1
|
Ait‐Aissa K, Guo X, Klemmensen M, Juhr D, Leng LN, Koval OM, Grumbach IM. Short-Term Statin Treatment Reduces, and Long-Term Statin Treatment Abolishes, Chronic Vascular Injury by Radiation Therapy. J Am Heart Assoc 2024; 13:e033558. [PMID: 38904226 PMCID: PMC11255702 DOI: 10.1161/jaha.123.033558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/14/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND The incidental use of statins during radiation therapy has been associated with a reduced long-term risk of developing atherosclerotic cardiovascular disease. We examined whether irradiation causes chronic vascular injury and whether short-term administration of statins during and after irradiation is sufficient to prevent chronic injury compared with long-term administration. METHODS AND RESULTS C57Bl/6 mice were pretreated with pravastatin for 72 hours and then exposed to 12 Gy X-ray head-and-neck irradiation. Pravastatin was then administered either for an additional 24 hours or for 1 year. Carotid arteries were tested for vascular reactivity, altered gene expression, and collagen deposition 1 year after irradiation. Treatment with pravastatin for 24 hours after irradiation reduced the loss of endothelium-dependent vasorelaxation and protected against enhanced vasoconstriction. Expression of markers associated with inflammation (NFκB p65 [phospho-nuclear factor kappa B p65] and TNF-α [tumor necrosis factor alpha]) and with oxidative stress (NADPH oxidases 2 and 4) were lowered and subunits of the voltage and Ca2+ activated K+ BK channel (potassium calcium-activated channel subfamily M alpha 1 and potassium calcium-activated channel subfamily M regulatory beta subunit 1) in the carotid artery were modulated. Treatment with pravastatin for 1 year after irradiation completely reversed irradiation-induced changes. CONCLUSIONS Short-term administration of pravastatin is sufficient to reduce chronic vascular injury at 1 year after irradiation. Long-term administration eliminates the effects of irradiation. These findings suggest that a prospective treatment strategy involving statins could be effective in patients undergoing radiation therapy. The optimal duration of treatment in humans has yet to be determined.
Collapse
Affiliation(s)
- Karima Ait‐Aissa
- Department of Biomedical Sciences, College of Dental MedicineLincoln Memorial UniversityKnoxvilleTNUSA
| | - Xutong Guo
- Abboud Cardiovascular Research Center, Department of Internal Medicine, Carver College of MedicineUniversity of IowaIowa CityIAUSA
| | - Madelyn Klemmensen
- Abboud Cardiovascular Research Center, Department of Internal Medicine, Carver College of MedicineUniversity of IowaIowa CityIAUSA
| | - Denise Juhr
- Abboud Cardiovascular Research Center, Department of Internal Medicine, Carver College of MedicineUniversity of IowaIowa CityIAUSA
| | - Linette N. Leng
- Abboud Cardiovascular Research Center, Department of Internal Medicine, Carver College of MedicineUniversity of IowaIowa CityIAUSA
| | - Olha M. Koval
- Abboud Cardiovascular Research Center, Department of Internal Medicine, Carver College of MedicineUniversity of IowaIowa CityIAUSA
| | - Isabella M. Grumbach
- Abboud Cardiovascular Research Center, Department of Internal Medicine, Carver College of MedicineUniversity of IowaIowa CityIAUSA
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Carver College of MedicineUniversity of IowaIowa CityIAUSA
- Iowa City VA Healthcare SystemIowa CityIAUSA
| |
Collapse
|
2
|
Sioen S, D'Hondt L, Van Houte F, Demuynck R, Bacher K, De Wagter C, Vral A, Vanderstraeten B, Krysko DV, Baeyens A. Peripheral blood lymphocytes differ in DNA damage response after exposure to X-rays with different physical properties. Int J Radiat Biol 2024; 100:236-247. [PMID: 37819795 DOI: 10.1080/09553002.2023.2261525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023]
Abstract
Introduction: In radiology, low X-ray energies (<140 keV) are used to obtain an optimal image while in radiotherapy, higher X-ray energies (MeV) are used to eradicate tumor tissue. In radiation research, both these X-ray energies being used to extrapolate in vitro research to clinical practice. However, the energy deposition of X-rays depends on their energy spectrum, which might lead to changes in biological response. Therefore, this study compared the DNA damage response (DDR) in peripheral blood lymphocytes (PBLs) exposed to X-rays with varying beam quality, mean photon energy (MPE) and dose rate.Methods: The DDR was evaluated in peripheral blood lymphocytes (PBLs) by the ɣ-H2AX foci assay, the cytokinesis-block micronucleus assay and an SYTOX-based cell death assay, combined with specific cell death inhibitors. Cell cultures were irradiated with a 220 kV X-ray research cabinet (SARRP, X-Strahl) or a 6 MV X-ray linear accelerator (Elekta Synergy). Three main physical parameters were investigated: beam