1
|
Episkopakis A, Margaroni V, Karaiskos P, Koutsouveli E, Marinos N, Pappas EP. Relative profile measurements in 1.5T MR-linacs: investigation of central axis deviations. Phys Med Biol 2024; 69:175015. [PMID: 39137816 DOI: 10.1088/1361-6560/ad6ed7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Objective. In 1.5 T MR-linacs, the absorbed dose central axis (CAX) deviates from the beam's CAX due to inherent profile asymmetry. In addition, a measured CAX deviation may be biased due to potential lateral (to the beam) effective point of measurement (EPOML) shifts of the detector employed. By investigating CAX deviations, the scope of this study is to determine a set ofEPOMLshifts for profile measurements in 1.5 T MR-linacs.Approach. The Semiflex 3D ion chamber and microDiamond detector (PTW, Germany) were considered in the experimental study while three more detectors were included in the Monte Carlo (MC) study. CAX deviations in the crossline and inline profiles were calculated based on inflection points of the 10×10 cm2field, at five centers. In MC simulations, the experimental setup was reproduced. A small water voxel was simulated to calculate CAX deviation without the impact of the detector-specificEPOMLshift.Main results. All measurements were consistent among the five centers. MC-based and experimental measurements were in agreement within uncertainties. Placing the microDiamond in the vertical orientation does not appear to affect the detector'sEPOML, which is on its central longitudinal axis. For the Semiflex 3D in the crossline direction, the CAX deviation was 2.3 mm, i.e. 1 mm larger than the ones measured using the microDiamond and simulated considering the ideal water detector. Thus, anEPOMLshift of 1 mm is recommended for crossline profile measurements under both Semiflex 3D orientations. For the inline profile, anEPOMLshift of -0.5 mm was determined only for the parallel configuration. In the MC study, CAX deviations were found detector- and orientation-dependent. The dead volume is responsible for theEPOMLshift only in the inline profile and under the parallel orientation.Significance. This work contributes to data availability on the correction or mitigation of the magnetic field-induced changes in the detectors' response.
Collapse
Affiliation(s)
- Anastasios Episkopakis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 115 27 Athens, Greece
- Global Clinical Operations, Elekta Ltd, Fleming Way, RH10 99RR Crawley, West Sussex, United Kingdom
| | - Vasiliki Margaroni
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 115 27 Athens, Greece
| | - Pantelis Karaiskos
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 115 27 Athens, Greece
| | - Efi Koutsouveli
- Medical Physics Department, Hygeia Hospital, Kifisias Avenue and 4 Erythrou Stavrou, Marousi, 151 23 Athens, Greece
| | - Nikolas Marinos
- Global Clinical Operations, Elekta Ltd, Fleming Way, RH10 99RR Crawley, West Sussex, United Kingdom
| | - Eleftherios P Pappas
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 115 27 Athens, Greece
| |
Collapse
|
2
|
Chea M, Croisé M, Huet C, Bassinet C, Benadjaoud MA, Jenny C. MR compatible detectors assessment for a 0.35 T MR-linac commissioning. Radiat Oncol 2024; 19:40. [PMID: 38509543 PMCID: PMC10956263 DOI: 10.1186/s13014-024-02431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024] Open
Abstract
PURPOSE To assess a large panel of MR compatible detectors on the full range of measurements required for a 0.35 T MR-linac commissioning by using a specific statistical method represented as a continuum of comparison with the Monte Carlo (MC) TPS calculations. This study also describes the commissioning tests and the secondary MC dose calculation validation. MATERIAL AND METHODS Plans were created on the Viewray TPS to generate MC reference data. Absolute dose points, PDD, profiles and output factors were extracted and compared to measurements performed with ten different detectors: PTW 31010, 31021, 31022, Markus 34045 and Exradin A28 MR ionization chambers, SN Edge shielded diode, PTW 60019 microdiamond, PTW 60023 unshielded diode, EBT3 radiochromic films and LiF µcubes. Three commissioning steps consisted in comparison between calculated and measured dose: the beam model validation, the output calibration verification in four different phantoms and the commissioning tests recommended by the IAEA-TECDOC-1583. MAIN RESULTS The symmetry for the high resolution detectors was higher than the TPS data of about 1%. The angular responses of the PTW 60023 and the SN Edge were - 6.6 and - 11.9% compared to the PTW 31010 at 60°. The X/Y-left and the Y-right penumbras measured by the high resolution detectors were in good agreement with the TPS values except for the PTW 60023 for large field sizes. For the 0.84 × 0.83 cm2 field size, the mean deviation to the TPS of the uncorrected OF was - 1.7 ± 1.6% against - 4.0 ± 0.6% for the corrected OF whereas we found - 4.8 ± 0.8% for passive dosimeters. The mean absolute dose deviations to the TPS in different phantoms were 0 ± 0.4%, - 1.2 ± 0.6% and 0.5 ± 1.1% for the PTW 31010, PTW 31021 and Exradin A28 MR respectively. CONCLUSIONS The magnetic field effects on the measurements are considerably reduced at low magnetic field. The PTW 31010 ionization chamber can be used with confidence in different phantoms for commissioning and QA tests requiring absolute dose verifications. For relative measurements, the PTW 60019 presented the best agreement for the full range of field size. For the profile assessment, shielded diodes had a behaviour similar to the PTW 60019 and 60023 while the ionization chambers were the most suitable detectors for the symmetry. The output correction factors published by the IAEA TRS 483 seem to be applicable at low magnetic field pending the publication of new MR specific values.
