Centre, Horia Hulubei National Institute of Physics and Nuclear Engineering, 077125 Magurele, Romania; (L.C.); (T.R.E.)
| | - Eugeniu Vasile
- Faculty of Applied Physics, National University for Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania;
| | - Andrei Theodor Hotnog
- Applied Nuclear Physics Department, Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, 077125 Magurele, Romania;
| | - Mihai Radu
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, 077125 Magurele, Romania; (M.T.); (R.C.P.); (M.R.)
| | - Gennady Mytsin
- Laboratory of Nuclear Problems, Joint Institute for Nuclear Research, 6 Joliot-Curie Street, 141980 Dubna, Moscow Region, Russia; (A.R.); (G.M.)
| | - Mona Mihailescu
- Holographic Imaging and Processing Laboratory, Physics Department, National University for Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania;
- Centre for Research in Fundamental Sciences Applied in Engineering, National University for Science and Technology Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Diana Iulia Savu
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, Reactorului 30, P.O. Box MG-6, 077125 Magurele, Romania; (M.T.); (R.C.P.); (M.R.)
| |
Collapse
|
5
|
Wang C, Li J, Jiang X, Ma X, Zhen W, Tillman L, Weichselbaum RR, Lin W. Bifunctional Metal-Organic Framework Synergistically Enhances Radiotherapy and Activates STING for Potent Cancer Radio-Immunotherapy. Angew Chem Int Ed Engl 2024:e202417027. [PMID: 39375150 DOI: 10.1002/anie.202417027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/03/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
The activation of the stimulator of interferon genes (STING) protein by cyclic dinucleotide metabolites plays a critical role in antitumor immunity. However, synthetic STING agonists like 4-(5,6-dimethoxybenzo[b]thiophen-2-yl)-4-oxobutanoic acid (MSA-2) exhibit suboptimal pharmacokinetics and fail to sustain STING activation in tumors for effective antitumor responses. Here, we report the design of MOF/MSA-2, a bifunctional MSA-2 conjugated nanoscale metal-organic framework (MOF) based on Hf6 secondary building units (SBUs) and hexakis(4'-carboxy[1,1'-biphenyl]-4-yl)benzene bridging ligands, for potent cancer radio-immunotherapy. By leveraging the high-Z properties of the Hf6 SBUs, the MOF enhances the therapeutic effect of X-ray radiation and elicits potent immune stimulation in the tumor microenvironment. MOF/MSA-2 further enhances radiotherapeutic effects of X-rays by enabling sustained STING activation and promoting the infiltration and activation of immune cells in the tumors. MOF/MSA-2 plus low-dose X-ray irradiation elicits strong STING activation and potent tumor regression, and when combined with an immune checkpoint inhibitor, effectively suppresses both primary and distant tumors through systemic immune activation.
Collapse
Affiliation(s)
- Chaoyu Wang
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758 S Maryland Ave, Chicago, IL 60637, USA
| | - Jinhong Li
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
| | - Xiaomin Jiang
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758 S Maryland Ave, Chicago, IL 60637, USA
| | - Xin Ma
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
| | - Wenyao Zhen
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758 S Maryland Ave, Chicago, IL 60637, USA
| | - Langston Tillman
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758 S Maryland Ave, Chicago, IL 60637, USA
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 E 57th St, Chicago, IL 60637, USA
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, The University of Chicago, 5758 S Maryland Ave, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Taheri RA, Fathi H, Sharafi A, Mirzaei M, Jafari S, Darvishi MH. Niosomes loaded with gold nanoparticles for enhanced radiation therapy in lung cancer. Nanomedicine (Lond) 2024; 19:2257-2270. [PMID: 39325679 PMCID: PMC11487956 DOI: 10.1080/17435889.2024.2393071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/13/2024] [Indexed: 09/28/2024] Open
Abstract
Aim: The present investigation aimed to develop niosomes containing gold nanoparticles (Nio-AuNPs) and to evaluate the combinational effect of Nio-AuNPs and x-ray radiation therapy (XRT) on growth inhibition potential and induction of apoptosis in the A549 cell line.Materials & methods: Gold nanoparticles (AuNPs) were synthesized, and niosomes were prepared using the thin-film hydration method. Various techniques were employed to determine their physiochemical characteristics. MTT assay, cell apoptosis analysis and combination index analysis were conducted to evaluate the therapeutic feasibility of Nio-AuNPs combined with XRT.Results: The combination of Nio-AuNPs and XRT resulted in greater cytotoxicity compared with XRT alone or with AuNPs.Conclusion: The AuNPs-loaded niosomal formulation enhances the efficacy of XRT on lung cancer cells in vitro, presenting a promising and effective therapeutic strategy.
Collapse
Affiliation(s)
- Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamidreza Fathi
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Sharafi
- Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Morteza Mirzaei
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shima Jafari
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Darvishi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Thomas L, Schwarze M, Rabus H. Radial dependence of ionization clustering around a gold nanoparticle irradiated by X-rays under charged particle equilibrium. Phys Med Biol 2024; 69:185014. [PMID: 39134027 DOI: 10.1088/1361-6560/ad6e4f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/05/2024] [Indexed: 09/14/2024]
Abstract
Objective.This work explores the enhancement of ionization clustering and its radial dependence around a gold nanoparticle (NP), indicative of the induction of DNA lesions, a potential trigger for cell-death.Approach.Monte Carlo track structure simulations were performed to determine (a) the spectral fluence of incident photons and electrons in water around a gold NP under charged particle equilibrium conditions and (b) the density of ionization clusters produced on average as well as conditional on the occurrence of at least one interaction in the NP using Associated Volume Clustering. Absorbed dose was determined for comparison with a recent benchmark intercomparison. Reported quantities are normalized to primary fluence, allowing to establish a connection to macroscopic dosimetric quantities.Main results.The modification of the electron spectral fluence by the gold NP is minor and mainly occurs at low energies. The net fluence of electrons emitted from the NP is dominated by electrons resulting from photon interactions. Similar to the known dose enhancement, increased ionization clustering is limited to a distance from the NP surface of up to200nm. The number of clusters per energy imparted is increased at distances of up to150nm, and accordingly the enhancement in clustering notably surpasses that of dose enhancement. Smaller NPs cause noticeable peaks in the conditional frequency of clusters between50nm-100nmfrom the NP surface.Significance.This work shows that low energy electrons emitted by NPs lead to an increase of ionization clustering in their vicinity exceeding that of energy imparted. While the electron component of the radiation field plays an important role in determining the background contribution to ionization clustering and energy imparted, the dosimetric effects of NPs are governed by the interplay of secondary electron production by photon interaction and their ability to leave the NP.
Collapse
Affiliation(s)
- Leo Thomas
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, D-10587 Berlin, Germany
| | - Miriam Schwarze
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, D-10587 Berlin, Germany
| | - Hans Rabus
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, D-10587 Berlin, Germany
| |
Collapse
|
8
|
Martins A, Ferreira BC, Gaspar MM, Vieira S, Lopes J, Viana AS, Paulo A, Mendes F, Campello MPC, Martins R, Reis CP. Enhanced Cytotoxicity against a Pancreatic Cancer Cell Line Combining Radiation and Gold Nanoparticles. Pharmaceutics 2024; 16:900. [PMID: 39065597 PMCID: PMC11280324 DOI: 10.3390/pharmaceutics16070900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
The present work consisted of an exploratory study aiming to evaluate in vitro the potential of AuNPs during Radiation Therapy (RT) in human pancreatic adenocarcinoma cells. AuNPs coated with hyaluronic and oleic acids (HAOA-AuNPs) or with bombesin peptides (BBN-AuNPs) were used. AuNPs were characterized by Atomic Force Microscopy (AFM) and Dynamic Light Scattering. BxPC-3 tumor cells were irradiated with a 6 MV X-rays beam, in the absence or presence of AuNPs. AFM showed that HAOA-AuNPs and BBN-AuNPs are spherical with a mean size of 83 ± 20 nm and 49 ± 12 nm, respectively. For RT alone, a reduction in cell viability of up to 33 ± 12% was obtained compared to the control (p ≤ 0.0001). HAOA-AuNPs alone at 200 and 400 μM showed a reduction in cell viability of 20 ± 4% and 35 ± 4%, respectively, while for BBN-AuNPs, at 50 and 200 μM, a reduction in cell viability of 25 ± 3% and 37 ± 3% was obtained, respectively, compared to the control (p < 0.0001). At 72 h post-irradiation, a decrease in cell viability of 26 ± 3% and 22 ± 2% between RT + HAOA-AuNPs at 400 μM and RT + BBN-AuNPs at 50 μM, compared to RT alone, was obtained (p < 0.004). The combination of RT with AuNPs led to a significant decrease in cell viability compared to the control, or RT alone, thus representing an improved effect.
Collapse
Affiliation(s)
- Alexandra Martins
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Brigida C Ferreira
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Maria Manuela Gaspar
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- iMed.ULisboa, Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Sandra Vieira
- Champalimaud Foundation, Radiotherapy, 1400-038 Lisboa, Portugal
| | - Joana Lopes
- iMed.ULisboa, Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Ana S Viana
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - António Paulo
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Filipa Mendes
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Maria Paula Cabral Campello
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, 2695-066 Bobadela LRS, Portugal
| | - Rui Martins
- Centro de Estatística e Aplicações da Universidade de Lisboa, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Catarina Pinto Reis
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- iMed.ULisboa, Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
9
|
Luo T, Jiang X, Fan Y, Yuan E, Li J, Tillman L, Lin W. STING agonist-conjugated metal-organic framework induces artificial leukocytoid structures and immune hotspots for systemic antitumor responses. Natl Sci Rev 2024; 11:nwae167. [PMID: 38887543 PMCID: PMC11182667 DOI: 10.1093/nsr/nwae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/15/2024] [Accepted: 04/23/2024] [Indexed: 06/20/2024] Open
Abstract
Radiotherapy is widely used for cancer treatment, but its clinical utility is limited by radioresistance and its inability to target metastases. Nanoscale metal-organic frameworks (MOFs) have shown promise as high-Z nanoradiosensitizers to enhance radiotherapy and induce immunostimulatory regulation of the tumor microenvironment. We hypothesized that MOFs could deliver small-molecule therapeutics to synergize with radiotherapy for enhanced antitumor efficacy. Herein, we develop a robust nanoradiosensitizer, GA-MOF, by conjugating a STING agonist, 2',3'-cyclic guanosine monophosphate-adenosine monophosphate (GA), on MOFs for synergistic radiosensitization and STING activation. GA-MOF demonstrated strong anticancer efficacy by forming immune-cell-rich nodules (artificial leukocytoid structures) and transforming them into immunostimulatory hotspots with radiotherapy. Further combination with an immune checkpoint blockade suppressed distant tumors through systemic immune activation. Our work not only demonstrates the potent radiosensitization of GA-MOF, but also provides detailed mechanisms regarding MOF distribution, immune regulatory pathways and long-term immune effects.