quality (V), MPE (eV) and dose rate (Gy/min). Additional copper (Cu) filtration caused variation in the MPE (78 keV, 94 keV, 118 keV) at SARRP; dose rates were varied by adjusting tube current for 220 kV X-rays (0.33-3 Gy/min) or water-phantom depth in the 6 MV set-up (3-6 Gy/min).Results: The induction of chromosomal damage and initial (30 min) DNA double-stranded breaks (DSBs) were significantly higher for 220 kV X-rays compared to 6 MV X-rays, while cell death induction was similar. Specific cell death inhibitors for apoptosis, necroptosis and ferroptosis were not capable of blocking cell death after irradiation using low or high-energy X-rays. Additional Cu filtration increased the MPE, which significantly decreased the amount of chromosomal damage and DSBs. Within the tested ranges no specific effects of dose rate variation were observed.Conclusion: The DDR in PBLs is influenced by the beam quality and MPE. This study reinforces the need for consideration and inclusion of all physical parameters in radiation-related studies.
Collapse
Affiliation(s)
- Simon Sioen
- Radiobiology group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Louise D'Hondt
- Radiobiology group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Fien Van Houte
- Radiobiology group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Robin Demuynck
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Klaus Bacher
- Medical Physics Group, Department of Human Structure and Repair, Gent, Belgium
| | - Carlos De Wagter
- Medical Physics Group, Department of Human Structure and Repair, Gent, Belgium
- Department of Radiotherapy-Oncology, Ghent University Hospital, Gent, Belgium
| | - Anne Vral
- Radiobiology group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Barbara Vanderstraeten
- Medical Physics Group, Department of Human Structure and Repair, Gent, Belgium
- Department of Radiotherapy-Oncology, Ghent University Hospital, Gent, Belgium
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Laboratory, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Ans Baeyens
- Radiobiology group, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
3
|
Ait-Aissa K, Koval OM, Lindsey NR, Grumbach IM. Mitochondrial Ca 2+ Uptake Drives Endothelial Injury By Radiation Therapy. Arterioscler Thromb Vasc Biol 2022; 42:1121-1136. [PMID: 35899616 PMCID: PMC9394506 DOI: 10.1161/atvbaha.122.317869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 06/20/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Radiation therapy strongly increases the risk of atherosclerotic vascular disease, such as carotid stenosis. Radiation induces DNA damage, in particular in mitochondria, but the upstream and downstream signaling events are poorly understood. The objective of this study was to define such mechanisms. METHODS Endothelial-specific MCU (mitochondrial Ca2+ uniporter) knockout and C57Bl6/J mice with or without a preinfusion of a mitoTEMPO (mitochondrial reactive oxygen species [ROS] scavenger) were exposed to a single dose of cranial irradiation. 24, and 240 hours postirradiation, vascular reactivity, endothelial function, and mitochondrial integrity were assessed ex vivo and in vitro. RESULTS In cultured human endothelial cells, irradiation with 4 Gy increased cytosolic Ca2+ transients and the mitochondrial Ca2+ concentration ([Ca2+]mt) and activated MCU. These outcomes correlated with increases in mitochondrial ROS (mtROS), loss of NO production, and sustained damage to mitochondrial but not nuclear DNA. Moreover, irradiation impaired activity of the ETC (electron transport chain) and the transcription of ETC subunits encoded by mitochondrial DNA (mtDNA). Knockdown or pharmacological inhibition of MCU blocked irradiation-induced mtROS production, mtDNA damage, loss of NO production, and impairment of ETC activity. Similarly, the pretreatment with mitoTEMPO, a scavenger of mtROS, reduced irradiation-induced Ca2+ entry, and preserved both the integrity of the mtDNA and the production of NO, suggesting a feed-forward loop involving [Ca2+]m and mtROS. Enhancement of DNA repair in mitochondria, but not in the nucleus, was sufficient to block prolonged mtROS elevations and maintain NO production. Consistent with the findings from cultured cells, in C57BL/6J mice, head and neck irradiation decreased endothelium-dependent vasodilation, and mtDNA integrity in the carotid artery after irradiation. These effects were prevented by endothelial knockout of MCU or infusion with mitoTEMPO. CONCLUSIONS Irradiation-induced damage to mtDNA is driven by MCU-dependent Ca2+ influx and the generation of mtROS. Such damage leads to reduced transcription of mitochondrial genes and activity of the ETC, promoting sustained mtROS production that induces endothelial dysfunction. Our findings suggest that targeting MCU and mtROS might be sufficient to mitigate irradiation-induced vascular disease.