Collapse
Affiliation(s)
- Michel Chea
- Medical Physics Department, Pitié-Salpêtrière Hospital, AP-HP Sorbonne University, 47-83 Boulevard de l'Hôpital, 75651, Paris Cedex 13, France.
| | - Mathilde Croisé
- Medical Physics Department, Pitié-Salpêtrière Hospital, AP-HP Sorbonne University, 47-83 Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Christelle Huet
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LDRI, 92260, Fontenay-aux-Roses, France
| | - Céline Bassinet
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LDRI, 92260, Fontenay-aux-Roses, France
| | - Mohamed-Amine Benadjaoud
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED, 92260, Fontenay-aux-Roses, France
| | - Catherine Jenny
- Medical Physics Department, Pitié-Salpêtrière Hospital, AP-HP Sorbonne University, 47-83 Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| |
Collapse
|
3
|
Kierkels RGJ, Hernandez V, Saez J, Angerud A, Hilgers GC, Surmann K, Schuring D, Minken AWH. Multileaf collimator characterization and modeling for a 1.5 T MR-linac using static synchronous and asynchronous sweeping gaps. Phys Med Biol 2024; 69:075004. [PMID: 38412538 DOI: 10.1088/1361-6560/ad2d7d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Objective.The Elekta unity MR-linac delivers step-and-shoot intensity modulated radiotherapy plans using a multileaf collimator (MLC) based on the Agility MLC used on conventional Elekta linacs. Currently, details of the physical Unity MLC and the computational model within its treatment planning system (TPS)Monacoare lacking in published literature. Recently, a novel approach to characterize the physical properties of MLCs was introduced using dynamic synchronous and asynchronous sweeping gap (aSG) tests. Our objective was to develop a step-and-shoot version of the dynamic aSG test to characterize the Unity MLC and the computational MLC models in theMonacoandRayStationTPSs.Approach.Dynamic aSG were discretized into a step-and-shoot aSG by investigating the number of segments/sweep and the minimal number of monitor units (MU) per segment. The step-and-shoot aSG tests were compared to the dynamic aSG tests on a conventional linac at a source-to-detector distance of 143.5 cm, mimicking the Unity configuration. the step-and-shoot aSG tests were used to characterize the Unity MLC through measurements and dose calculations in both TPSs.Main results.The step-and-shoot aSGs tests with 100 segments and 5 MU/segment gave results very similar to the dynamic aSG experiments. The effective tongue-and-groove width of the Unity gradually increased up to 1.4 cm from the leaf tip end. The MLC models inRayStationandMonacoagreed with experimental data within 2.0% and 10%, respectively. The largest discrepancies inMonacowere found for aSG tests with >10 mm leaf interdigitation, which are non-typical for clinical plans.Significance.The step-and-shoot aSG tests accurately characterize the MLC in step-and-shoot delivery mode. The MLC model inRayStation2023B accurately describes the tongue-and-groove and leaf tip effects whereasMonacooverestimates the tongue-and-groove shadowing further away from the leaf tip end.
Collapse
Affiliation(s)
| | - Victor Hernandez
- Hospital Sant Joan de Reus, Department of Medical Physics, Reus, Spain
| | - Jordi Saez
- Hospital Clínic de Barcelona, Department of Radiation Oncology, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
4
|
Oolbekkink S, van Asselen B, Woodings SJ, Wolthaus JWH, de Vries JHW, van Appeldoorn AA, Feijoo M, van den Dobbelsteen M, Raaymakers BW. Influence of magnetic field on a novel scintillation dosimeter in a 1.5 T MR-linac. J Appl Clin Med Phys 2024; 25:e14180. [PMID: 38011008 PMCID: PMC10795437 DOI: 10.1002/acm2.14180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/23/2023] [Accepted: 09/18/2023] [Indexed: 11/29/2023] Open
Abstract
For commissioning and quality assurance for adaptive workflows on the MR-linac, a dosimeter which can measure time-resolved dose during MR image acquisition is desired. The Blue Physics model 10 scintillation dosimeter is potentially an ideal detector for such measurements. However, some detectors can be influenced by the magnetic field of the MR-linac. To assess the calibration methods and magnetic field dependency of the Blue Physics scintillator in the 1.5 T MR-linac. Several calibration methods were assessed for robustness. Detector characteristics and the influence of the calibration methods were assessed based on dose reproducibility, dose linearity, dose rate dependency, relative output factor (ROF), percentage depth dose profile, axial rotation and the radial detector orientation with respect to the magnetic field. The potential application of time-resolved dynamic dose measurements during MRI acquisition was assessed. A variation of calibration factors was observed for different calibration methods. Dose reproducibility, dose linearity and dose rate stability were all found to be within tolerance and were not significantly affected by different calibration methods. Measurements with the detector showed good correspondence with reference chambers. The ROF and radial orientation dependence measurements were influenced by the calibration method used. Axial detector dependence was assessed and relative readout differences of up to 2.5% were observed. A maximum readout difference of 10.8% was obtained when rotating the detector with respect to the magnetic field. Importantly, measurements with and without MR image acquisition were consistent for both static and dynamic situations. The Blue Physics scintillation detector is suitable for relative dosimetry in the 1.5 T MR-linac when measurements are within or close to calibration conditions.