Collapse
Affiliation(s)
- Taokun Luo
- Department of Chemistry, University of Chicago, Chicago 60637, USA
| | - Xiaomin Jiang
- Department of Chemistry, University of Chicago, Chicago 60637, USA
| | - Yingjie Fan
- Department of Chemistry, University of Chicago, Chicago 60637, USA
| | - Eric Yuan
- Department of Chemistry, University of Chicago, Chicago 60637, USA
| | - Jinhong Li
- Department of Chemistry, University of Chicago, Chicago 60637, USA
| | - Langston Tillman
- Department of Chemistry, University of Chicago, Chicago 60637, USA
| | - Wenbin Lin
- Department of Chemistry, University of Chicago, Chicago 60637, USA
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, University of Chicago, Chicago 60637, USA
| |
Collapse
|
10
|
Biagiotti G, Cazzoli R, Andreozzi P, Aresta G, Francesco M, Mangini C, di Gianvincenzo P, Tobia C, Recchia S, Polito L, Severi M, Vittorio O, Cicchi S, Moya SE, Ronca R, Albini A, Berti D, Orecchia R, Garibaldi C, Minucci S, Richichi B. Biocompatible cellulose nanocrystal-based Trojan horse enables targeted delivery of nano-Au radiosensitizers to triple negative breast cancer cells. NANOSCALE HORIZONS 2024; 9:1211-1218. [PMID: 38775782 DOI: 10.1039/d4nh00042k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
A hybrid cellulose-based programmable nanoplatform for applications in precision radiation oncology is described. Here, sugar heads work as tumor targeting moieties and steer the precise delivery of radiosensitizers, i.e. gold nanoparticles (AuNPs) into triple negative breast cancer (TNBC) cells. This "Trojan horse" approach promotes a specific and massive accumulation of radiosensitizers in TNBC cells, thus avoiding the fast turnover of small-sized AuNPs and the need for high doses of AuNPs for treatment. Application of X-rays resulted in a significant increase of the therapeutic effect while delivering the same dose, showing the possibility to use roughly half dose of X-rays to obtain the same radiotoxicity effect. These data suggest that this hybrid nanoplatform acts as a promising tool for applications in enhancing cancer radiotherapy effects with lower doses of X-rays.
Collapse
Affiliation(s)
- Giacomo Biagiotti
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Riccardo Cazzoli
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy
- School of biomedical sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Patrizia Andreozzi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Giusi Aresta
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Mattii Francesco
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Chiara Mangini
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Paolo di Gianvincenzo
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia-San Sebastián, Spain
| | - Chiara Tobia
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, Viale Europa 11, 25123 Brescia, Italy
| | - Sandro Recchia
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Laura Polito
- National Research Council, CNR-SCITEC, Via G. Fantoli 16/15, 20138 Milan, Italy
| | - Mirko Severi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Orazio Vittorio
- School of biomedical sciences, UNSW Sydney, Kensington, NSW, Australia
| | - Stefano Cicchi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Sergio E Moya
- Soft Matter Nanotechnology, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 194, 20014, Donostia-San Sebastián, Spain
| | - Roberto Ronca
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, Viale Europa 11, 25123 Brescia, Italy
| | | | - Debora Berti
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Roberto Orecchia
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy
- Scientific Directorate, IEO, IRCCS, 20141 Milan, Italy
| | | | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, 20141 Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Barbara Richichi
- Department of Chemistry 'Ugo Schiff', University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Firenze, Italy.
| |
Collapse
|
11
|
Nicolucci P, Gambaro G, Araujo Silva KM, Souza Lima I, Baffa O, Pasquarelli A. XMEA: A New Hybrid Diamond Multielectrode Array for the In Situ Assessment of the Radiation Dose Enhancement by Nanoparticles. SENSORS (BASEL, SWITZERLAND) 2024; 24:2409. [PMID: 38676026 PMCID: PMC11053603 DOI: 10.3390/s24082409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024]
Abstract
This work presents a novel multielectrode array (MEA) to quantitatively assess the dose enhancement factor (DEF) produced in a medium by embedded nanoparticles. The MEA has 16 nanocrystalline diamond electrodes (in a cell-culture well), and a single-crystal diamond divided into four quadrants for X-ray dosimetry. DEF was assessed in water solutions with up to a 1000 µg/mL concentration of silver, platinum, and gold nanoparticles. The X-ray detectors showed a linear response to radiation dose (r2 ≥ 0.9999). Overall, platinum and gold nanoparticles produced a dose enhancement in the medium (maximum of 1.9 and 3.1, respectively), while silver nanoparticles produced a shielding effect (maximum of 37%), lowering the dose in the medium. This work shows that the novel MEA can be a useful tool in the quantitative assessment of radiation dose enhancement due to nanoparticles. Together with its suitability for cells' exocytosis studies, it proves to be a highly versatile device for several applications.
Collapse
Affiliation(s)
- Patricia Nicolucci
- Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (P.N.); (I.S.L.); (O.B.)
| | - Guilherme Gambaro
- Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (P.N.); (I.S.L.); (O.B.)
| | - Kyssylla Monnyelle Araujo Silva
- Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (P.N.); (I.S.L.); (O.B.)
| | - Iara Souza Lima
- Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (P.N.); (I.S.L.); (O.B.)
| | - Oswaldo Baffa
- Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil; (P.N.); (I.S.L.); (O.B.)
| | - Alberto Pasquarelli
- Institute of Electron Devices and Circuits, University of Ulm, 89069 Ulm, Germany
| |
Collapse
|
12
|
Zhao Y, Cui C, Fan G, Shi H. Stimuli-triggered Self-Assembly of Gold Nanoparticles: Recent Advances in Fabrication and Biomedical Applications. Chem Asian J 2024; 19:e202400015. [PMID: 38403853 DOI: 10.1002/asia.202400015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Gold nanoparticles have been widely used in engineering, material chemistry, and biomedical applications owing to their ease of synthesis and functionalization, localized surface plasmon resonance (LSPR), great chemical stability, excellent biocompatibility, tunable optical and electronic property. In recent years, the decoration and modification of gold nanoparticles with small molecules, ligands, surfactants, peptides, DNA/RNA, and proteins have been systematically studied. In this review, we summarize the recent approaches on stimuli-triggered self-assembly of gold nanoparticles and introduce the breakthrough of gold nanoparticles in disease diagnosis and treatment. Finally, we discuss the current challenge and future prospective of stimuli-responsive gold nanoparticles for biomedical applications.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- Department of Radiology, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, 215028, China
| | - Chaoxiang Cui
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Guohua Fan
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Haibin Shi
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, and, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
13
|
Huwaidi A, Robert G, Kumari B, Bass AD, Cloutier P, Guérin B, Sanche L, Wagner JR. Electron-Induced Damage by UV Photolysis of DNA Attached to Gold Nanoparticles. Chem Res Toxicol 2024; 37:419-428. [PMID: 38314730 DOI: 10.1021/acs.chemrestox.3c00370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Photolysis of DNA attached to gold nanoparticles (AuNPs) with ultraviolet (UV) photons induces DNA damage. The release of nucleobases (Cyt, Gua, Ade, and Thy) from DNA was the major reaction (99%) with an approximately equal release of pyrimidines and purines. This reaction contributes to the formation of abasic sites in DNA. In addition, liquid chromatography-mass spectrometry/MS (LC-MS/MS) analysis revealed the formation of reduction products of pyrimidines (5,6-dihydrothymidine and 5,6-dihydro-2'-deoxyuridine) and eight 2',3'- and 2',5'-dideoxynucleosides. In contrast, there was no evidence of the formation of 5-hydroxymethyluracil and 8-oxo-7,8-dihydroguanine, which are common oxidation products of thymine and guanine, respectively. Using appropriate filters, the main photochemical reactions were found to involve photoelectrons ejected from AuNPs by UV photons. The contribution of "hot" conduction band electrons with energies below the photoemission threshold was minor. The mechanism for the release of free nucleobases by photoelectrons is proposed to take place by the initial formation of transient molecular anions of the nucleobases, followed by dissociative electron attachment at the C1'-N glycosidic bond connecting the nucleobase to the sugar-phosphate backbone. This mechanism is consistent with the reactivity of secondary electrons ejected by X-ray irradiation of AuNPs attached to DNA, as well as the reactions of various nucleic acid derivatives irradiated with monoenergetic very-low-energy electrons (∼2 eV). These studies should help us to understand the chemistry of nanoparticles that are exposed to UV light and that are used as scaffolds and catalysts in molecular biology, curative agents in photodynamic therapy, and components of sunscreens and cosmetics.
Collapse
Affiliation(s)
- Alaa Huwaidi
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Gabriel Robert
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Bhavini Kumari
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Andrew D Bass
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Pierre Cloutier
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Brigitte Guérin
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - Léon Sanche
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| | - J Richard Wagner
- Département de Médecine Nucléaire et Radiobiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3001 12e Avenue Nord, Sherbrooke, Québec J1H 5N4, Canada
| |
Collapse
|
14
|
Rabus H. Comment on "Reproducibility study of Monte Carlo simulations for nanoparticle dose enhancement and biological modeling of cell survival curves" by Velten et al[Biomed Phys Eng Express 2023;9:045004]. Biomed Phys Eng Express 2024; 10:028002. [PMID: 38113641 DOI: 10.1088/2057-1976/ad1731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 12/19/2023] [Indexed: 12/21/2023]
Abstract
This comment highlights two methodological issues with the recent article by Velten et al [Biomed Phys Eng Express 2023;9:045004]: First, the approach taken in this work with a local effect model (LEM) in 2D leads to a significant overstimation of the number of radiation-induced lesions. This results in order of magnitude smaller predicted survival rates compared to the conventional LEM. Second, the dose without nanoparticles is used as the 'macroscopic dose' against which cell survival is plotted. However, for the considered gold concentrations, the average absorbed dose under secondary particle equilibrium is between 2 and 20 times higher with nanoparticles than without.
Collapse
Affiliation(s)
- Hans Rabus
- Physikalisch-Technische Bundesanstalt, Berlin, Germany
| |
Collapse
|
15
|
Xiao W, Zhao L, Sun Y, Yang X, Fu Q. Stimuli-Responsive Nanoradiosensitizers for Enhanced Cancer Radiotherapy. SMALL METHODS 2024; 8:e2301131. [PMID: 37906050 DOI: 10.1002/smtd.202301131] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/10/2023] [Indexed: 11/02/2023]
Abstract
Radiotherapy (RT) has been a classical therapeutic method of cancer for several decades. It attracts tremendous attention for the precise and efficient treatment of local tumors with stimuli-responsive nanomaterials, which enhance RT. However, there are few systematic reviews summarizing the newly emerging stimuli-responsive mechanisms and strategies used for tumor radio-sensitization. Hence, this review provides a comprehensive overview of recently reported studies on stimuli-responsive nanomaterials for radio-sensitization. It includes four different approaches for sensitized RT, namely endogenous response, exogenous response, dual stimuli-response, and multi stimuli-response. Endogenous response involves various stimuli such as pH, hypoxia, GSH, and reactive oxygen species (ROS), and enzymes. On the other hand, exogenous response encompasses X-ray, light, and ultrasound. Dual stimuli-response combines pH/enzyme, pH/ultrasound, and ROS/light. Lastly, multi stimuli-response involves the combination of pH/ROS/GSH and X-ray/ROS/GSH. By elaborating on these responsive mechanisms and applying them to clinical RT diagnosis and treatment, these methods can enhance radiosensitive efficiency and minimize damage to surrounding normal tissues. Finally, this review discusses the additional challenges and perspectives related to stimuli-responsive nanomaterials for tumor radio-sensitization.
Collapse
Affiliation(s)
- Wenjing Xiao
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Lin Zhao
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yang Sun
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Xiao Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
16
|
Yu B, Lu X, Feng X, Zhao T, Li J, Lu Y, Ye F, Liu X, Zheng X, Shen Z, Jin X, Chen W, Li Q. Gadolinium Oxide Nanoparticles Reinforce the Fractionated Radiotherapy-Induced Immune Response in Tri-Negative Breast Cancer via cGAS-STING Pathway. Int J Nanomedicine 2023; 18:7713-7728. [PMID: 38115988 PMCID: PMC10729773 DOI: 10.2147/ijn.s428044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 12/02/2023] [Indexed: 12/21/2023] Open
Abstract
Introduction Radiotherapy is a widely recognized first-line clinical treatment for cancer, but its efficacy may be impeded by the radioresistance of advanced tumors. It is urgent to improve the sensitivity of radioresistant tumors to radiotherapy. In this work, gadolinium oxide nanocrystals (GONs) were utilized as radiosensitizers to enhance the killing effect and reinforce the immune activation of X-ray irradiation on 4T1 breast cancer cells in vitro and in vivo. Methods 1.0 T small animal MR imaging (MRI) system was employed to trace GONs in vivo, while 225 kVp X-ray irradiation equipment was utilized for investigating the radiosensitization of GONs in 4T1 breast cancer cells in vitro and in vivo. Western blot, quantitative real-time PCR (RT-qPCR), immunohistochemistry, immunofluorescence, clonal survival assay, flow cytometry and reactive oxygen species assay were used to explore the biological mechanism of GON sensitization. Results GONs exhibited exceptional utility as contrast agents for both in vivo and in vitro MRI imaging. Interestingly, a single dose of 8.0 Gy X-rays together with GONs failed to confer superior therapeutic effects in tumor-bearing mice, while only 3.0 Gy × 3 fractions X-rays combined with GONs exhibited effective tumor growth inhibition. Moreover, fractionated X-ray irradiation with GONs demonstrated a superior capacity to activate the cGAS-STING pathway. Discussion Fractionated X-ray irradiation in the presence of GONs has demonstrated the most significant activation of the anti-tumor immune response by boosting the cGAS-STING pathway.