Collapse
Affiliation(s)
- Karima Ait-Aissa
- Abboud Cardiovascular Research Center, Department of Internal Medicine (K.A.A., O.M.K., N.R.L., I.M.G.), Carver College of Medicine, University of Iowa
| | - Olha M. Koval
- Abboud Cardiovascular Research Center, Department of Internal Medicine (K.A.A., O.M.K., N.R.L., I.M.G.), Carver College of Medicine, University of Iowa
| | - Nathanial R. Lindsey
- Abboud Cardiovascular Research Center, Department of Internal Medicine (K.A.A., O.M.K., N.R.L., I.M.G.), Carver College of Medicine, University of Iowa
| | - Isabella M. Grumbach
- Abboud Cardiovascular Research Center, Department of Internal Medicine (K.A.A., O.M.K., N.R.L., I.M.G.), Carver College of Medicine, University of Iowa
- Free Radical and Radiation Biology Program, Department of Radiation Oncology (I.M.G.), Carver College of Medicine, University of Iowa
- Iowa City VA Healthcare System, Iowa City (I.M.G.)
| |
Collapse
|
4
|
Boerma M, Sridharan V, Krager KJ, Pawar SA. Small animal models of localized heart irradiation. Methods Cell Biol 2022; 168:221-234. [PMID: 35366984 PMCID: PMC9642084 DOI: 10.1016/bs.mcb.2021.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A subset of cancer patients treated with radiation therapy may experience radiation-induced heart disease (RIHD) that develops within weeks to several years after cancer treatment. Rodent models are most commonly used to examine the biological effects of local X-rays in the heart and test potential strategies to reduce RIHD. While developments in technology over the last decades have changed the procedures for local heart irradiation in animal models, the X-ray settings and radiation doses have remained quite consistent in time and between different research laboratories. This chapter provides a protocol for whole heart irradiation in rodent models, using an X-ray machine with cone beam computed tomography (CBCT) capabilities. Some methods for the quantification of common histological changes after whole heart irradiation in the rodent are also described.
Collapse
Affiliation(s)
- Marjan Boerma
- University of Arkansas for Medical Sciences, Division of Radiation Health, Little Rock, AR, United States.