Collapse
Affiliation(s)
- Stijn Oolbekkink
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Bram van Asselen
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Simon J. Woodings
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | | | | | | | | | - Bas W. Raaymakers
- Department of RadiotherapyUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
5
|
Patterson E, Stokes P, Cutajar D, Rosenfeld A, Baines J, Metcalfe P, Powers M. High-resolution entry and exit surface dosimetry in a 1.5 T MR-linac. Phys Eng Sci Med 2023; 46:787-800. [PMID: 36988905 DOI: 10.1007/s13246-023-01251-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/21/2023] [Indexed: 03/30/2023]
Abstract
The magnetic field of a transverse MR-linac alters electron trajectories as the photon beam transits through materials, causing lower doses at flat entry surfaces and increased doses at flat beam-exiting surfaces. This study investigated the response of a MOSFET detector, known as the MOSkin™, for high-resolution surface and near-surface percentage depth dose measurements on an Elekta Unity. Simulations with Geant4 and the Monaco treatment planning system (TPS), and EBT-3 film measurements, were also performed for comparison. Measured MOSkin™ entry surface doses, relative to Dmax, were (9.9 ± 0.2)%, (10.1 ± 0.3)%, (11.3 ± 0.6)%, (12.9 ± 1.0)%, and (13.4 ± 1.0)% for 1 × 1 cm2, 3 × 3 cm2, 5 × 5 cm2, 10 × 10 cm2, and 22 × 22 cm2 fields, respectively. For the investigated fields, the maximum percent differences of Geant4, TPS, and film doses extrapolated and interpolated to a depth suitable for skin dose assessment at the beam entry, relative to MOSkin™ measurements at an equivalent depth were 1.0%, 2.8%, and 14.3%, respectively, and at a WED of 199.67 mm at the beam exit, 3.2%, 3.7% and 5.7%, respectively. The largest measured increase in exit dose, due to the electron return effect, was 15.4% for the 10 × 10 cm2 field size using the MOSkin™ and 17.9% for the 22 × 22 cm2 field size, using Geant4 calculations. The results presented in the study validate the suitability of the MOSkin™ detector for transverse MR-linac surface dosimetry.
Collapse
Affiliation(s)
- E Patterson
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.
| | - P Stokes
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
| | - D Cutajar
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - A Rosenfeld
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - J Baines
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - P Metcalfe
- Centre of Medical and Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
- Illawarra Health Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - M Powers
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
- College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
6
|
Uijtewaal P, Côté B, Foppen T, de Vries W, Woodings S, Borman P, Lambert-Girard S, Therriault-Proulx F, Raaymakers B, Fast M. Performance of the HYPERSCINT scintillation dosimetry research platform for the 1.5 T MR-linac. Phys Med Biol 2023; 68. [PMID: 36638536 DOI: 10.1088/1361-6560/acb30c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
Objective.Adaptive radiotherapy techniques available on the MR-linac, such as daily plan adaptation, gating, and dynamic tracking, require versatile dosimetric detectors to validate end-to-end workflows. Plastic scintillator detectors (PSDs) offer great potential with features including: water equivalency, MRI-compatibility, and time-resolved dose measurements. Here, we characterize the performance of the HYPERSCINT RP-200 PSD (MedScint, Quebec, CA) in a 1.5 T MR-linac, and we demonstrate its suitability for dosimetry, including in a moving target.Approach.Standard techniques of detector testing were performed using a Beamscan water tank (PTW, Freiburg, DE) and compared to microDiamond (PTW, Freiburg, DE) readings. Orientation dependency was tested using the same phantom. An RW3 solid water phantom was used to evaluate detector consistency, dose linearity, and dose rate dependence. To determine the sensitivity to motion and to MRI scanning, the Quasar MRI4Dphantom (Modus, London, ON) was used statically or with sinusoidal motion (A= 10 mm,T= 4 s) to compare PSD and Semiflex ionization chamber (PTW, Freiburg, DE) readings. Conformal beams from gantry 0° and 90° were used as well as a 15-beam 8 × 7.5 Gy lung IMRT plan.Main results.Measured profiles, PDD curves and field-size dependence were consistent with the microDiamond readings with differences well within our clinical tolerances. The angular dependence gave variations up to 0.8% when not irradiating directly from behind the scintillation point. Experiments revealed excellent detector consistency between repeated measurements (SD = 0.06%), near-perfect dose linearity (R2= 1) and a dose rate dependence <0.3%. Dosimetric effects of MRI scanning (≤0.3%) and motion (≤1.3%) were minimal. Measurements were consistent with the Semiflex (differences ≤1%), and with the treatment planning system with differences of 0.8% and 0.4%, with and without motion.Significance.This study demonstrates the suitability of the HYPERSCINT PSD for accurate time-resolved dosimetry measurements in the 1.5 T MR-linac, including during MR scanning and target motion.