Collapse
Affiliation(s)
- Boyi Yu
- Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xuanyi Lu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xianglong Feng
- Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ting Zhao
- Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Jiaxin Li
- Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yudie Lu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, People’s Republic of China
| | - Fei Ye
- Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xiongxiong Liu
- Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xiaogang Zheng
- Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Zheyu Shen
- School of Biomedical Engineering, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xiaodong Jin
- Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Weiqiang Chen
- Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Qiang Li
- Biomedical Center, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, Lanzhou, People’s Republic of China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, People’s Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
17
|
Chen SF, Kau M, Wang YC, Chen MH, Tung FI, Chen MH, Liu TY. Synergistically Enhancing Immunotherapy Efficacy in Glioblastoma with Gold-Core Silica-Shell Nanoparticles and Radiation. Int J Nanomedicine 2023; 18:7677-7693. [PMID: 38111846 PMCID: PMC10726961 DOI: 10.2147/ijn.s440405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
Purpose Glioblastoma is a highly aggressive brain tumor with universally poor outcomes. Recent progress in immune checkpoint inhibitors has led to increased interest in their application in glioblastoma. Nonetheless, the unique immune milieu in the brain has posed remarkable challenges to the efficacy of immunotherapy. We aimed to leverage the radiation-induced immunogenic cell death to overcome the immunosuppressive network in glioblastoma. Methods We developed a novel approach using the gold-core silica-shell nanoparticles (Au@SiO2 NPs) in combination with low-dose radiation to enhance the therapeutic efficacy of the immune checkpoint inhibitor (atezolizumab) in brain tumors. The biocompatibility, immune cell recruitment, and antitumor ability of the combinatorial strategy were determined using in vitro assays and in vivo models. Results Our approach successfully induced the migration of macrophages towards brain tumors and promoted cancer cell apoptosis. Subcutaneous tumor models demonstrated favorable safety profiles and significantly enhanced anticancer effects. In orthotopic brain tumor models, the multimodal therapy yielded substantial prognostic benefits over any individual modalities, achieving an impressive 40% survival rate. Conclusion In summary, the combination of Au@SiO2 NPs and low-dose radiation holds the potential to improve the clinical efficacy of immune checkpoint inhibitors. The synergetic strategy modulates tumor microenvironments and enhances systemic antitumor immunity, paving a novel way for glioblastoma treatment.
Collapse
Affiliation(s)
- Shuo-Fu Chen
- Department of Heavy Particles & Radiation Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Min Kau
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chi Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Hong Chen
- Division of Neurosurgery, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Fu-I Tung
- Department of Orthopedics, Yang-Ming Branch, Taipei City Hospital, Taipei, Taiwan
- Department of Health and Welfare, College of City Management, University of Taipei, Taipei, Taiwan
| | - Mei-Hsiu Chen
- Department of Internal Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Tse-Ying Liu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
18
|
Zimmermann M, Gerken LRH, Wee S, Kissling VM, Neuer AL, Tsolaki E, Gogos A, Lukatskaya MR, Herrmann IK. X-ray radio-enhancement by Ti 3C 2T x MXenes in soft tissue sarcoma. Biomater Sci 2023; 11:7826-7837. [PMID: 37878039 PMCID: PMC10697419 DOI: 10.1039/d3bm00607g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023]
Abstract
Radiotherapy is a cornerstone of cancer treatment. However, due to the low tissue specificity of ionizing radiation, damage to the surrounding healthy tissue of the tumor remains a significant challenge. In recent years, radio-enhancers based on inorganic nanomaterials have gained considerable interest. Beyond the widely explored metal and metal oxide nanoparticles, 2D materials, such as MXenes, could present potential benefits because of their inherently large specific surface area. In this study, we highlight the promising radio-enhancement properties of Ti3C2Tx MXenes. We demonstrate that atomically thin layers of titanium carbides (Ti3C2Tx MXenes) are efficiently internalized and well-tolerated by mammalian cells. Contrary to MXenes suspended in aqueous buffers, which fully oxidize within days, yielding rice-grain shaped rutile nanoparticles, the MXenes internalized by cells oxidize at a slower rate. This is consistent with cell-free experiments that have shown slower oxidation rates in cell media and lysosomal buffers compared to dispersants without antioxidants. Importantly, the MXenes exhibit robust radio-enhancement properties, with dose enhancement factors reaching up to 2.5 in human soft tissue sarcoma cells, while showing no toxicity to healthy human fibroblasts. When compared to oxidized MXenes and commercial titanium dioxide nanoparticles, the intact 2D titanium carbide flakes display superior radio-enhancement properties. In summary, our findings offer evidence for the potent radio-enhancement capabilities of Ti3C2Tx MXenes, marking them as a promising candidate for enhancing radiotherapy.
Collapse
Affiliation(s)
- Monika Zimmermann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Lukas R H Gerken
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Shianlin Wee
- Electrochemical Energy Systems Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Vera M Kissling
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Anna L Neuer
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Elena Tsolaki
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Alexander Gogos
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
| | - Maria R Lukatskaya
- Electrochemical Energy Systems Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Inge K Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St Gallen, Switzerland
- The Ingenuity Lab, University Hospital Balgrist, Balgrist Campus, Forchstrasse 340, 8008 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Rämistrasse 71, 8006 Zurich, Switzerland
| |
Collapse
|
19
|
Abouzahr F, Cesar JP, Crespo P, Gajda M, Hu Z, Klein K, Kuo AS, Majewski S, Mawlawi O, Morozov A, Ojha A, Poenisch F, Proga M, Sahoo N, Seco J, Takaoka T, Tavernier S, Titt U, Wang X, Zhu XR, Lang K. The first probe of a FLASH proton beam by PET. Phys Med Biol 2023; 68:235004. [PMID: 37918021 DOI: 10.1088/1361-6560/ad0901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
The recently observed FLASH effect related to high doses delivered with high rates has the potential to revolutionize radiation cancer therapy if promising results are confirmed and an underlying mechanism understood. Comprehensive measurements are essential to elucidate the phenomenon. We report the first-ever demonstration of measurements of successive in-spill and post-spill emissions of gammas arising from irradiations by a FLASH proton beam. A small positron emission tomography (PET) system was exposed in an ocular beam of the Proton Therapy Center at MD Anderson Cancer Center to view phantoms irradiated by 3.5 × 1010protons with a kinetic energy of 75.8 MeV delivered in 101.5 ms-long spills yielding a dose rate of 164 Gy s-1. Most in-spill events were due to prompt gammas. Reconstructed post-spill tomographic events, recorded for up to 20 min, yielded quantitative imaging and dosimetric information. These findings open a new and novel modality for imaging and monitoring of FLASH proton therapy exploiting in-spill prompt gamma imaging followed by post-spill PET imaging.
Collapse
Affiliation(s)
- F Abouzahr
- Department of Physics, University of Texas at Austin, Austin, TX 78712, United States of America
| | - J P Cesar
- Department of Physics, University of Texas at Austin, Austin, TX 78712, United States of America
| | - P Crespo
- Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal
- Departamento de Física, Universidade de Coimbra, 3004-516 Coimbra, Portugal
| | - M Gajda
- Department of Physics, University of Texas at Austin, Austin, TX 78712, United States of America
| | - Z Hu
- Department of Radiation Physics, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, United States of America
| | - K Klein
- Department of Physics, University of Texas at Austin, Austin, TX 78712, United States of America
| | - A S Kuo
- Department of Physics, University of Texas at Austin, Austin, TX 78712, United States of America
| | - S Majewski
- Department of Physics, University of Texas at Austin, Austin, TX 78712, United States of America
- Biomedical Engineering, University of California Davis, CA 96616, United States of America
| | - O Mawlawi
- Department of Imaging Physics, MD Anderson Cancer Center, University of Texas, Houston, TX, 77054, United States of America
| | - A Morozov
- Laboratório de Instrumentação e Física Experimental de Partículas, 3004-516 Coimbra, Portugal
| | - A Ojha
- Department of Physics, University of Texas at Austin, Austin, TX 78712, United States of America
| | - F Poenisch
- Proton Therapy Center, MD Anderson Cancer Center, University of Texas, Houston, TX 77054, United States of America
| | - M Proga
- Department of Physics, University of Texas at Austin, Austin, TX 78712, United States of America
| | - N Sahoo
- Proton Therapy Center, MD Anderson Cancer Center, University of Texas, Houston, TX 77054, United States of America
| | - J Seco
- Div. of Biomed. Physics in Rad. Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - T Takaoka
- Particle Therapy Division, Hitachi America Ltd, Houston, TX 77054, United States of America
| | - S Tavernier
- PETsys Electronics, SA, 2740-257 Taguspark, Portugal
| | - U Titt
- Department of Radiation Physics, MD Anderson Cancer Center, University of Texas, Houston, TX 77030, United States of America
| | - X Wang
- Proton Therapy Center, MD Anderson Cancer Center, University of Texas, Houston, TX 77054, United States of America
| | - X R Zhu
- Proton Therapy Center, MD Anderson Cancer Center, University of Texas, Houston, TX 77054, United States of America
| | - K Lang
- Department of Physics, University of Texas at Austin, Austin, TX 78712, United States of America
| |
Collapse
|
20
|
Neuer AL, Herrmann IK, Gogos A. Biochemical transformations of inorganic nanomedicines in buffers, cell cultures and organisms. NANOSCALE 2023; 15:18139-18155. [PMID: 37946534 PMCID: PMC10667590 DOI: 10.1039/d3nr03415a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
The field of nanomedicine is rapidly evolving, with new materials and formulations being reported almost daily. In this respect, inorganic and inorganic-organic composite nanomaterials have gained significant attention. However, the use of new materials in clinical trials and their final approval as drugs has been hampered by several challenges, one of which is the complex and difficult to control nanomaterial chemistry that takes place within the body. Several reviews have summarized investigations on inorganic nanomaterial stability in model body fluids, cell cultures, and organisms, focusing on their degradation as well as the influence of corona formation. However, in addition to these aspects, various chemical reactions of nanomaterials, including phase transformation and/or the formation of new/secondary nanomaterials, have been reported. In this review, we discuss recent advances in our understanding of biochemical transformations of medically relevant inorganic (composite) nanomaterials in environments related to their applications. We provide a refined terminology for the primary reaction mechanisms involved to bridge the gaps between different disciplines involved in this research. Furthermore, we highlight suitable analytical techniques that can be harnessed to explore the described reactions. Finally, we highlight opportunities to utilize them for diagnostic and therapeutic purposes and discuss current challenges and research priorities.