| | - Vijayalakshmi Sridharan
- University of Arkansas for Medical Sciences, Division of Radiation Health, 4301 West Markham, Slot 522-10, Little Rock, AR 72205, United States
| | - Kimberly J. Krager
- University of Arkansas for Medical Sciences, Division of Radiation Health, 4301 West Markham, Slot 522-10, Little Rock, AR 72205, United States
| | - Snehalata A. Pawar
- SUNY Upstate Medical University, Department of Radiation Oncology, 505 Irving Avenue, Syracuse, NY 13210, United States
| |
Collapse
|
5
|
Silvestre Patallo I, Carter R, Maughan D, Nisbet A, Schettino G, Subiel A. Evaluation of a micro ionization chamber for dosimetric measurements in image-guided preclinical irradiation platforms. Phys Med Biol 2021; 66. [PMID: 34794132 DOI: 10.1088/1361-6560/ac3b35] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/18/2021] [Indexed: 11/12/2022]
Abstract
Image-guided small animal irradiation platforms deliver small radiation fields in the medium energy x-ray range. Commissioning of such platforms, followed by dosimetric verification of treatment planning, are mostly performed with radiochromic film. There is a need for independent measurement methods, traceable to primary standards, with the added advantage of immediacy in obtaining results. This investigation characterizes a small volume ionization chamber in medium energy x-rays for reference dosimetry in preclinical irradiation research platforms. The detector was exposed to a set of reference x-ray beams (0.5 to 4 mm Cu HVL). Leakage, reproducibility, linearity, response to detector's orientation, dose rate, and energy dependence were determined for a 3D PinPoint ionization chamber (PTW 31022). Polarity and ion recombination were also studied. Absorbed doses at 2 cm depth were compared, derived either by applying the experimentally determined cross-calibration coefficient at a typical small animal radiation platform "user's" quality (0.84 mm Cu HVL) or by interpolation from air kerma calibration coefficients in a set of reference beam qualities. In the range of reference x-ray beams, correction for ion recombination was less than 0.1%. The largest polarity correction was 1.4% (for 4 mm Cu HVL). Calibration and correction factors were experimentally determined. Measurements of absorbed dose with the PTW 31022, in conditions different from reference were successfully compared to measurements with a secondary standard ionization chamber. The implementation of an End-to-End test for delivery of image-targeted small field plans resulted in differences smaller than 3% between measured and treatment planning calculated doses. The investigation of the properties and response of a PTW 31022 small volume ionization chamber in medium energy x-rays and small fields can contribute to improve measurement uncertainties evaluation for reference and relative dosimetry of small fields delivered by preclinical irradiators while maintaining the traceability chain to primary standards.
Collapse
Affiliation(s)
- Ileana Silvestre Patallo
- Medical, Marine & Nuclear: Medical Radiation Physics&Sciences, National Physical Laboratory, Teddington, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Rebecca Carter
- Cancer Institute, University College London, London, London, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - David Maughan
- Medical, Marine & Nuclear: Medical Radiation Physics&Sciences, National Physical Laboratory, Teddington, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Andrew Nisbet
- Department of Medical Physics & Biomedical Engineering, University College London, London, London, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Giuseppe Schettino
- Medical, Marine & Nuclear: Medical Radiation Physics&Sciences, National Physical Laboratory, Teddington, Middlesex, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Anna Subiel
- Medical, Marine & Nuclear: Medical Radiation Physics&Sciences, National Physical Laboratory, Teddington, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
6
|
Muñoz Arango E, Beltrán Gómez C, Alaminos-Bouza A, de Almeida CE. Integrating X-ray kV millimetric field dosimetry with a synthetic diamond detector into the treatment planning system commissioning of a preclinical irradiator. Med Phys 2021; 48:4038-4052. [PMID: 33797098 DOI: 10.1002/mp.14869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 02/28/2021] [Accepted: 03/07/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Small animal irradiators are equipped with x-ray beams and cone collimators with millimeter dimensions to be used in preclinical research. The use of small fields in the kV energy range may require the application of energy-dependent, field size-dependent, or depth-dependent correction factors to the dosimetric data acquired for treatment planning system (TPS) commissioning purposes to obtain accurate dose values. Considering that these corrections are also detector dependent, the suitability of a synthetic single-crystal diamond detector for small-field relative dosimetry in a preclinical irradiator (220-kVp) was evaluated to avoid the necessity of applying correction factors during TPS commissioning. METHODS The detector response was