Collapse
Affiliation(s)
- Prescilla Uijtewaal
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Benjamin Côté
- MedScint, 1405 Bd du Parc Technologique, Québec, QC G1P 4P5, Canada
| | - Thomas Foppen
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Wilfred de Vries
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Simon Woodings
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Pim Borman
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | | | - Bas Raaymakers
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Martin Fast
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
7
|
Boh Lim S, Tyagi N, Subashi E, Liang J, Chan M. An evaluation of the use of EBT-XD film for SRS/SBRT commissioning of a 1.5 Tesla MR-Linac system. Phys Med 2022; 96:9-17. [PMID: 35189431 PMCID: PMC9396448 DOI: 10.1016/j.ejmp.2022.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/06/2022] [Accepted: 02/12/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose: The goal of this study was to evaluate the use of EBT-XD film for SRS/SBRT commissioning in a 1.5T hybrid MR-Linac (MRL). Method: The output factors (St), from 1x1, 2x2, 3x3 cm2, were measured with film in solid water. The results were compared with (1) the measurements by a PTW diamond detector (CVD) and an Exradin® A26MR ion chamber in 3D water phantom; (2) Monte Carlo calculation by Monaco TPS (MTPS) in water. The inline (IN) and crossline (CR) profiles, measured by films and the CVD, were also compared. An SRS plan with two targets was created in MTPS and was measured with EBT-XD film in a StereoPHAN™ phantom serving as an end-to-end test. The 3x3 cm2 was used for film calibration with doses ranging from 0 to 28 Gy. Water was added to the phantom-film-phantom interface to reduce the electron-return-effect (ERE). Films were calibrated with One-scan-dosimetry protocol. Results: The film St were within 1.2% and 2.2% compared to other detectors and MTPS respectively. At the central B-field induced asymmetric region, films were within 0.6% between the CVD and the MTPS, but 5–8% differences were observed in the 40%-5% gradient region in CR due to ERE. The differences in localization and dose were found to be 0.6 mm and 3.3%. The γ(3%/2mm), γ (5%/2mm), γ (5%/1mm) were 97.7%, 99.3%, 94.6%. Conclusions: Films can provide accurate dosimetric results under ERE and are valuable for commissioning MRL. Using the One-scan-dosimetry protocol with EBT-XD film for MRL increases accuracy and efficiency in commissioning and QA of SRS/SBRT.
Collapse
Affiliation(s)
- Seng Boh Lim
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.
| | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.
| | - Ergys Subashi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.
| | - Jiayi Liang
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.
| | - Maria Chan
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.
| |
Collapse
|
8
|
Cervantes Y, Duchaine J, Billas I, Duane S, Bouchard H. Monte Carlo calculation of detector perturbation and quality correction factors in a 1.5 T magnetic resonance guided radiation therapy small photon beams. Phys Med Biol 2021; 66. [PMID: 34700311 DOI: 10.1088/1361-6560/ac3344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/26/2021] [Indexed: 01/02/2023]
Abstract
Objective.With future advances in magnetic resonance imaging-guided radiation therapy, small photon beams are expected to be included regularly in clinical treatments. This study provides physical insights on detector dose-response to multiple megavoltage photon beam sizes coupled to magnetic fields and determines optimal orientations for measurements.Approach.Monte Carlo simulations determine small-cavity detector (solid-state: PTW60012 and PTW60019, ionization chambers: PTW31010, PTW31021, and PTW31022) dose-responses in water to an Elekta Unity 7 MV FFF photon beam. Investigations are performed for field widths between 0.25 and 10 cm in four detector axis orientations with respect to the 1.5 T magnetic field and the photon beam. The magnetic field effect on the overall perturbation factor (PMC) accounting for the extracameral components, atomic composition, and density is quantified in each orientation. The density (Pρ) and volume averaging (Pvol) perturbation factors and quality correction factors (kQB,QfB,f) accounting for the magnetic field are also calculated in each orientation.Main results.Results show thatPvolremains the most significant perturbation both with and without magnetic fields. In most cases, the magnetic field effect onPvolis 1% or less. The magnetic field effect onPρis more significant on ionization chambers than on solid-state detectors. This effect increases up to 1.564 ± 0.001 with decreasing field size for chambers. On the contrary, the magnetic field effect on the extracameral perturbation factor is higher on solid-state detectors than on ionization chambers. For chambers, the magnetic field effect onPMCis only significant for field widths <1 cm, while, for solid-state detectors, this effect exhibits different trends with orientation, indicating that the beam incident angle and geometry play a crucial role.Significance.Solid-state detectors' dose-response is strongly affected by the magnetic field in all orientations. The magnetic field impact on ionization chamber response increases with decreasing field size. In general, ionization chambers yieldkQB,QfB,fcloser to unity, especially in orientations where the chamber axis is parallel to the magnetic field.
Collapse
Affiliation(s)
- Yunuen Cervantes
- Département de physique, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada
| | - Jasmine Duchaine
- Département de physique, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada
| | - Ilias Billas
- National Physical Laboratory, Chemical, Medical and Environmental Science Department, Teddington, United Kingdom.,Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom
| | - Simon Duane
- National Physical Laboratory, Chemical, Medical and Environmental Science Department, Teddington, United Kingdom
| | - Hugo Bouchard
- Département de physique, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada.,Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada.,Département de radio-oncologie, Centre hospitalier de l'Université de Montréal (CHUM), 900 Rue Saint-Denis, Montréal, Québec, H2X 0A9, Canada
| |
Collapse
|
9
|
Shaw M, Lye J, Alves A, Keehan S, Lehmann J, Hanlon M, Kenny J, Baines J, Porumb C, Geso M, Brown R. Characterisation of a synthetic diamond detector for end-to-end dosimetry in stereotactic body radiotherapy and radiosurgery. Phys Imaging Radiat Oncol 2021; 20:40-45. [PMID: 34722939 PMCID: PMC8536779 DOI: 10.1016/j.phro.2021.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Synthetic diamond detectors offer real time measurement of dose in radiotherapy applications which require high spatial resolution. Additional considerations and corrections are required for measurements where the diamond detector is orientated at various angles to the incident beam. This study investigated diamond detectors for end-to-end testing of Stereotactic Body Radiotherapy (SBRT) and Stereotactic Radiosurgery (SRS) in the context of dosimetry audits. MATERIAL AND METHODS Seven individual diamond detectors were investigated and compared with respect to warm up stability, dose-rate dependence, linearity, detector shadowing, energy response, cross-calibration, angular dependence and positional sensitivity in SBRT and SRS. RESULTS Large variation in the cross calibration factors was found between the seven individual detectors. For each detector, the energy dependence in the cross calibration factor was on average <0.6% across the beam qualities investigated (Co-60 Gamma Knife, and MV beams with TPR20,10 0.684-0.733). The angular corrections for individual fields were up to 5%, and varied with field size. However, the average angular dependence for all fields in a typical SRS treatment delivery was <1%. The overall measurement uncertainty was 3.6% and 3.1% (2σ) for an SRS and SBRT treatment plan respectively. CONCLUSION Synthetic diamond detectors were found to be reliable and robust for end-to-end dosimetry in SBRT and SRS applications. Orientation of the detector relative to the beam axis is an important consideration, as significant corrections are required for angular dependence.