Collapse
Affiliation(s)
- Anna L Neuer
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Inge K Herrmann
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Alexander Gogos
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| |
Collapse
|
21
|
Varzi V, Fratini E, Falconieri M, Giovannini D, Cemmi A, Scifo J, Di Sarcina I, Aprà P, Sturari S, Mino L, Tomagra G, Infusino E, Landoni V, Marino C, Mancuso M, Picollo F, Pazzaglia S. Nanodiamond Effects on Cancer Cell Radiosensitivity: The Interplay between Their Chemical/Physical Characteristics and the Irradiation Energy. Int J Mol Sci 2023; 24:16622. [PMID: 38068942 PMCID: PMC10706717 DOI: 10.3390/ijms242316622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/06/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Nanoparticles are being increasingly studied to enhance radiation effects. Among them, nanodiamonds (NDs) are taken into great consideration due to their low toxicity, inertness, chemical stability, and the possibility of surface functionalization. The objective of this study is to explore the influence of the chemical/physical properties of NDs on cellular radiosensitivity to combined treatments with radiation beams of different energies. DAOY, a human radioresistant medulloblastoma cell line was treated with NDs-differing for surface modifications [hydrogenated (H-NDs) and oxidized (OX-NDs)], size, and concentration-and analysed for (i) ND internalization and intracellular localization, (ii) clonogenic survival after combined treatment with different radiation beam energies and (iii) DNA damage and apoptosis, to explore the nature of ND-radiation biological interactions. Results show that chemical/physical characteristics of NDs are crucial in determining cell toxicity, with hydrogenated NDs (H-NDs) decreasing either cellular viability when administered alone, or cell survival when combined with radiation, depending on ND size and concentration, while OX-NDs do not. Also, irradiation at high energy (γ-rays at 1.25 MeV), in combination with H-NDs, is more efficient in eliciting radiosensitisation when compared to irradiation at lower energy (X-rays at 250 kVp). Finally, the molecular mechanisms of ND radiosensitisation was addressed, demonstrating that cell killing is mediated by the induction of Caspase-3-dependent apoptosis that is independent to DNA damage. Identifying the optimal combination of ND characteristics and radiation energy has the potential to offer a promising therapeutic strategy for tackling radioresistant cancers using H-NDs in conjunction with high-energy radiation.
Collapse
Affiliation(s)
- Veronica Varzi
- Physics Department, National Institute of Nuclear Physics, Section of Turin, University of Turin, Via P. Giuria 1, 10125 Turin, Italy; (V.V.); (P.A.); (S.S.)
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (E.F.); (D.G.); (C.M.); (M.M.)
- Nanomaterials for Industry and Sustainability (NIS) Inter-Departmental Centre, University of Turin, Via Quarello 15/A, 10125 Turin, Italy;
| | - Emiliano Fratini
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (E.F.); (D.G.); (C.M.); (M.M.)
| | - Mauro Falconieri
- Fusion and Technology for Nuclear Safety and Security Department, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy;
| | - Daniela Giovannini
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (E.F.); (D.G.); (C.M.); (M.M.)
| | - Alessia Cemmi
- Innovative Nuclear Systems Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (J.S.); (I.D.S.)
| | - Jessica Scifo
- Innovative Nuclear Systems Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (J.S.); (I.D.S.)
| | - Ilaria Di Sarcina
- Innovative Nuclear Systems Laboratory, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (A.C.); (J.S.); (I.D.S.)
| | - Pietro Aprà
- Physics Department, National Institute of Nuclear Physics, Section of Turin, University of Turin, Via P. Giuria 1, 10125 Turin, Italy; (V.V.); (P.A.); (S.S.)
- Nanomaterials for Industry and Sustainability (NIS) Inter-Departmental Centre, University of Turin, Via Quarello 15/A, 10125 Turin, Italy;
| | - Sofia Sturari
- Physics Department, National Institute of Nuclear Physics, Section of Turin, University of Turin, Via P. Giuria 1, 10125 Turin, Italy; (V.V.); (P.A.); (S.S.)
- Nanomaterials for Industry and Sustainability (NIS) Inter-Departmental Centre, University of Turin, Via Quarello 15/A, 10125 Turin, Italy;
| | - Lorenzo Mino
- Nanomaterials for Industry and Sustainability (NIS) Inter-Departmental Centre, University of Turin, Via Quarello 15/A, 10125 Turin, Italy;
- Chemistry Department, University of Turin, Via P. Giuria 7, 10125 Turin, Italy
| | - Giulia Tomagra
- Drug Science and Technology Department, University of Turin, Corso Raffaello 30, 10125 Turin, Italy;
| | - Erminia Infusino
- Medical Physics Laboratory, IRCCS Istituto Nazionale Tumori Regina Elena, Via Elio Chianesi 53, 00144 Rome, Italy; (E.I.); (V.L.)
| | - Valeria Landoni
- Medical Physics Laboratory, IRCCS Istituto Nazionale Tumori Regina Elena, Via Elio Chianesi 53, 00144 Rome, Italy; (E.I.); (V.L.)
| | - Carmela Marino
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (E.F.); (D.G.); (C.M.); (M.M.)
| | - Mariateresa Mancuso
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (E.F.); (D.G.); (C.M.); (M.M.)
| | - Federico Picollo
- Physics Department, National Institute of Nuclear Physics, Section of Turin, University of Turin, Via P. Giuria 1, 10125 Turin, Italy; (V.V.); (P.A.); (S.S.)
- Nanomaterials for Industry and Sustainability (NIS) Inter-Departmental Centre, University of Turin, Via Quarello 15/A, 10125 Turin, Italy;
| | - Simonetta Pazzaglia
- Laboratory of Biomedical Technologies, Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Casaccia Research Centre, Via Anguillarese 301, 00123 Rome, Italy; (E.F.); (D.G.); (C.M.); (M.M.)
| |
Collapse
|
22
|
Gerken LRH, Gerdes ME, Pruschy M, Herrmann IK. Prospects of nanoparticle-based radioenhancement for radiotherapy. MATERIALS HORIZONS 2023; 10:4059-4082. [PMID: 37555747 PMCID: PMC10544071 DOI: 10.1039/d3mh00265a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
Radiotherapy is a key pillar of solid cancer treatment. Despite a high level of conformal dose deposition, radiotherapy is limited due to co-irradiation of organs at risk and subsequent normal tissue toxicities. Nanotechnology offers an attractive opportunity for increasing the efficacy and safety of cancer radiotherapy. Leveraging the freedom of design and the growing synthetic capabilities of the nanomaterial-community, a variety of engineered nanomaterials have been designed and investigated as radiosensitizers or radioenhancers. While research so far has been primarily focused on gold nanoparticles and other high atomic number materials to increase the absorption cross section of tumor tissue, recent studies are challenging the traditional concept of high-Z nanoparticle radioenhancers and highlight the importance of catalytic activity. This review provides a concise overview on the knowledge of nanoparticle radioenhancement mechanisms and their quantification. It critically discusses potential radioenhancer candidate materials and general design criteria for different radiation therapy modalities, and concludes with research priorities in order to advance the development of nanomaterials, to enhance the efficacy of radiotherapy and to increase at the same time the therapeutic window.
Collapse
Affiliation(s)
- Lukas R H Gerken
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Maren E Gerdes
- Karolinska Institutet, Solnavägen 1, 171 77 Stockholm, Sweden
| | - Martin Pruschy
- Laboratory for Applied Radiobiology, Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Inge K Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland.
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| |
Collapse
|
23
|
Izzadeen A, Dymock L, Hoskins C. Small-scale particles showing large-scale impact in pancreatic cancer. Nanomedicine (Lond) 2023; 18:1795-1797. [PMID: 37905499 DOI: 10.2217/nnm-2023-0283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023] Open
Affiliation(s)
- Arza Izzadeen
- Department of Pure & Applied Chemistry, Technology & Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, Scotland
| | - Lewis Dymock
- Department of Pure & Applied Chemistry, Technology & Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, Scotland
| | - Clare Hoskins
- Department of Pure & Applied Chemistry, Technology & Innovation Centre, University of Strathclyde, 99 George Street, Glasgow, G1 1RD, Scotland
| |
Collapse
|
24
|
Zhang C, Li X, Lu J, Li C, Wang Y, Xu X, Yang X. Enhanced electron beam and X-ray beam therapy by applying nanoparticle heterojunctions: A Monte Carlo simulation. Appl Radiat Isot 2023; 199:110869. [PMID: 37267775 DOI: 10.1016/j.apradiso.2023.110869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/02/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023]
Abstract
Cancer has become one of the major diseases that seriously threaten human health. In order to improve the therapeutic gain ratio (TGF) of conventional X-ray and electron beams, we studied the dose enhancement effect and secondary electrons emission of Au-Fe nanoparticle heterostructures by Monte Carlo method. Under the irradiation of 6 MeV photon and 6 MeV electron beams, the Au-Fe mixture has a dose enhancement effect. For this reason, we explored the secondary electrons production that leads to dose enhancement. For 6 MeV electron beam irradiation, Au-Fe nanoparticle heterojunctions have an higher electrons emission than Au and Fe nanoparticles. When cubic, spherical and cylindrical heterogeneous structures are considered, the electron emission of the columnar Au-Fe nanoparticles is the highest, with a maximum value of 0.00024. For 6 MV X-ray beam irradiation, Au nanoparticle and Au-Fe nanoparticle heterojunction have similar electrons emission, while Fe nanoparticle has the lowest one. When cubic, spherical and cylindrical heterogeneous structures are considered, the electron emission of the columnar Au-Fe nanoparticles is the highest, with a maximum value of 0.000118. This study contributes to improve the tumor-killing effect of conventional X-ray radiotherapy treatment and has guiding significance for the research of new nanoparticles.
Collapse
Affiliation(s)
- Chuhan Zhang
- College of Physics, Jilin University, Changchun 130012, China
| | - Xiaoyi Li
- College of Physics, Jilin University, Changchun 130012, China
| | - Jingbin Lu
- College of Physics, Jilin University, Changchun 130012, China.
| | - Chengqian Li
- College of Physics, Jilin University, Changchun 130012, China
| | - Yu Wang
- College of Physics, Jilin University, Changchun 130012, China
| | - Xu Xu
- College of Physics, Jilin University, Changchun 130012, China
| | - Xiangshan Yang
- College of Public Health, Jilin University, Changchun 130012, China
| |
Collapse
|
25
|
Neuer AL, Vogel A, Gogos A, Kissling VM, Tsolaki E, Herrmann IK. Metal-Organic Framework Mediated Radio-Enhancement Assessed in High-Throughput-Compatible 3D Tumor Spheroid Co-Cultures. Adv Biol (Weinh) 2023:e2300075. [PMID: 37178330 DOI: 10.1002/adbi.202300075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/11/2023] [Indexed: 05/15/2023]
Abstract
Inorganic nanomaterials have gained increasing attention in radiation oncology, owing to their radiation therapy enhancing properties. To accelerate candidate material selection and overcome the disconnect between conventional 2D cell culture and in vivo findings, screening platforms unifying high-throughput with physiologically relevant endpoint analysis based on 3D in vitro models are promising. Here, a 3D tumor spheroid co-culture model based on cancerous and healthy human cells is presented for the concurrent assessment of radio-enhancement efficacy, toxicity, and intratissural biodistribution with full ultrastructural context of radioenhancer candidate materials. Its potential for rapid candidate materials screening is showcased based on the example of nano-sized metal-organic frameworks (nMOFs) and direct benchmarking against gold nanoparticles (the current "gold standard"). Dose enhancement factors (DEFs) ranging between 1.4 and 1.8 are measured for Hf-, Ti-, TiZr-, and Au-based materials in 3D tissues and are overall lower than in 2D cell cultures, where DEF values exceeding 2 are found. In summary, the presented co-cultured tumor spheroid-healthy fibroblast model with tissue-like characteristics may serve as high-throughput platform enabling rapid, cell line-specific endpoint analysis for therapeutic efficacy and toxicity assessment, as well as accelerated radio-enhancer candidate screening.