assessed during the transition for field sizes ranging from 20 × 20 mm2 to 3 × 3 mm2 , using the small animal radiation research platform (SARRP). The percentage depth dose distributions (PDDs), lateral profiles and output factors (OFs) were measured. The PDDs for the synthetic diamond detector were compared to the distributions acquired using a small-volume microchamber (0.016 cm3 ) and with Monte Carlo calculations using the MC3D in-house software package. The profiles and OFs were compared to the data from a silicon solid-state detector and to radiochromic film data provided by the manufacturer; for the OF determination, measurements made using a microchamber were added for comparison. The performance of several detectors used as references was previously validated for relative dosimetry in preclinical irradiators. A commercial TPS was commissioned for the factor-based algorithm, using the data acquired with the diamond detector, and no additional correction factors were applied. To verify the performance of the TPS and the accuracy of the dosimetric methodology, radiochromic film irradiation in water was conducted, and two-dimensional (2D) dose distributions in the coronal and axial planes were compared under different gamma criteria. RESULTS Compared with the microchamber and MC3D distributions, the agreement of the PDDs using the synthetic diamond detector was better than 2%. The profile data exhibited very good agreement compared with the data from the silicon detector, with an average and a maximum difference of 0.31 and 0.39 mm in the penumbras, respectively. Compared with the data from the radiochromic film, the average and maximum differences were equal to 0.77 and 0.89 mm, respectively. Very good agreement, within 1%, was obtained between the OFs measured with the synthetic diamond detector and the radiochromic film, compared only for the cone collimators. The validation of the TPS commissioning using gamma criteria compared to film showed an average passing rate of 100% and 93.2% with a global gamma criterion of 1 mm/3% for the coronal and axial planes, respectively, including the 3 × 3 mm2 field size and penumbra regions. CONCLUSIONS Synthetic diamond is a suitable detector for the complete relative dosimetry of small x-ray fields. The commissioning of the TPS with its own beam dosimetric data exhibited encouraging results even in a 3 × 3 mm2 field and penumbra region. This methodology allows for the prediction of 2D dose distributions with an accuracy in water ranging from 3 to 5% compared to the 2D distribution from film dosimetry.
Collapse
Affiliation(s)
- Erika Muñoz Arango
- Departamento de Ciências Radiológicas DCR, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-900, Brazil
| | | | | | - Carlos Eduardo de Almeida
- Departamento de Ciências Radiológicas DCR, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, 20550-900, Brazil
| |
Collapse
|
7
|
Silvestre Patallo I, Subiel A, Westhorpe A, Gouldstone C, Tulk A, Sharma RA, Schettino G. Development and Implementation of an End-To-End Test for Absolute Dose Verification of Small Animal Preclinical Irradiation Research Platforms. Int J Radiat Oncol Biol Phys 2020; 107:587-596. [DOI: 10.1016/j.ijrobp.2020.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/11/2020] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
|
8
|
Prentou E, Lekatou A, Pantelis E, Karaiskos P, Papagiannis P. On the use of EBT3 film for relative dosimetry of kilovoltage X ray beams. Phys Med 2020; 74:56-65. [PMID: 32417711 DOI: 10.1016/j.ejmp.2020.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/14/2020] [Accepted: 04/26/2020] [Indexed: 11/25/2022] Open
Abstract
EBT3 films were evaluated for relative dosimetry in water, in the energy range of therapeutic kV X ray beams. A film batch was calibrated in air for all nine beam qualities of a clinical unit (XStrahl 200). Monte Carlo (MC) simulations using MCNP v.6 facilitated the calculation of the film absorbed dose (f), and beam quality (kbq) energy dependences in air. Results were found in agreement with corresponding data in the literature. Film samples from the same batch were irradiated in water along the central beam axis for each beam quality. Experimental percentage depth dose (PDD) results obtained using calibration data in air showed quality and depth dependent differences from corresponding MC simulations. These differences increased beyond film dosimetry uncertainty (<3.3%), reaching up to 8% at increased depth. The observed differences reduced only slightly when spectral variation as a function of measurement point was accounted for, using photon effective energy. PDD measurements and corresponding MC results facilitated the determination of f and kbq in water. Results showed that the origin of the observed differences between experimental and MC PDD results is the difference between film response in air and water, as a result of radiation field perturbation from the film oriented along the central beam axis. This implies a directional dependence of film response which necessitates that the angular distribution of photons impinging on the film is the same in the calibration and measurement geometries.