Collapse
Affiliation(s)
- Maddison Shaw
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Yallambie, VIC, Australia
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
| | - Jessica Lye
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Yallambie, VIC, Australia
- Olivia Newtown John Cancer Wellness & Research Centre, Heidelberg, VIC, Australia
| | - Andrew Alves
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Yallambie, VIC, Australia
| | - Stephanie Keehan
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Yallambie, VIC, Australia
| | - Joerg Lehmann
- Department of Radiation Oncology, Calvary Mater Newcastle, Newcastle, Australia
- School of Science, RMIT University, Melbourne, Australia
- School of Mathematical and Physical Sciences, University of Newcastle, Australia
- Institute of Medical Physics, University of Sydney, Australia
| | - Maximilian Hanlon
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Yallambie, VIC, Australia
| | - John Kenny
- Medical Physics Specialists, Health Stem Solutions, Melbourne, VIC, Australia
| | - John Baines
- Radiation Oncology, Townsville Cancer Centre, Townsville, QLD, Australia
| | - Claudiu Porumb
- Alfred Health Radiation Oncology, Melbourne VIC, Australia
| | - Moshi Geso
- School of Health and Biomedical Science, RMIT University, Melbourne, VIC, Australia
| | - Rhonda Brown
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Yallambie, VIC, Australia
| |
Collapse
|
10
|
Woodings SJ, de Vries JHW, Kok JMG, Hackett SL, van Asselen B, Bluemink JJ, van Zijp HM, van Soest TL, Roberts DA, Lagendijk JJW, Raaymakers BW, Wolthaus JWH. Acceptance procedure for the linear accelerator component of the 1.5 T MRI-linac. J Appl Clin Med Phys 2021; 22:45-59. [PMID: 34275176 PMCID: PMC8364272 DOI: 10.1002/acm2.13068] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 04/14/2020] [Accepted: 07/09/2020] [Indexed: 11/11/2022] Open
Abstract
Purpose To develop and implement an acceptance procedure for the new Elekta Unity 1.5 T MRI‐linac. Methods Tests were adopted and, where necessary adapted, from AAPM TG106 and TG142, IEC 60976 and NCS 9 and NCS 22 guidelines. Adaptations were necessary because of the atypical maximum field size (57.4 × 22 cm), FFF beam, the non‐rotating collimator, the absence of a light field, the presence of the 1.5 T magnetic field, restricted access to equipment within the bore, fixed vertical and lateral table position, and the need for MR image to MV treatment alignment. The performance specifications were set for stereotactic body radiotherapy (SBRT). Results The new procedure was performed similarly to that of a conventional kilovoltage x‐ray (kV) image guided radiation therapy (IGRT) linac. Results were acquired for the first Unity system. Conclusions A comprehensive set of tests was developed, described and implemented for the MRI‐linac. The MRI‐linac met safety requirements for patients and operators. The system delivered radiation very accurately with, for example a gantry rotation locus of isocenter of radius 0.38 mm and an average MLC absolute positional error of 0.29 mm, consistent with use for SBRT. Specifications for clinical introduction were met.
Collapse
Affiliation(s)
- Simon J Woodings
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - J H Wilfred de Vries
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan M G Kok
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sara L Hackett
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bram van Asselen
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Johanna J Bluemink
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Helena M van Zijp
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Theo L van Soest
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Jan J W Lagendijk
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bas W Raaymakers
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jochem W H Wolthaus
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
11
|
Fuchs H, Padilla‐Cabal F, Zimmermann L, Palmans H, Georg D. MR-guided proton therapy: Impact of magnetic fields on the detector response. Med Phys 2021; 48:2572-2579. [PMID: 33326614 PMCID: PMC8251909 DOI: 10.1002/mp.14660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the response of detectors for proton dosimetry in the presence of magnetic fields. MATERIAL AND METHODS Four ionization chambers (ICs), two thimble-type and two plane-parallel-type, and a diamond detector were investigated. All detectors were irradiated with homogeneous single-energy-layer fields, using 252.7 MeV proton beams. A Farmer IC was additionally irradiated in the same geometrical configuration, but with a lower nominal energy of 97.4 MeV. The beams were subjected to magnetic field strengths of 0, 0.25, 0.5, 0.75, and 1 T produced by a research dipole magnet placed at the room's isocenter. Detectors were positioned at 2 cm water equivalent depth, with their stem perpendicular to both the magnetic field lines and the proton beam's central axis, in the direction of the Lorentz force. Normality and two sample statistical Student's t tests were performed to assess the influence of the magnetic field on the detectors' responses. RESULTS For all detectors, a small but significant magnetic field-dependent change of their response was found. Observed differences compared to the no magnetic field case ranged from +0.5% to -0.7%. The magnetic field dependence was found to be nonlinear and highest between 0.25 and 0.5 T for 252.7 MeV proton beams. A different variation of the Farmer chamber response with magnetic field strength was observed for irradiations using lower energy (97.4 MeV) protons. The largest magnetic field effects were observed for plane-parallel ionization chambers. CONCLUSION Small magnetic field-dependent changes in the detector response were identified, which should be corrected for dosimetric applications.