Collapse
Affiliation(s)
- Anna Lena Neuer
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Alexandra Vogel
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Alexander Gogos
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Vera M Kissling
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
| | - Elena Tsolaki
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| | - Inge K Herrmann
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
26
|
Maury P, Mondini M, Chargari C, Darricau A, Shahin M, Ammari S, Bockel S, Genestie C, Wu TD, Lux F, Tillement O, Lacombe S, Deutsch E, Robert C, Porcel E. Clinical transfer of AGuIX®-based radiation treatments for locally advanced cervical cancer: MR quantification and in vitro insights in the NANOCOL clinical trial framework. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 50:102676. [PMID: 37084803 DOI: 10.1016/j.nano.2023.102676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/23/2023]
Abstract
Clinical trials incorporating metallic nanoparticles (NPs) have recently begun. Radiotherapy planning does not take into account NPs concentrations observed in the patients' target volumes. In the framework of the NANOCOL clinical trial including patients treated for locally advanced cervical cancers, this study proposes a complete method to evaluate the radiation-induced biological effects of NPs. For this, calibration phantom was developed and MRI sequences with variable flip angles were acquired. This process allowed the quantification of NPs in the tumor of 4 patients, which was compared to the results of mass spectrometry obtained from 3 patient biopsies. The concentration of the NPs was reproduced in 3D cell models. Based on clonogenic assays, the radio-enhancement effects were quantified for radiotherapy and brachytherapy, and the impact in terms of local control was evaluated. T1 signal change in GTVs revealed NPs accumulation ~12.4 μmol/L, in agreement with mass spectrometry. Radio-enhancement effects of about 15 % at 2 Gy were found for both modalities, with a positive impact on local tumor control. Even if further follow-up of patients in this and subsequent clinical trials will be necessary to assess the reliability of this proof of concept, this study opens the way to the integration of a dose modulation factor to better take into account the impact of NPs in radiotherapy treatment.
Collapse
Affiliation(s)
- Pauline Maury
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France; Université Paris-Saclay, Gustave Roussy, Department of Radiotherapy, 94805 Villejuif, France.
| | - Michele Mondini
- Université Paris-Saclay, Gustave Roussy, INSERM, Radiothérapie Moléculaire et Innovation Thérapeutique, 94800 Villejuif, France
| | - Cyrus Chargari
- Université Paris-Saclay, Gustave Roussy, Department of Radiotherapy, 94805 Villejuif, France; Université Paris-Saclay, Gustave Roussy, INSERM, Radiothérapie Moléculaire et Innovation Thérapeutique, 94800 Villejuif, France
| | - Arthur Darricau
- Université Paris-Saclay, Gustave Roussy, INSERM, Radiothérapie Moléculaire et Innovation Thérapeutique, 94800 Villejuif, France
| | - Mona Shahin
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France; Université Paris-Saclay, Gustave Roussy, INSERM, Radiothérapie Moléculaire et Innovation Thérapeutique, 94800 Villejuif, France
| | - Samy Ammari
- Université Paris-Saclay, Gustave Roussy, Department of Imaging, 94805 Villejuif, France; ELSAN Department of Radiology, Institut de Cancérologie Paris Nord, Sarcelles, France
| | - Sophie Bockel
- Université Paris-Saclay, Gustave Roussy, INSERM, Radiothérapie Moléculaire et Innovation Thérapeutique, 94800 Villejuif, France
| | - Catherine Genestie
- Université Paris-Saclay, Gustave Roussy, Department of Pathology, 94805 Villejuif, France
| | - Ting-Di Wu
- Institut Curie, PSL University, Université Paris-Saclay, CNRS UAR2016, Inserm US43, Multimodal Imaging Center, 91400 Orsay, France
| | - François Lux
- Institut Lumière Matière (ILM UMR 5306), Université Claude Bernard Lyon 1, CNRS-UCBL, 69622 Villeurbanne, France; Institut Universitaire de France (IUF), France
| | - Olivier Tillement
- Institut Lumière Matière (ILM UMR 5306), Université Claude Bernard Lyon 1, CNRS-UCBL, 69622 Villeurbanne, France
| | - Sandrine Lacombe
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| | - Eric Deutsch
- Université Paris-Saclay, Gustave Roussy, Department of Radiotherapy, 94805 Villejuif, France; Université Paris-Saclay, Gustave Roussy, INSERM, Radiothérapie Moléculaire et Innovation Thérapeutique, 94800 Villejuif, France
| | - Charlotte Robert
- Université Paris-Saclay, Gustave Roussy, Department of Radiotherapy, 94805 Villejuif, France; Université Paris-Saclay, Gustave Roussy, INSERM, Radiothérapie Moléculaire et Innovation Thérapeutique, 94800 Villejuif, France
| | - Erika Porcel
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405 Orsay, France
| |
Collapse
|
27
|
Haque M, Shakil MS, Mahmud KM. The Promise of Nanoparticles-Based Radiotherapy in Cancer Treatment. Cancers (Basel) 2023; 15:cancers15061892. [PMID: 36980778 PMCID: PMC10047050 DOI: 10.3390/cancers15061892] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Radiation has been utilized for a long time for the treatment of cancer patients. However, radiotherapy (RT) has many constraints, among which non-selectivity is the primary one. The implementation of nanoparticles (NPs) with RT not only localizes radiation in targeted tissue but also provides significant tumoricidal effect(s) compared to radiation alone. NPs can be functionalized with both biomolecules and therapeutic agents, and their combination significantly reduces the side effects of RT. NP-based RT destroys cancer cells through multiple mechanisms, including ROS generation, which in turn damages DNA and other cellular organelles, inhibiting of the DNA double-strand damage-repair system, obstructing of the cell cycle, regulating of the tumor microenvironment, and killing of cancer stem cells. Furthermore, such combined treatments overcome radioresistance and drug resistance to chemotherapy. Additionally, NP-based RT in combined treatments have shown synergistic therapeutic benefit(s) and enhanced the therapeutic window. Furthermore, a combination of phototherapy, i.e., photodynamic therapy and photothermal therapy with NP-based RT, not only reduces phototoxicity but also offers excellent therapeutic benefits. Moreover, using NPs with RT has shown promise in cancer treatment and shown excellent therapeutic outcomes in clinical trials. Therefore, extensive research in this field will pave the way toward improved RT in cancer treatment.
Collapse
Affiliation(s)
- Munima Haque
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka 1212, Bangladesh
| | - Md Salman Shakil
- Department of Mathematics and Natural Sciences, BRAC University, Dhaka 1212, Bangladesh
| | - Kazi Mustafa Mahmud
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|
28
|
Chuang YC, Wu PH, Shen YA, Kuo CC, Wang WJ, Chen YC, Lee HL, Chiou JF. Recent Advances in Metal-Based NanoEnhancers for Particle Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1011. [PMID: 36985905 PMCID: PMC10056155 DOI: 10.3390/nano13061011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Radiotherapy is one of the most common therapeutic regimens for cancer treatment. Over the past decade, proton therapy (PT) has emerged as an advanced type of radiotherapy (RT) that uses proton beams instead of conventional photon RT. Both PT and carbon-ion beam therapy (CIBT) exhibit excellent therapeutic results because of the physical characteristics of the resulting Bragg peaks, which has been exploited for cancer treatment in medical centers worldwide. Although particle therapies show significant advantages to photon RT by minimizing the radiation damage to normal tissue after the tumors, they still cause damage to normal tissue before the tumor. Since the physical mechanisms are different from particle therapy and photon RT, efforts have been made to ameliorate these effects by combining nanomaterials and particle therapies to improve tumor targeting by concentrating the radiation effects. Metallic nanoparticles (MNPs) exhibit many unique properties, such as strong X-ray absorption cross-sections and catalytic activity, and they are considered nano-radioenhancers (NREs) for RT. In this review, we systematically summarize the putative mechanisms involved in NRE-induced radioenhancement in particle therapy and the experimental results in in vitro and in vivo models. We also discuss the potential of translating preclinical metal-based NP-enhanced particle therapy studies into clinical practice using examples of several metal-based NREs, such as SPION, Abraxane, AGuIX, and NBTXR3. Furthermore, the future challenges and development of NREs for PT are presented for clinical translation. Finally, we propose a roadmap to pursue future studies to strengthen the interplay of particle therapy and nanomedicine.
Collapse
Affiliation(s)
- Yao-Chen Chuang
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110301, Taiwan; (Y.-C.C.)
| | - Ping-Hsiu Wu
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110301, Taiwan; (Y.-C.C.)
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Proton Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 110301, Taiwan
| | - Yao-An Shen
- Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Chia-Chun Kuo
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110301, Taiwan; (Y.-C.C.)
- Proton Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 110301, Taiwan
- School of Health Care Administration, College of Management, Taipei Medical University, Taipei 110301, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Jun Wang
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110301, Taiwan; (Y.-C.C.)
- Proton Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 110301, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Yu-Chen Chen
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Hsin-Lun Lee
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110301, Taiwan; (Y.-C.C.)
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Proton Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 110301, Taiwan
| | - Jeng-Fong Chiou
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110301, Taiwan; (Y.-C.C.)
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110301, Taiwan
- Proton Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
29
|
Wu Z, Stangl S, Hernandez-Schnelzer A, Wang F, Hasanzadeh Kafshgari M, Bashiri Dezfouli A, Multhoff G. Functionalized Hybrid Iron Oxide-Gold Nanoparticles Targeting Membrane Hsp70 Radiosensitize Triple-Negative Breast Cancer Cells by ROS-Mediated Apoptosis. Cancers (Basel) 2023; 15:cancers15041167. [PMID: 36831510 PMCID: PMC9954378 DOI: 10.3390/cancers15041167] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Triple-negative breast cancer (TNBC) a highly aggressive tumor entity with an unfavorable prognosis, is treated by multimodal therapies, including ionizing radiation (IR). Radiation-resistant tumor cells, as well as induced normal tissue toxicity, contribute to the poor clinical outcome of the disease. In this study, we investigated the potential of novel hybrid iron oxide (Fe3O4)-gold (Au) nanoparticles (FeAuNPs) functionalized with the heat shock protein 70 (Hsp70) tumor-penetrating peptide (TPP) and coupled via a PEG4 linker (TPP-PEG4-FeAuNPs) to improve tumor targeting and uptake of NPs and to break radioresistance in TNBC cell lines 4T1 and MDA-MB-231. Hsp70 is overexpressed in the cytosol and abundantly presented on the cell membrane (mHsp70) of highly aggressive tumor cells, including TNBCs, but not on corresponding normal cells, thus providing a tumor-specific target. The Fe3O4 core of the NPs can serve as a contrast agent enabling magnetic resonance imaging (MRI) of the tumor, and the nanogold shell radiosensitizes tumor cells by the release of secondary electrons (Auger electrons) upon X-ray irradiation. We demonstrated that the accumulation of TPP-PEG4-FeAuNPs into mHsp70-positive TNBC cells was superior to that of non-conjugated FeAuNPs and FeAuNPs functionalized with a non-specific, scrambled peptide (NGL). After a 24 h co-incubation period of 4T1 and MDA-MB-231 cells with TPP-PEG4-FeAuNPs, but not with control hybrid NPs, ionizing irradiation (IR) causes a cell cycle arrest at G2/M and induces DNA double-strand breaks, thus triggering apoptotic cell death. Since the radiosensitizing effect was completely abolished in the presence of the ROS inhibitor N-acetyl-L-cysteine (NAC), we assume that the TPP-PEG4-FeAuNP-induced apoptosis is mediated via an increased production of ROS.
