1
|
Volz L, Graeff C, Durante M, Collins-Fekete CA. Focus stacking single-event particle radiography for high spatial resolution images and 3D feature localization. Phys Med Biol 2024; 69:024001. [PMID: 38056016 PMCID: PMC10777170 DOI: 10.1088/1361-6560/ad131a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Objective.We demonstrate a novel focus stacking technique to improve spatial resolution of single-event particle radiography (pRad), and exploit its potential for 3D feature detection.Approach.Focus stacking, used typically in optical photography and microscopy, is a technique to combine multiple images with different focal depths into a single super-resolution image. Each pixel in the final image is chosen from the image with the largest gradient at that pixel's position. pRad data can be reconstructed at different depths in the patient based on an estimate of each particle's trajectory (called distance-driven binning; DDB). For a given feature, there is a depth of reconstruction for which the spatial resolution of DDB is maximal. Focus stacking can hence be applied to a series of DDB images reconstructed from a single pRad acquisition for different depths, yielding both a high-resolution projection and information on the features' radiological depth at the same time. We demonstrate this technique with Geant4 simulated pRads of a water phantom (20 cm thick) with five bone cube inserts at different depths (1 × 1 × 1 cm3) and a lung cancer patient.Main results.For proton radiography of the cube phantom, focus stacking achieved a median resolution improvement of 136% compared to a state-of-the-art maximum likelihood pRad reconstruction algorithm and a median of 28% compared to DDB where the reconstruction depth was the center of each cube. For the lung patient, resolution was visually improved, without loss in accuracy. The focus stacking method also enabled to estimate the depth of the cubes within few millimeters accuracy, except for one shallow cube, where the depth was underestimated by 2.5 cm.Significance.Focus stacking utilizes the inherent 3D information encoded in pRad by the particle's scattering, overcoming current spatial resolution limits. It further opens possibilities for 3D feature localization. Therefore, focus stacking holds great potential for future pRad applications.
Collapse
Affiliation(s)
- Lennart Volz
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany
| | - Christian Graeff
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany
- Department of Electrical Engineering and Information Technology, Technical University of Darmstadt, Darmstadt, Germany
| | - Marco Durante
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany
- Department of Condensed Matter Physics, Technical University of Darmstadt, Darmstadt, Germany
| | | |
Collapse
|
2
|
Kaser S, Bergauer T, Biguri A, Birkfellner W, Hatamikia S, Hirtl A, Irmler C, Kirchmayer B, Ulrich-Pur F. Extension of the open-source TIGRE toolbox for proton imaging. Z Med Phys 2023; 33:552-566. [PMID: 36195519 PMCID: PMC10751710 DOI: 10.1016/j.zemedi.2022.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/08/2022] [Accepted: 08/31/2022] [Indexed: 10/07/2022]
Abstract
Proton irradiation is a well-established method to treat deep-seated tumors in radio oncology. Usually, an X-ray computed tomography (CT) scan is used for treatment planning. Since proton therapy is based on the precise knowledge of the stopping power describing the energy loss of protons in the patient tissues, the Hounsfield units of the planning CT have to be converted. This conversion introduces range errors in the treatment plan, which could be reduced, if the stopping power values were extracted directly from an image obtained using protons instead of X-rays. Since protons are affected by multiple Coulomb scattering, reconstruction of the 3D stopping power map results in limited image quality if the curved proton path is not considered. This work presents a substantial code extension of the open-source toolbox TIGRE for proton CT (pCT) image reconstruction based on proton radiographs including a curved proton path estimate. The code extension and the reconstruction algorithms are GPU-based, allowing to achieve reconstruction results within minutes. The performance of the pCT code extension was tested with Monte Carlo simulated data using three phantoms (Catphan® high resolution and sensitometry modules and a CIRS patient phantom). In the simulations, ideal and non-ideal conditions for a pCT setup were assumed. The obtained mean absolute percentage error was found to be below 1% and up to 8 lp/cm could be resolved using an idealized setup. These findings demonstrate that the presented code extension to the TIGRE toolbox offers the possibility for other research groups to use a fast and accurate open-source pCT reconstruction.