Collapse
Affiliation(s)
- Hermann Fuchs
- Division of Medical PhysicsDepartment of Radiation OncologyMedical University of Vienna1090ViennaAustria
- Division of Medical PhysicsMedAustron Ion Therapy Center2700Wiener NeustadtAustria
| | - Fatima Padilla‐Cabal
- Division of Medical PhysicsDepartment of Radiation OncologyMedical University of Vienna1090ViennaAustria
| | - Lukas Zimmermann
- Division of Medical PhysicsDepartment of Radiation OncologyMedical University of Vienna1090ViennaAustria
| | - Hugo Palmans
- Division of Medical PhysicsMedAustron Ion Therapy Center2700Wiener NeustadtAustria
- National Physical LaboratoryTW11 0LWTeddingtonUnited Kingdom
| | - Dietmar Georg
- Division of Medical PhysicsDepartment of Radiation OncologyMedical University of Vienna1090ViennaAustria
- Division of Medical PhysicsMedAustron Ion Therapy Center2700Wiener NeustadtAustria
| |
Collapse
|
12
|
Roberts DA, Sandin C, Vesanen PT, Lee H, Hanson IM, Nill S, Perik T, Lim SB, Vedam S, Yang J, Woodings SW, Wolthaus JWH, Keller B, Budgell G, Chen X, Li XA. Machine QA for the Elekta Unity system: A Report from the Elekta MR-linac consortium. Med Phys 2021; 48:e67-e85. [PMID: 33577091 PMCID: PMC8251771 DOI: 10.1002/mp.14764] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 01/21/2021] [Accepted: 02/03/2021] [Indexed: 12/31/2022] Open
Abstract
Over the last few years, magnetic resonance image‐guided radiotherapy systems have been introduced into the clinic, allowing for daily online plan adaption. While quality assurance (QA) is similar to conventional radiotherapy systems, there is a need to introduce or modify measurement techniques. As yet, there is no consensus guidance on the QA equipment and test requirements for such systems. Therefore, this report provides an overview of QA equipment and techniques for mechanical, dosimetric, and imaging performance of such systems and recommendation of the QA procedures, particularly for a 1.5T MR‐linac device. An overview of the system design and considerations for QA measurements, particularly the effect of the machine geometry and magnetic field on the radiation beam measurements is given. The effect of the magnetic field on measurement equipment and methods is reviewed to provide a foundation for interpreting measurement results and devising appropriate methods. And lastly, a consensus overview of recommended QA, appropriate methods, and tolerances is provided based on conventional QA protocols. The aim of this consensus work was to provide a foundation for QA protocols, comparative studies of system performance, and for future development of QA protocols and measurement methods.
Collapse
Affiliation(s)
- David A Roberts
- Elekta Limited, Cornerstone, London Road, Crawley, RH10 9BL, United Kingdom
| | - Carlos Sandin
- Elekta Limited, Cornerstone, London Road, Crawley, RH10 9BL, United Kingdom
| | | | - Hannah Lee
- Allegheny Health Network Cancer Institute, Pennsylvania, USA
| | - Ian M Hanson
- The Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, UK
| | - Simeon Nill
- The Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, UK
| | - Thijs Perik
- Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands
| | - Seng Boh Lim
- Memorial Sloan Kettering Cancer Center, New York, USA
| | - Sastry Vedam
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Texas, USA
| | - Jinzhong Yang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Texas, USA
| | - Simon W Woodings
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jochem W H Wolthaus
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Brian Keller
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Geoff Budgell
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Wilmslow Road, Manchester, United Kingdom
| | - Xinfeng Chen
- Department of Radiation Oncology, Froedtert Hospital and Medical College of Wisconsin, Milwaukee, USA
| | - X Allen Li
- Department of Radiation Oncology, Froedtert Hospital and Medical College of Wisconsin, Milwaukee, USA
| |
Collapse
|
13
|
Huang CY, Yang B, Lam WW, Tang KK, Li TC, Law WK, Cheung KY, Yu SK. Effects on skin dose from unwanted air gaps under bolus in an MR-guided linear accelerator (MR-linac) system. Phys Med Biol 2021; 66:065021. [PMID: 33607641 DOI: 10.1088/1361-6560/abe837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bolus is commonly used in MV photon radiotherapy to increase superficial dose and improve dose uniformity for treating shallow lesions. However, irregular patient body contours can cause unwanted air gaps between a bolus and patient skin. The resulting dosimetric errors could be exacerbated in MR-Linac treatments, as secondary electrons generated by photons are affected by the magnetic field. This study aimed to quantify the dosimetric effect of unwanted gaps between bolus and skin surface in an MR-Linac. A parallel-plate ionization chamber and EBT3 films were utilized to evaluate the surface dose under bolus with various gantry angles, field sizes, and different air gaps. The results of surface dose measurements were then compared to Monaco 5.40 Treatment Planning System (TPS) calculations. The suitability of using a parallel-plate chamber in MR-Linac measurement was validated by benchmarking the percentage depth dose and output factors with the microDiamond detector and air-filled ionization chamber measurements in water. A non-symmetric response of the parallel-plate chamber to oblique beams in the magnetic field was characterized. Unwanted air gaps significantly reduced the skin dose. For a frontal beam, skin dose was halved when there was a 5 mm gap, a much larger difference than in a conventional linac. Skin dose manifested a non-symmetric pattern in terms of gantry angle and gap size. The TPS overestimated skin dose in general, but shared the same trend with measurement when there was no air gap, or the gap size was larger than 5 mm. However, the calculated and measured results had a large discrepancy when the bolus-skin gap was below 5 mm. When treating superficial lesions, unwanted air gaps under the bolus will compromise the dosimetric goals. Our results highlight the importance of avoiding air gaps between bolus and skin when treating superficial lesions using an MR-Linac system.