Collapse
Affiliation(s)
- Zhiyuan Wu
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno Oncology Group, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany
| | - Stefan Stangl
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno Oncology Group, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Alicia Hernandez-Schnelzer
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno Oncology Group, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany
| | - Fei Wang
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno Oncology Group, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany
| | - Morteza Hasanzadeh Kafshgari
- Heinz-Nixdorf-Chair of Biomedical Electronics, TranslaTUM, Klinikum Rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Ali Bashiri Dezfouli
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno Oncology Group, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany
| | - Gabriele Multhoff
- Central Institute for Translational Cancer Research (TranslaTUM), Radiation Immuno Oncology Group, Klinikum Rechts der Isar der Technischen Universität München, 81675 Munich, Germany
- Department of Radiation Oncology, Klinikum Rechts der Isar, Technischen Universität München, 81675 Munich, Germany
- Correspondence: ; Tel.: +49-89-4140-4514; Fax: +49-89-4140-4299
| |
Collapse
|
30
|
Fotooh Abadi L, Kumar P, Paknikar K, Gajbhiye V, Kulkarni S. Tenofovir-tethered gold nanoparticles as a novel multifunctional long-acting anti-HIV therapy to overcome deficient drug delivery-: an in vivo proof of concept. J Nanobiotechnology 2023; 21:19. [PMID: 36658575 PMCID: PMC9850711 DOI: 10.1186/s12951-022-01750-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 12/20/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND The adoption of Antiretroviral Therapy (ART) substantially extends the life expectancy and quality of HIV-infected patients. Yet, eliminating the latent reservoirs of HIV to achieve a cure remains an unmet need. The advent of nanomedicine has revolutionized the treatment of HIV/AIDS. The present study explores a unique combination of Tenofovir (TNF) with gold nanoparticles (AuNPs) as a potential therapeutic approach to overcome several limitations of the current ART. RESULTS TNF-tethered AuNPs were successfully synthesized. Cell viability, genotoxicity, haemolysis, and histopathological studies confirmed the complete safety of the preparation. Most importantly, its anti-HIV1 reverse transcriptase activity was ~ 15 folds higher than the native TNF. In addition, it exhibited potent anti-HIV1 protease activity, a much sought-after target in anti-HIV1 therapeutics. Finally, the in vivo biodistribution studies validated that the AuNPs could reach many tissues/organs, serving as a secure nest for HIV and overcoming the problem of deficient drug delivery to HIV reservoirs. CONCLUSIONS We show that the combination of TNF and AuNPs exhibits multifunctional activity, viz. anti-HIV1 and anti-HIV1 protease. These findings are being reported for the first time and highlight the prospects of developing AuNP-TNF as a novel next-generation platform to treat HIV/AIDS.
Collapse
Affiliation(s)
- Leila Fotooh Abadi
- grid.419119.50000 0004 1803 003XDivision of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, 411 026 India
| | - Pramod Kumar
- grid.417727.00000 0001 0730 5817Nanobioscience Group, Agharkar Research Institute, Pune, 411 004 India
| | - Kishore Paknikar
- grid.417727.00000 0001 0730 5817Nanobioscience Group, Agharkar Research Institute, Pune, 411 004 India ,grid.417971.d0000 0001 2198 7527Department of Chemistry, Indian Institute of Technology, Mumbai, 400 076 India
| | - Virendra Gajbhiye
- grid.417727.00000 0001 0730 5817Nanobioscience Group, Agharkar Research Institute, Pune, 411 004 India
| | - Smita Kulkarni
- grid.419119.50000 0004 1803 003XDivision of Virology, Indian Council of Medical Research-National AIDS Research Institute, Pune, 411 026 India
| |
Collapse
|
31
|
Freitas SC, Sanderson D, Caspani S, Magalhães R, Cortés-Llanos B, Granja A, Reis S, Belo JH, Azevedo J, Gómez-Gaviro MV, de Sousa CT. New Frontiers in Colorectal Cancer Treatment Combining Nanotechnology with Photo- and Radiotherapy. Cancers (Basel) 2023; 15:383. [PMID: 36672333 PMCID: PMC9856291 DOI: 10.3390/cancers15020383] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 01/11/2023] Open
Abstract
Colorectal cancer is the third most common cancer worldwide. Despite recent advances in the treatment of this pathology, which include a personalized approach using radio- and chemotherapies in combination with advanced surgical techniques, it is imperative to enhance the performance of these treatments and decrease their detrimental side effects on patients' health. Nanomedicine is likely the pathway towards solving this challenge by enhancing both the therapeutic and diagnostic capabilities. In particular, plasmonic nanoparticles show remarkable potential due to their dual therapeutic functionalities as photothermal therapy agents and as radiosensitizers in radiotherapy. Their dual functionality, high biocompatibility, easy functionalization, and targeting capabilities make them potential agents for inducing efficient cancer cell death with minimal side effects. This review aims to identify the main challenges in the diagnosis and treatment of colorectal cancer. The heterogeneous nature of this cancer is also discussed from a single-cell point of view. The most relevant works in photo- and radiotherapy using nanotechnology-based therapies for colorectal cancer are addressed, ranging from in vitro studies (2D and 3D cell cultures) to in vivo studies and clinical trials. Although the results using nanoparticles as a photo- and radiosensitizers in photo- and radiotherapy are promising, preliminary studies showed that the possibility of combining both therapies must be explored to improve the treatment efficiency.
Collapse
Affiliation(s)
- Sara C. Freitas
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Daniel Sanderson
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Doctor Esquerdo 46, 28007 Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Sofia Caspani
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Ricardo Magalhães
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | | | - Andreia Granja
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - João Horta Belo
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - José Azevedo
- Colorectal Surgery—Champalimaud Foundation, Champalimaud Centre for the Unknown, Avenida Brasília, 1400-038 Lisboa, Portugal
| | - Maria Victoria Gómez-Gaviro
- Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Doctor Esquerdo 46, 28007 Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Leganés, Spain
| | - Célia Tavares de Sousa
- IFIMUP-Institute of Physics for Advanced Materials, Nanotechnology and Photonics of University of Porto, LaPMET-Laboratory of Physics for Materials and Emergent Technologies, Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
- Departamento de Física Aplicada, Facultad de Ciencias, Universidad Autonoma de Madrid (UAM), Campus de Cantoblanco, C/ Francisco Tomas y Valiente, 7, 28049 Madrid, Spain
| |
Collapse
|
32
|
Tsai SW, Lo CY, Yu SY, Chen FH, Huang HC, Wang LK, Liaw JW. Gold Nanoparticles Enhancing Generation of ROS for Cs-137 Radiotherapy. NANOSCALE RESEARCH LETTERS 2022; 17:123. [PMID: 36515781 PMCID: PMC9751242 DOI: 10.1186/s11671-022-03761-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/01/2022] [Indexed: 06/01/2023]
Abstract
Radiotherapy is an important modality for the treatment of cancer, e.g., X-ray, Cs-137 γ-ray (peak energy: 662 keV). An important therapy pathway of radiation is to generate the double strand breaks of DNA to prohibit the proliferation of cancer cells. In addition, the excessive amount of reactive oxygen species (ROS) is induced to damage the organelles, which can cause cellular apoptosis or necrosis. Gold nanoparticles (GNPs) have been proven potential as a radiosensitizer due to the high biocompatibility, the low cytotoxicity and the high-Z property (Z = 79) of gold. The latter property may allow GNPs to induce more secondary electrons for generating ROS in cells as irradiated by high-energy photons. In this paper, the radiobiological effects on A431 cells with uptake of 55-nm GNPs were studied to investigate the GNPs-enhanced production of ROS on these cells as irradiated by Cs-137 γ-ray. The fluorescence-labeling image of laser scanning confocal microscopy (LSCM) shows the excessive expression of ROS in these GNPs-uptake cells after irradiation. And then, the follow-up disruption of cytoskeletons and dysfunction of mitochondria caused by the induced ROS are observed. From the curves of cell survival fraction versus the radiation dose, the radiosensitization enhancement factor of GNPs is 1.29 at a survival fraction of 30%. This demonstrates that the tumoricidal efficacy of Cs-137 radiation can be significantly raised by GNPs. Because of facilitating the production of excessive ROS to damage tumor cells, GNPs are proven to be a prospective radiosensitizer for radiotherapy, particularly for the treatment of certain radioresistant tumor cells. Through this pathway, the tumoricidal efficacy of radiotherapy can be raised.
Collapse
Affiliation(s)
- Shiao-Wen Tsai
- Department of Biomedical Engineering, Chang Gung University, Taoyuan, Taiwan
- Department of Periodontics, Chang Gung Memorial Hospital, Taipei, Taiwan
| | - Chang-Yun Lo
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Shang-Yang Yu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan
| | - Fang-Hsin Chen
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsiao-Chieh Huang
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Proton and Radiation Therapy Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Lu-Kai Wang
- Radiation Biology Core Laboratory, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jiunn-Woei Liaw
- Department of Mechanical Engineering, Chang Gung University, Taoyuan, Taiwan.
- Proton and Radiation Therapy Center, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Mechanical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
| |
Collapse
|
33
|
Yu S, Chen L, Xu H, Long S, Jiang J, Wei W, Niu X, Li X. Application of nanomaterials in diagnosis and treatment of glioblastoma. Front Chem 2022; 10:1063152. [PMID: 36569956 PMCID: PMC9780288 DOI: 10.3389/fchem.2022.1063152] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Diagnosing and treating glioblastoma patients is currently hindered by several obstacles, such as tumor heterogeneity, the blood-brain barrier, tumor complexity, drug efflux pumps, and tumor immune escape mechanisms. Combining multiple methods can increase benefits against these challenges. For example, nanomaterials can improve the curative effect of glioblastoma treatments, and the synergistic combination of different drugs can markedly reduce their side effects. In this review, we discuss the progression and main issues regarding glioblastoma diagnosis and treatment, the classification of nanomaterials, and the delivery mechanisms of nanomedicines. We also examine tumor targeting and promising nano-diagnosis or treatment principles based on nanomedicine. We also summarize the progress made on the advanced application of combined nanomaterial-based diagnosis and treatment tools and discuss their clinical prospects. This review aims to provide a better understanding of nano-drug combinations, nano-diagnosis, and treatment options for glioblastoma, as well as insights for developing new tools.
Collapse
Affiliation(s)
- Shuangqi Yu
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Lijie Chen
- China Medical University, Shenyang, Liaoning, China
| | - Hongyu Xu
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Shengrong Long
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Jiazhi Jiang
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Wei Wei
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,*Correspondence: Xiang Li, ; Xing Niu, ; Wei Wei,
| | - Xing Niu
- China Medical University, Shenyang, Liaoning, China,*Correspondence: Xiang Li, ; Xing Niu, ; Wei Wei,
| | - Xiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,Brain Research Center, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China,*Correspondence: Xiang Li, ; Xing Niu, ; Wei Wei,
| |
Collapse
|
34
|
Towards high sensitivity and high-resolution PET scanners: imaging-guided proton therapy and total body imaging. BIO-ALGORITHMS AND MED-SYSTEMS 2022. [DOI: 10.2478/bioal-2022-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
Quantitative imaging (i.e., providing not just an image but also the related data) guidance in proton radiation therapy to achieve and monitor the precision of planned radiation energy deposition field in-vivo (a.k.a. proton range verification) is one of the most under-invested aspects of radiation cancer treatment despite that it may dramatically enhance the treatment accuracy and lower the exposure related toxicity improving the entire outcome of cancer therapy. In this article, we briefly describe the effort of the TPPT Consortium (a collaborative effort of groups from the University of Texas and Portugal) on building a time-of-flight positron-emission-tomography (PET) scanner to be used in pre-clinical studies for proton therapy at MD Anderson Proton Center in Houston. We also discuss some related ideas towards improving and expanding the use of PET detectors, including the total body imaging.