Collapse
Affiliation(s)
- E Prentou
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Greece
| | - A Lekatou
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Greece
| | - E Pantelis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Greece
| | - P Karaiskos
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Greece
| | - P Papagiannis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
9
|
Marples B. The Need for Accurate Reporting of Dosimetric Conditions in Radiobiology Studies. Int J Radiat Oncol Biol Phys 2020; 106:253-254. [DOI: 10.1016/j.ijrobp.2019.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 11/28/2022]
|
10
|
Poirier Y, Johnstone CD, Anvari A, Brodin NP, Santos MD, Bazalova-Carter M, Sawant A. A failure modes and effects analysis quality management framework for image-guided small animal irradiators: A change in paradigm for radiation biology. Med Phys 2020; 47:2013-2022. [PMID: 31986221 DOI: 10.1002/mp.14049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/17/2019] [Accepted: 01/10/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE Image-guided small animal irradiators (IGSAI) are increasingly being adopted in radiation biology research. These animal irradiators, designed to deliver radiation with submillimeter accuracy, exhibit complexity similar to that of clinical radiation delivery systems, including image guidance, robotic stage motion, and treatment planning systems. However, physics expertise and resources are scarcer in radiation biology, which makes implementation of conventional prescriptive QA infeasible. In this study, we apply the failure modes and effect analysis (FMEA) popularized by the AAPM task group 100 (TG-100) report to IGSAI and radiation biological research. METHODS Radiation biological research requires a change in paradigm where small errors to large populations of animals are more severe than grievous errors that only affect individuals. To this end, we created a new adverse effects severity table adapted to radiation biology research based on the original AAPM TG-100 severity table. We also produced a process tree which outlines the main components of radiation biology studies performed on an IGSAI, adapted from the original clinical IMRT process tree from TG-100. Using this process tree, we created and distributed a preliminary survey to eight expert IGSAI operators in four institutions. Operators rated proposed failure modes for occurrence, severity, and lack of detectability, and were invited to share their own experienced failure modes. Risk probability numbers (RPN) were calculated and used to identify the failure modes which most urgently require intervention. RESULTS Surveyed operators indicated a number of high (RPN >125) failure modes specific to small animal irradiators. Errors due to equipment breakdown, such as loss of anesthesia or thermal control, received relatively low RPN (12-48) while errors related to the delivery of radiation dose received relatively high RPN (72-360). Errors identified could either be improved by manufacturer intervention (e.g., electronic interlocks for filter/collimator) or physics oversight (errors related to tube calibration or treatment planning system commissioning). Operators identified a number of failure modes including collision between the collimator and the stage, misalignment between imaging and treatment isocenter, inaccurate robotic stage homing/translation, and incorrect SSD applied to hand calculations. These were all relatively highly rated (90-192), indicating a possible bias in operators towards reporting high RPN failure modes. CONCLUSIONS The first FMEA specific to radiation biology research was applied to image-guided small animal irradiators following the TG-100 methodology. A new adverse effects severity table and a process tree recognizing the need for a new paradigm were produced, which will be of great use to future investigators wishing to pursue FMEA in radiation biology research. Future work will focus on expanding scope of user surveys to users of all commercial IGSAI and collaborating with manufacturers to increase the breadth of surveyed expert operators.
Collapse
Affiliation(s)
- Yannick Poirier
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher Daniel Johnstone
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | - Akbar Anvari
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - N Patrik Brodin
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, USA
| | - Morgane Dos Santos
- Service de Recherche en Radiobiologie et en Médecine régénérative, Laboratoire de Radiobiologie des expositions Accidentelles, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | | | - Amit Sawant
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
11
|
Feddersen TV, Rowshanfarzad P, Abel TN, Ebert MA. Commissioning and performance characteristics of a pre-clinical image-guided radiotherapy system. AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2019; 42:541-551. [PMID: 30989595 PMCID: PMC6557883 DOI: 10.1007/s13246-019-00755-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 04/01/2019] [Indexed: 12/21/2022]
Abstract
Characteristics of a small-animal radiotherapy device, the X-RAD SmART, are described following commissioning of the device for pre-clinical radiotherapy research. Performance characteristics were assessed using published standards and compared with previous results published for similar systems. Operational radiation safety was established. Device X-ray beam quality and output dose-rate were found to be consistent with those reported for similar devices. Output steadily declined over 18 months though remained within tolerance levels. There is considerable variation in output factor across the international installations for the smallest field size (varying by more than 30% for 2.5 mm diameter fields). Measured depth dose and profile data was mostly consistent with that published, with some differences in penumbrae and generally reduced flatness. Target localisation is achieved with an imaging panel and with automatic corrections for panel flex and device mechanical instability, targeting within 0.2 mm is achievable. The small-animal image-guided radiotherapy platform has been implemented and assessed and found to perform as specified. The combination of kV energy and high spatial precision make it suitable for replicating clinical dose distributions at the small-animal scale, though dosimetric uncertainties for the narrowest fields need to be acknowledged.