Collapse
|
14
|
Olaciregui-Ruiz I, Vivas-Maiques B, van der Velden S, Nowee ME, Mijnheer B, Mans A. Automatic dosimetric verification of online adapted plans on the Unity MR-Linac using 3D EPID dosimetry. Radiother Oncol 2021; 157:241-246. [PMID: 33582193 DOI: 10.1016/j.radonc.2021.01.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND PURPOSE The Unity MR-Linac is equipped with an EPID, the images from which contain information about the dose delivered to the patient. The purpose of this study was to introduce a framework for the automatic dosimetric verification of online adapted plans using 3D EPID dosimetry and to present the obtained dosimetric results. MATERIALS AND METHODS The framework was active during the delivery of 1207 online adapted plans corresponding to 127 clinical IMRT treatments (74 prostate, 19 rectum, 19 liver and 15 lymph node oligometastases). EPID reconstructed dose distributions in the patient geometry were calculated automatically and then compared to the dose distributions calculated online by the treatment planning system (TPS). The comparison was performed by γ-analysis (3% global/2mm/10% threshold) and by the difference in median dose to the high-dose volume (ΔHDVD50). 85% for γ-pass rate and 5% for ΔHDVD50 were used as tolerance limit values. RESULTS 93% of the online plans were verified automatically by the framework. Missing EPID data was the reason for automation failure. 91% of the verified plans were within tolerance. CONCLUSION Automatic dosimetric verification of online adapted plans on the Unity MR-Linac is feasible using in vivo 3D EPID dosimetry. Almost all online adapted plans were approved automatically by the framework. This newly developed framework is a major step forward towards the clinical implementation of a permanent safety net for the entire online adaptive workflow.
Collapse
Affiliation(s)
- Igor Olaciregui-Ruiz
- Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| | - Begoña Vivas-Maiques
- Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Sandra van der Velden
- Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Marlies E Nowee
- Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Ben Mijnheer
- Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Anton Mans
- Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Brace OJ, Alhujaili SF, Paino JR, Butler DJ, Wilkinson D, Oborn BM, Rosenfeld AB, Lerch MLF, Petasecca M, Davis JA. Evaluation of the PTW microDiamond in edge-on orientation for dosimetry in small fields. J Appl Clin Med Phys 2020; 21:278-288. [PMID: 32441884 PMCID: PMC7484886 DOI: 10.1002/acm2.12906] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/16/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose The PTW microDiamond has an enhanced spatial resolution when operated in an edge‐on orientation but is not typically utilized in this orientation due to the specifications of the IAEA TRS‐483 code of practice for small field dosimetry. In this work the suitability of an edge‐on orientation and advantages over the recommended face‐on orientation will be presented. Methods The PTW microDiamond in both orientations was compared on a Varian TrueBeam linac for: machine output factor (OF), percentage depth dose (PDD), and beam profile measurements from 10 × 10 cm2 to a 0.5 × 0.5 cm2 field size for 6X and 6FFF beam energies in a water tank. A quantification of the stem effect was performed in edge‐on orientation along with tissue to phantom ratio (TPR) measurements. An extensive angular dependence study for the two orientations was also undertaken within two custom PMMA plastic cylindrical phantoms. Results The OF of the PTW microDiamond in both orientations agrees within 1% down to the 2 × 2 cm2 field size. The edge‐on orientation overresponds in the build‐up region but provides improved penumbra and has a maximum observed stem effect of 1%. In the edge‐on orientation there is an angular independent response with a maximum of 2% variation down to a 2 × 2 cm2 field. The PTW microDiamond in edge‐on orientation for TPR measurements agreed to the CC01 ionization chamber within 1% for all field sizes. Conclusions The microDiamond was shown to be suitable for small field dosimetry when operated in edge‐on orientation. When edge‐on, a significantly reduced angular dependence is observed with no significant stem effect, making it a more versatile QA instrument for rotational delivery techniques.