Collapse
|
35
|
Smith L, Kuncic Z, Byrne HL, Waddington D. Nanoparticles for MRI-guided radiation therapy: a review. Cancer Nanotechnol 2022. [DOI: 10.1186/s12645-022-00145-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractThe development of nanoparticle agents for MRI-guided radiotherapy is growing at an increasing pace, with clinical trials now underway and many pre-clinical evaluation studies ongoing. Gadolinium and iron-oxide-based nanoparticles remain the most clinically advanced nanoparticles to date, although several promising candidates are currently under varying stages of development. Goals of current and future generation nanoparticle-based contrast agents for MRI-guided radiotherapy include achieving positive signal contrast on T1-weighted MRI scans, local radiation enhancement at clinically relevant concentrations and, where applicable, avoidance of uptake by the reticuloendothelial system. Exploiting the enhanced permeability and retention effect or the use of active targeting ligands on nanoparticle surfaces is utilised to promote tumour uptake. This review outlines the current status of promising nanoparticle agents for MRI-guided radiation therapy, including several platforms currently undergoing clinical evaluation or at various stages of the pre-clinical development process. Challenges facing nanoparticle agents and possible avenues for current and future development are discussed.
Collapse
|
36
|
Gold Nanoparticles-Mediated Photothermal Therapy of Pancreas Using GATE: A New Simulation Platform. Cancers (Basel) 2022; 14:cancers14225686. [PMID: 36428778 PMCID: PMC9688087 DOI: 10.3390/cancers14225686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
This work presents the first investigation of gold nanorods (GNRs)-based photothermal therapy of the pancreas tumor using the Monte Carlo-based code implemented with Geant4 Application for Emission Tomography (GATE). The model of a human pancreas was obtained by segmenting an abdominal computed tomography (CT) scan, and its physical and chemical properties, were obtained from experimental and theoretical data. In GATE, GNRs-mediated hyperthermal therapy, simple heat diffusion as well as interstitial laser ablation were then modeled in the pancreas tumor by defining the optical parameters of this tissue when it is loaded with GNRs. Two different experimental setups on ex vivo pancreas tissue and GNRs-embedded water were devised to benchmark the developed Monte Carlo-based model for the hyperthermia in the pancreas alone and with GNRs, respectively. The influence of GNRs on heat distribution and temperature increase within the pancreas tumor was compared for two different power values (1.2 W and 2.1 W) when the tumor was exposed to 808 nm laser irradiation and with two different laser applicator diameters. Benchmark tests demonstrated the possibility of the accurate simulating of NPs-assisted thermal therapy and reproducing the experimental data with GATE software. Then, the output of the simulated GNR-mediated hyperthermia emphasized the importance of the precise evaluation of all of the parameters for optimizing the preplanning of cancer thermal therapy. Simulation results on temperature distribution in the pancreas tumor showed that the temperature enhancement caused by raising the power was increased with time in both the tumor with and without GNRs, but it was higher for the GNR-load tumor compared to tumor alone.
Collapse
|
37
|
Neuer AL, Jessernig A, Gerken LRH, Gogos A, Starsich FHL, Anthis AHC, Herrmann IK. Cellular fate and performance of group IV metal organic framework radioenhancers. Biomater Sci 2022; 10:6558-6569. [PMID: 36215095 PMCID: PMC9641950 DOI: 10.1039/d2bm00973k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/12/2022] [Indexed: 08/09/2023]
Abstract
Nano-sized metal organic frameworks (nanoMOFs) have gained increasing importance in biomedicine due to their tunable properties. In addition to their use as carriers in drug delivery, nanoMOFs containing hafnium have been successfully employed as radio-enhancers augmenting damage caused by X-ray irradiation in tumor tissue. While results are encouraging, there is little mechanistic understanding available, and the biological fate of these radio-enhancer nanoparticles remains largely unexplored. Here, we synthesized a selection of group IV metal-based (Hf, Ti, Ti/Zr) nanoMOFs and investigated their cell compatibility and radio-enhancement performance in direct comparison to the corresponding metal oxides. We report surprising radio-enhancement performance of Ti-containing nanoMOFs reaching dose modifying ratios of 3.84 in human sarcoma cells and no relevant dose modification in healthy human fibroblasts. These Ti-based nanoMOFs even outperformed previously reported Hf-based nanoMOFs as well as equimolar group IV metal oxides in direct benchmarking experiments. While group IV nanoMOFs were well-tolerated by cells in the absence of irradiation, the nanoMOFs partially dissolved in lysosomal buffer conditions showing distinctly different chemical stability compared to widely researched group IV oxides (TiO2, ZrO2, and HfO2). Taken together, this study illustrates the promising potential of Ti-based nanoMOFs for radio-enhancement and provides insight into the intracellular fate and stability of group IV nanoMOFs.
Collapse
Affiliation(s)
- Anna Lena Neuer
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Alexander Jessernig
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Lukas R H Gerken
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Alexander Gogos
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Fabian H L Starsich
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Alexandre H C Anthis
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Inge K Herrmann
- Laboratory for Particles-Biology Interactions, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
- Nanoparticle Systems Engineering Laboratory, Institute of Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, 8092 Zurich, Switzerland
| |
Collapse
|
38
|
DuRoss AN, Phan J, Lazar AJ, Walker JM, Guimaraes AR, Baas C, Krishnan S, Thomas CR, Sun C, Bagley AF. Radiotherapy reimagined: Integrating nanomedicines into radiotherapy clinical trials. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 15:e1867. [PMID: 36308008 DOI: 10.1002/wnan.1867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 04/16/2023]
Abstract
Radioenhancing nanoparticles (NPs) are being evaluated in ongoing clinical trials for various cancers including head and neck, lung, esophagus, pancreas, prostate, and soft tissue sarcoma. Supported by decades of preclinical investigation and recent randomized trial data establishing clinical activity, these agents are poised to influence future multimodality treatment paradigms involving radiotherapy. Although the physical interactions between NPs and ionizing radiation are well characterized, less is known about how these agents modify the tumor microenvironment, particularly regarding tumor immunogenicity. In this review, we describe the key multidisciplinary considerations related to radiation, surgery, immunology, and pathology for designing radioenhancing NP clinical trials. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Allison N DuRoss
- Department of Pharmaceutical Sciences, Oregon State University, Portland, Oregon, USA
| | - Jack Phan
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Alexander J Lazar
- Department of Pathology and Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Joshua M Walker
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Alexander R Guimaraes
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Carole Baas
- National Cancer Institute, Bethesda, Maryland, USA
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida, USA
| | - Charles R Thomas
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Radiation Oncology, Norris Cotton Cancer Center, Dartmouth University, Lebanon, New Hampshire, USA
| | - Conroy Sun
- Department of Pharmaceutical Sciences, Oregon State University, Portland, Oregon, USA
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Alexander F Bagley
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA
- Department of Radiation Oncology, Samaritan Health Services, Corvallis, Oregon, USA
| |
Collapse
|
39
|
Chemical Overview of Gel Dosimetry Systems: A Comprehensive Review. Gels 2022; 8:gels8100663. [PMID: 36286165 PMCID: PMC9601373 DOI: 10.3390/gels8100663] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Advances in radiotherapy technology during the last 25 years have significantly improved both dose conformation to tumors and the preservation of healthy tissues, achieving almost real-time feedback by means of high-precision treatments and theranostics. Owing to this, developing high-performance systems capable of coping with the challenging requirements of modern ionizing radiation is a key issue to overcome the limitations of traditional dosimeters. In this regard, a deep understanding of the physicochemical basis of gel dosimetry, as one of the most promising tools for the evaluation of 3D high-spatial-resolution dose distributions, represents the starting point for developing new and innovative systems. This review aims to contribute thorough descriptions of the chemical processes and interactions that condition gel dosimetry outputs, often phenomenologically addressed, and particularly formulations reported since 2017.
Collapse
|
40
|
Rasouli N, Shahbazi-Gahrouei D, Hematti S, Baradaran B, Salehi R, Varshosaz J, Jafarizad A. Assessment of Oxaliplatin-Loaded Iodine Nanoparticles for Chemoradiotherapy of Human Colorectal Cancer (HT-29) Cells. Polymers (Basel) 2022; 14:4131. [PMID: 36236079 PMCID: PMC9572447 DOI: 10.3390/polym14194131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/07/2022] Open
Abstract
Colorectal cancer is highly prevalent worldwide and has significant morbidity and mortality in humans. High-atomic-number nanoparticles such as iodine can act as X-rays absorbers to increase the local dose. The synthesis and fabrication of oxaliplatin-loaded iodine nanoparticles, their characterization, cell toxicity, radiosensitivity, cell apoptosis, and cell cycle assay in human colorectal cancer (HT-29) cells are investigated. Results show that the synthesis of a new iodine nanoparticle, polymerized triiodobenzene coated with chitosan and combined with oxaliplatin as a chemotherapeutic drug, performed well in vitro in an intracellular radiosensitizer as chemoradiotherapy agent in HT-29 cell lines. Findings also show that the INPs alone have no impact on cell cycle development and apoptosis. In contrast, oxaliplatin-loaded INPs along with 2 and 6 MV radiation doses produced more apoptosis. The interaction of INPs with mega-voltage photon energies is the cause of a major radiosensitization enhancement in comparison to radiation alone. Furthermore, results show that INPs may work as radiosensitization nanoprobe agents in the treatment of HT-29 cells due to their effect on increasing radiation dose absorption. Overall, iodine nanoparticles may be used in the treatment of colorectal cancers in clinical studies.
Collapse
Affiliation(s)
- Naser Rasouli
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Daryoush Shahbazi-Gahrouei
- Department of Medical Physics, School of Medicine, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Simin Hematti
- Department of Radiooncology, School of Medicine, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | - Roya Salehi
- Drug Applied Research Center, Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | - Jaleh Varshosaz
- Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 8174673461, Iran
| | - Abbas Jafarizad
- Department of Chemical Engineering, Sahand University of Technology, Tabriz 5165665931, Iran
| |
Collapse
|
41
|
Monte Carlo study on size-dependent radiation enhancement effects of spinel ferrite nanoparticles. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Higashi Y, Ma Y, Matsumoto K, Shiro A, Saitoh H, Kawachi T, Tamanoi F. Auger electrons and DNA double-strand breaks studied by using iodine-containing chemicals. Enzymes 2022; 51:101-115. [PMID: 36336404 DOI: 10.1016/bs.enz.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Irradiation of high Z elements such as iodine, gold, gadolinium with monochromatic X-rays causes photoelectric effects that include the release of Auger electrons. Decay of radioactive iodine such as I-123 and I-125 also results in multiple events and some involve the generation of Auger electrons. These electrons have low energy and travel only a short distance but have a strong effect on DNA damage including the generation of double-strand breaks. In this chapter, we focus on iodine and discuss various studies that used iodine-containing chemicals to generate Auger electrons and cause DNA double-strand breaks. First, DNA synthesis precursors containing iodine were used to place iodine on DNA. DNA binding dyes such as iodine Hoechst were investigated for Auger electron generation and DNA breaks. More recently, iodine containing nanoparticles were developed. We describe our study using tumor spheroids loaded with iodine nanoparticles and synchrotron-generated monochromatic X-rays. This study led to the demonstration that an optimum effect on DNA double-strand break formation is observed with a 33.2keV X-ray which is just above the K-edge energy of iodine.
Collapse
Affiliation(s)
- Yuya Higashi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Yue Ma
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Kotaro Matsumoto
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| | - Ayumi Shiro
- Kansai Photon Science Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum Science and Technology, Hyogo, Japan
| | - Hiroyuki Saitoh
- Kansai Photon Science Institute, Quantum Beam Science Research Directorate, National Institutes for Quantum Science and Technology, Hyogo, Japan
| | - Tetsuya Kawachi
- Kansai Photon Science Institute, Quantum Beam Science Research Directorate, National Institute for Quantum Science and Technology, Kizu, Japan
| | - Fuyuhiko Tamanoi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto, Japan
| |
Collapse
|
43
|
Secchi V, Monguzzi A, Villa I. Design Principles of Hybrid Nanomaterials for Radiotherapy Enhanced by Photodynamic Therapy. Int J Mol Sci 2022; 23:8736. [PMID: 35955867 PMCID: PMC9369190 DOI: 10.3390/ijms23158736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/24/2022] Open
Abstract
Radiation (RT) remains the most frequently used treatment against cancer. The main limitation of RT is its lack of specificity for cancer tissues and the limited maximum radiation dose that can be safely delivered without damaging the surrounding healthy tissues. A step forward in the development of better RT is achieved by coupling it with other treatments, such as photodynamic therapy (PDT). PDT is an anti-cancer therapy that relies on the light activation of non-toxic molecules-called photosensitizers-to generate ROS such as singlet oxygen. By conjugating photosensitizers to dense nanoscintillators in hybrid architectures, the PDT could be activated during RT, leading to cell death through an additional pathway with respect to the one activated by RT alone. Therefore, combining RT and PDT can lead to a synergistic enhancement of the overall efficacy of RT. However, the involvement of hybrids in combination with ionizing radiation is not trivial: the comprehension of the relationship among RT, scintillation emission of the nanoscintillator, and therapeutic effects of the locally excited photosensitizers is desirable to optimize the design of the hybrid nanoparticles for improved effects in radio-oncology. Here, we discuss the working principles of the PDT-activated RT methods, pointing out the guidelines for the development of effective coadjutants to be tested in clinics.