Collapse
Affiliation(s)
- Theresa V Feddersen
- Department of Physics, University of Western Australia, Crawley, WA, Australia.
- Department of Radiotherapy, Erasmus University Medical Center, Rotterdam, The Netherlands.
- Department of Radiology & Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | | | - Tamara N Abel
- Telethon Kids Institute, University of Western Australia, Subiaco, WA, Australia
| | - Martin A Ebert
- Department of Physics, University of Western Australia, Crawley, WA, Australia
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| |
Collapse
|
12
|
Johnstone CD, Therriault-Proulx F, Beaulieu L, Bazalova-Carter M. Characterization of a plastic scintillating detector for the Small Animal Radiation Research Platform (SARRP). Med Phys 2018; 46:394-404. [PMID: 30417377 DOI: 10.1002/mp.13283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/07/2018] [Accepted: 10/30/2018] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The purpose of this study was to characterize a small plastic scintillator developed for high resolution, real-time dosimetry of therapy and imaging x-ray beams delivered by an image-guided small animal irradiator. MATERIALS AND METHODS A 1 mm diameter, 1 mm long polystyrene BCF-60 scintillating fiber dosimeter was characterized with 220 kVp therapy and 40, 50, 60, 70, and 80 kVp imaging beams on the Small Animal Research Platform (SARRP). Scintillator output, sensitivity (charge per unit dose), linearity, and 0.2-mm resolution beam profile measurements were performed. A validated in-house Monte Carlo (MC) model of the SARRP was used to compute detailed energy spectra at locations of dosimetry, and validated scintillator measurement with MC simulations. Mass energy-absorption coefficients from the National Institute of Standards and Technology (NIST) tables convolved with MC-derived spectra were used in conjunction with Birks ionization quenching factors to correct scintillator output. An air kerma calibration method was employed to correct scintillator output for in-air beam profile measurements with open, 5 × 5, and 3 × 3 mm2 square field sizes, and compared to MC simulations. RESULTS Scintillator dose response showed excellent linearity (R2 ≥ 0.999) for all sensitivity measurements, including output as a function of tube current. Detector sensitivity was 2.41 μC Gy-1 for the 220 kVp therapy beam, and it ranged from 1.21 to 1.32 μC Gy-1 for the 40-80 imaging beams. Percentage difference in sensitivity between the therapy and imaging beams before sensitivity correction and after using the Birks quenching factors were 52.3% and 10.2%, respectively. Percentage differences between the therapy and imaging beam sensitivities after using the air kerma calibration method for in-air measurements was excellent and below 0.3%. In-air beam profile measurements agreed to MC simulations within a mean difference of 2.4% for the 5 × 5 and 3 × 3 mm2 field sizes, however, the scintillator showed signs of volume averaging at the penumbra edges. CONCLUSIONS A small plastic scintillator was characterized for therapy and imaging energies of a small animal irradiator, with output corrected for using an in-house MC model of the irradiator. The characterization of the scintillator detector system for small fields presents steps toward implementing real-time measurements for quality assurance and small animal treatment and imaging dose verification.
Collapse
Affiliation(s)
| | - François Therriault-Proulx
- Departement de Radio-Oncologie and Centre de recherche du CHU de Quebec, CHU de Quebec, Quebec, QC, G1R 3S1, Canada
| | - Luc Beaulieu
- Departement de Radio-Oncologie and Centre de recherche du CHU de Quebec, CHU de Quebec, Quebec, QC, G1R 3S1, Canada.,Departement de physique and Centre de recherche sur le Cancer, Université Laval, Quebec, QC, G1V 0A6, Canada
| | - Magdalena Bazalova-Carter
- Department of Physics and Astronomy, University of Victoria, Victoria, British Columbia, V8P 5C2, Canada
| |
Collapse
|