Collapse
Affiliation(s)
- Owen J Brace
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Sultan F Alhujaili
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Jason R Paino
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Duncan J Butler
- Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), Yallambie, VIC, UK
| | - Dean Wilkinson
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Cancer Care Centre Wollongong Hospital Wollongong, Wollongong, NSW, Australia
| | - Brad M Oborn
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Cancer Care Centre Wollongong Hospital Wollongong, Wollongong, NSW, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Michael L F Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy A Davis
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
16
|
Jelen U, Dong B, Begg J, Roberts N, Whelan B, Keall P, Liney G. Dosimetric Optimization and Commissioning of a High Field Inline MRI-Linac. Front Oncol 2020; 10:136. [PMID: 32117776 PMCID: PMC7033562 DOI: 10.3389/fonc.2020.00136] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/27/2020] [Indexed: 11/17/2022] Open
Abstract
Purpose: Unique characteristics of MRI-linac systems and mutual interactions between their components pose specific challenges for their commissioning and quality assurance. The Australian MRI-linac is a prototype system which explores the inline orientation, with radiation beam parallel to the main magnetic field. The aim of this work was to commission the radiation-related aspects of this system for its application in clinical treatments. Methods: Physical alignment of the radiation beam to the magnetic field was fine-tuned and magnetic shielding of the radiation head was designed to achieve optimal beam characteristics. These steps were guided by investigative measurements of the beam properties. Subsequently, machine performance was benchmarked against the requirements of the IEC60976/77 standards. Finally, the geometric and dosimetric data was acquired, following the AAPM Task Group 106 recommendations, to characterize the beam for modeling in the treatment planning system and with Monte Carlo simulations. The magnetic field effects on the dose deposition and on the detector response have been taken into account and issues specific to the inline design have been highlighted. Results: Alignment of the radiation beam axis and the imaging isocentre within 2 mm tolerance was obtained. The system was commissioned at two source-to-isocentre distances (SIDs): 2.4 and 1.8 m. Reproducibility and proportionality of the dose monitoring system met IEC criteria at the larger SID but slightly exceeded it at the shorter SID. Profile symmetry remained under 103% for the fields up to ~34 × 34 and 21 × 21 cm2 at the larger and shorter SID, respectively. No penumbra asymmetry, characteristic for transverse systems, was observed. The electron focusing effect, which results in high entrance doses on central axis, was quantified and methods to minimize it have been investigated. Conclusion: Methods were developed and employed to investigate and quantify the dosimetric properties of an inline MRI-Linac system. The Australian MRI-linac system has been fine-tuned in terms of beam properties and commissioned, constituting a key step toward the application of inline MRI-linacs for patient treatments.
Collapse
Affiliation(s)
- Urszula Jelen
- Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Bin Dong
- Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - Jarrad Begg
- Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.,Liverpool Cancer Therapy Centre, Radiation Physics, Liverpool, NSW, Australia.,School of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Natalia Roberts
- Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Brendan Whelan
- Sydney Medical School, ACRF Image X Institute, University of Sydney, Sydney, NSW, Australia
| | - Paul Keall
- Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.,Sydney Medical School, ACRF Image X Institute, University of Sydney, Sydney, NSW, Australia
| | - Gary Liney
- Department of Medical Physics, Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia.,Liverpool Cancer Therapy Centre, Radiation Physics, Liverpool, NSW, Australia.,School of Medicine, University of New South Wales, Sydney, NSW, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
17
|
Pappas E, Kalaitzakis G, Boursianis T, Zoros E, Zourari K, Pappas EP, Makris D, Seimenis I, Efstathopoulos E, Maris TG. Dosimetric performance of the Elekta Unity MR-linac system: 2D and 3D dosimetry in anthropomorphic inhomogeneous geometry. ACTA ACUST UNITED AC 2019; 64:225009. [DOI: 10.1088/1361-6560/ab52ce] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
18
|
Roberts NF, Patterson E, Jelen U, Causer T, Holloway L, Liney G, Lerch M, Rosenfeld AB, Cutajar D, Oborn BM, Metcalfe P. Experimental characterization of magnetically focused electron contamination at the surface of a high-field inline MRI-linac. Med Phys 2019; 46:5780-5789. [PMID: 31633212 DOI: 10.1002/mp.13847] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 08/26/2019] [Accepted: 09/23/2019] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The fringe field of the Australian MRI-linac causes contaminant electrons to be focused along the central axis resulting in a high surface dose. This work aims to characterize this effect using Gafchromic film and high-resolution detectors, MOSkinTM and microDiamond. The secondary aim is to investigate the influence of the inline magnetic field on the relative dose response of these detectors. METHODS The Australian MRI-linac has the unique feature that the linac is mounted on rails allowing for measurements to be performed at different magnetic field strengths while maintaining a constant source-to-surface distance (SSD). Percentage depth doses (PDD) were collected at SSD 1.82 m in a solid water phantom positioned in a low magnetic field region and then at isocenter of the MRI where the magnetic field is 1 T. Measurements for a range of field sizes were taken with the MOSkinTM , microDiamond, and Gafchromic® EBT3 film. The detectors' relative responses at 1 T were compared to the near 0 T PDD beyond the region of electron contamination, that is, 20 mm depth. The near surface measurements inside the MRI bore were compared among the different detectors. RESULTS Skin dose in the MRI, as measured with the MOSkinTM , was 104.5% for 2.1 × 1.9 cm2 , 185.6% for 6.1 × 5.8 cm2 , 369.1% for 11.8 × 11.5 cm2 , and 711.1% for 23.5 × 23 cm2 . The detector measurements beyond the electron contamination region showed agreement between the relative response at 1 T and near 0 T. Film was in agreement with both detectors in this region further demonstrating their relative response is unaffected by the magnetic field. CONCLUSIONS Experimental characterization of the high electron contamination at the surface was performed for a range of field sizes. The relative response of MOSkinTM and microDiamond detectors, beyond the electron contamination region, were confirmed to be unaffected by the 1-T inline magnetic field.
Collapse
Affiliation(s)
- Natalia F Roberts
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia.,Centre for Oncology Education and Research Translation, Wollongong, NSW, 2522, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
| | - Elizabeth Patterson
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Urszula Jelen
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
| | - Trent Causer
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia.,Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW, 2500, Australia
| | - Lois Holloway
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia.,Centre for Oncology Education and Research Translation, Wollongong, NSW, 2522, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia.,Department of Medical Physics, Liverpool and Macarthur Cancer Care Centres, Liverpool, NSW, 2170, Australia.,South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW, Australia.,Institute of Medical Physics, University of Sydney, Camperdown, NSW, 2505, Australia
| | - Gary Liney
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
| | - Michael Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Dean Cutajar
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Bradley M Oborn
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia.,Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW, 2500, Australia
| | - Peter Metcalfe
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia.,Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
| |
Collapse
|