Collapse
Affiliation(s)
- Valeria Secchi
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
- NANOMIB, Center for Biomedical Nanomedicine, University of Milano-Bicocca, P.zza Ateneo Nuovo 1, 20126 Milan, Italy
| | - Angelo Monguzzi
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
- NANOMIB, Center for Biomedical Nanomedicine, University of Milano-Bicocca, P.zza Ateneo Nuovo 1, 20126 Milan, Italy
| | - Irene Villa
- Institute of Physics of the Czech Academy of Sciences, FZU, Cukrovarnická 10/112, 16200 Prague, Czech Republic
| |
Collapse
|
44
|
Breaking photoswitch activation depth limit using ionising radiation stimuli adapted to clinical application. Nat Commun 2022; 13:4102. [PMID: 35835744 PMCID: PMC9283480 DOI: 10.1038/s41467-022-30917-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 05/10/2022] [Indexed: 11/08/2022] Open
Abstract
Electromagnetic radiation-triggered therapeutic effect has attracted a great interest over the last 50 years. However, translation to clinical applications of photoactive molecular systems developed to date is dramatically limited, mainly because their activation requires excitation by low-energy photons from the ultraviolet to near infra-red range, preventing any activation deeper than few millimetres under the skin. Herein we conceive a strategy for photosensitive-system activation potentially adapted to biological tissues without any restriction in depth. High-energy stimuli, such as those employed for radiotherapy, are used to carry energy while molecular activation is provided by local energy conversion. This concept is applied to azobenzene, one of the most established photoswitches, to build a radioswitch. The radiation-responsive molecular system developed is used to trigger cytotoxic effect on cancer cells upon gamma-ray irradiation. This breakthrough activation concept is expected to expand the scope of applications of photosensitive systems and paves the way towards the development of original therapeutic approaches.
Collapse
|
45
|
Gerken LRH, Gogos A, Starsich FHL, David H, Gerdes ME, Schiefer H, Psoroulas S, Meer D, Plasswilm L, Weber DC, Herrmann IK. Catalytic activity imperative for nanoparticle dose enhancement in photon and proton therapy. Nat Commun 2022; 13:3248. [PMID: 35668122 PMCID: PMC9170699 DOI: 10.1038/s41467-022-30982-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/24/2022] [Indexed: 12/19/2022] Open
Abstract
Nanoparticle-based radioenhancement is a promising strategy for extending the therapeutic ratio of radiotherapy. While (pre)clinical results are encouraging, sound mechanistic understanding of nanoparticle radioenhancement, especially the effects of nanomaterial selection and irradiation conditions, has yet to be achieved. Here, we investigate the radioenhancement mechanisms of selected metal oxide nanomaterials (including SiO2, TiO2, WO3 and HfO2), TiN and Au nanoparticles for radiotherapy utilizing photons (150 kVp and 6 MV) and 100 MeV protons. While Au nanoparticles show outstanding radioenhancement properties in kV irradiation settings, where the photoelectric effect is dominant, these properties are attenuated to baseline levels for clinically more relevant irradiation with MV photons and protons. In contrast, HfO2 nanoparticles retain some of their radioenhancement properties in MV photon and proton therapies. Interestingly, TiO2 nanoparticles, which have a comparatively low effective atomic number, show significant radioenhancement efficacies in all three irradiation settings, which can be attributed to the strong radiocatalytic activity of TiO2, leading to the formation of hydroxyl radicals, and nuclear interactions with protons. Taken together, our data enable the extraction of general design criteria for nanoparticle radioenhancers for different treatment modalities, paving the way to performance-optimized nanotherapeutics for precision radiotherapy. Nanoparticles have recently received attention in radiation therapy since they can act as radioenhancers. In this article, the authors report on the dose enhancement capabilities of a series of nanoparticles based on their metal core composition and beam characteristics, obtaining designing criteria for their optimal performance in specific radiotreatments.
Collapse
Affiliation(s)
- Lukas R H Gerken
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland.,Particles Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Alexander Gogos
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland.,Particles Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Fabian H L Starsich
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland.,Particles Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland
| | - Helena David
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland
| | - Maren E Gerdes
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland
| | - Hans Schiefer
- Department of Radiation Oncology, Cantonal Hospital St. Gallen (KSSG), Rorschacherstrasse 95, CH-9007, St. Gallen, Switzerland
| | - Serena Psoroulas
- Center for Proton Therapy, Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - David Meer
- Center for Proton Therapy, Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Ludwig Plasswilm
- Department of Radiation Oncology, Cantonal Hospital St. Gallen (KSSG), Rorschacherstrasse 95, CH-9007, St. Gallen, Switzerland.,Department of Radiation Oncology, University Hospital Bern (Inselspital), 3010, Bern, Switzerland
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute (PSI), Forschungsstrasse 111, 5232, Villigen PSI, Switzerland.,Department of Radiation Oncology, University Hospital Bern (Inselspital), 3010, Bern, Switzerland.,Department of Radiation Oncology, University Hospital Zürich, 8091, Zürich, Switzerland
| | - Inge K Herrmann
- Nanoparticle Systems Engineering Laboratory, Institute of Energy and Process Engineering (IEPE), Department of Mechanical and Process Engineering (D-MAVT), ETH Zurich, Sonneggstrasse 3, 8092, Zurich, Switzerland. .,Particles Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014, St. Gallen, Switzerland.
| |
Collapse
|
46
|
Rani N, Singla RK, Redhu R, Narwal S, Sonia, Bhatt A. A Review on Green Synthesis of Silver Nanoparticles and its Role Against Cancer. Curr Top Med Chem 2022; 22:1460-1471. [PMID: 35652404 DOI: 10.2174/1568026622666220601165005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/13/2022] [Accepted: 04/13/2022] [Indexed: 02/08/2023]
Abstract
Cancer is a fatal disease, with a collection of related diseases in various body parts. The conventional therapies cannot show the desired results of treatment due to their imprecise targeting, deprived drug delivery, and side effects. Therefore, it is required to make the drug engineered in such a way that it can target only cancerous cells and can inhibit its growth and proliferation. Nanotechnology is a technology that can target and differentiate between cancerous cells and the normal cells of the body. Silver itself is a good anticancer and antibacterial agent and employing it with phytochemicals having anticancer properties, and nanotechnology can give the best approach for the treatment. The synthesis of silver nanoparticles using plant extracts is an economical, energy-efficient, low-cost approach and it doesn't need any hazardous chemicals. In the present review, we discussed different methods of synthesis of silver nanoparticles using herbal extracts and their role against cancer therapy along with the synergistic role of silver and plant extracts against cancer in the formulation.
Collapse
Affiliation(s)
- Neeraj Rani
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani (HR), India
| | - Rajeev K Singla
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,iGlobal Research and Publishing Foundation, New Delhi, India
| | - Rakesh Redhu
- Vaish Institute of Pharmaceutical Education and Research, Rohtak (HR), India
| | - Sonia Narwal
- Faculty of Pharmaceutical Sciences, PDM University, Bahadurgarh (HR), India
| | - Sonia
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University, Bhiwani (HR), India
| | - Alok Bhatt
- School of Pharmaceutical Sciences Himgiri Zee University, Dehradun, India
| |
Collapse
|
47
|
Clinical Feasibility Study of Gold Nanoparticles as Theragnostic Agents for Precision Radiotherapy. Biomedicines 2022; 10:biomedicines10051214. [PMID: 35625950 PMCID: PMC9139134 DOI: 10.3390/biomedicines10051214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Gold nanoparticles (AuNP) may be useful in precision radiotherapy and disease monitoring as theragnostic agents. In diagnostics, they can be detected by computerized tomography (CT) because of their higher atomic number. AuNP may also improve the treatment results in radiotherapy due to a higher cross-section, locally improving the physically absorbed dose. Methods: Key parameters values involved in the use of AuNP were imposed to be optimal in the clinical scenario. Mass concentration of AuNP as an efficient contrast agent in clinical CT was found and implemented in a Monte Carlo simulation method for dose calculation under different proposed therapeutic beams. The radiosensitization effect was determined in irradiated cells with AuNP. Results: an AuNP concentration was found for a proper contrast level and enhanced therapeutic effect under a beam typically used for image-guided therapy and monitoring. This lower energetic proposed beam showed potential use for treatment monitoring in addition to absorbed dose enhancement and higher radiosensitization at the cellular level. Conclusion: the results obtained show the use of AuNP concentration around 20 mg Au·mL−1 as an efficient tool for diagnosis, treatment planning, and monitoring treatment. Simultaneously, the delivered prescription dose provides a higher radiobiological effect on the cancer cell for achieving precision radiotherapy.
Collapse
|
48
|
Mochizuki C, Kayabe Y, Nakamura J, Igase M, Mizuno T, Nakamura M. Surface Functionalization of Organosilica Nanoparticles With Au Nanoparticles Inhibits Cell Proliferation and Induces Cell Death in 4T1 Mouse Mammary Tumor Cells for DNA and Mitochondrial-Synergized Damage in Radiotherapy. Front Chem 2022; 10:907642. [PMID: 35620651 PMCID: PMC9127317 DOI: 10.3389/fchem.2022.907642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Radiotherapy is one of the most effective cancer treatments. Au nanoparticles (NPs) are one of the most used X-ray sensitizing materials however the effective small sub-nm size of Au NPs used for X-ray sensitizers is disadvantageous for cellular uptake. Here, we propose the surface functionalization of organosilica NPs (OS) with Au NPs (OS/Au), which combined the 100 nm size of OS and the sub-nm size of Au NPs, and synthesized effective Au materials as an X-ray sensitizer. The X-ray sensitizing potential for 4T1 mouse mammary tumor cells was revealed using a multifaceted evaluation combined with a fluorescence microscopic cell imaging assay. The number of polyethyleneimine (PEI)-modified OS (OS/PEI) and OS/Au (OS/Au/PEI) uptake per 4T1 mouse mammary tumor cell was the same; however, 4T1 cells treated with OS/Au/PEI exhibited significant inhibition of cell proliferation and increases in cell death by X-ray irradiation at 8Gy. The non-apoptotic death of OS/Au/PEI-treated 4T1 cells was increased by DNA and mitochondrial-synergized damage increase and showed potential applications in radiotherapy.
Collapse
Affiliation(s)
- Chihiro Mochizuki
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, Yamaguchi, Japan
| | - Yukihito Kayabe
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Junna Nakamura
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, Yamaguchi, Japan
| | - Masaya Igase
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Michihiro Nakamura
- Department of Organ Anatomy and Nanomedicine, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
- Core Clusters for Research Initiatives of Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
49
|
Ahmed B S, Baijal G, Somashekar R, Iyer S, Nayak V. Comparative study of one pot synthesis of PEGylated gold and silver nanoparticles for imaging and radiosensitization of oral cancers. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.109990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Geant4 track structure simulation of electron beam interaction with a gold nanoparticle. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|