Collapse
Affiliation(s)
- Stefanie Kaser
- Institute of High Energy Physics, Austrian Academy of Sciences, Vienna, Austria.
| | - Thomas Bergauer
- Institute of High Energy Physics, Austrian Academy of Sciences, Vienna, Austria
| | - Ander Biguri
- Department of Applied Mathematics and Theoretical Physics (DAMTP), University of Cambridge, Cambridge, United Kingdom
| | - Wolfgang Birkfellner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Sepideh Hatamikia
- Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria; Research Center for Medical Image Analysis and Artificial Intelligence (MIAAI), Department of Medicine, Danube Private University, Krems, Austria; Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | | - Christian Irmler
- Institute of High Energy Physics, Austrian Academy of Sciences, Vienna, Austria
| | | | - Felix Ulrich-Pur
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany; Institute of High Energy Physics, Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
3
|
Fullarton R, Volz L, Dikaios N, Schulte R, Royle G, Evans PM, Seco J, Collins‐Fekete C. A likelihood-based particle imaging filter using prior information. Med Phys 2023; 50:2336-2353. [PMID: 36727634 PMCID: PMC10947404 DOI: 10.1002/mp.16258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Particle imaging can increase precision in proton and ion therapy. Interactions with nuclei in the imaged object increase image noise and reduce image quality, especially for multinucleon ions that can fragment, such as helium. PURPOSE This work proposes a particle imaging filter, referred to as the Prior Filter, based on using prior information in the form of an estimated relative stopping power (RSP) map and the principles of electromagnetic interaction, to identify particles that have undergone nuclear interaction. The particles identified as having undergone nuclear interactions are then excluded from the image reconstruction, reducing the image noise. METHODS The Prior Filter uses Fermi-Eyges scattering and Tschalär straggling theories to determine the likelihood that a particle only interacts electromagnetically. A threshold is then set to reject those particles with a low likelihood. The filter was evaluated and compared with a filter that estimates this likelihood based on the measured distribution of energy and scattering angle within pixels, commonly implemented as the 3σ filter. Reconstructed radiographs from simulated data of a 20-cm water cylinder and an anthropomorphic chest phantom were generated with both protons and helium ions to assess the effect of the filters on noise reduction. The simulation also allowed assessment of secondary particle removal through the particle histories. Experimental data were acquired of the Catphan CTP 404 Sensitometry phantom using the U.S. proton CT (pCT) collaboration prototype scanner. The proton and helium images were filtered with both the prior filtering method and a state-of-the-art method including an implementation of the 3σ filter. For both cases, a dE-E telescope filter, designed for this type of detector, was also applied. RESULTS The proton radiographs showed a small reduction in noise (1 mm of water-equivalent thickness [WET]) but a larger reduction in helium radiographs (up to 5-6 mm of WET) due to better secondary filtering. The proton and helium CT images reflected this, with similar noise at the center of the phantom (0.02 RSP) for the proton images and an RSP noise of 0.03 for the proposed filter and 0.06 for the 3σ filter in the helium images. Images reconstructed from data with a dose reduction, up to a factor of 9, maintained a lower noise level using the Prior Filter over the state-of-the-art filtering method. CONCLUSIONS The proposed filter results in images with equal or reduced noise compared to those that have undergone a filtering method typical of current particle imaging studies. This work also demonstrates that the proposed filter maintains better performance against the state of the art with up to a nine-fold dose reduction.
Collapse
Affiliation(s)
- Ryan Fullarton
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Lennart Volz
- Department of Biomedical Physics in Radiation OncologyDeutsches Krebsforschungszentrum (DKFZ)HeidelbergGermany
- Department of Physics and AstronomyHeidelberg UniversityHeidelbergGermany
- GSI Helmholtz Centre for Heavy Ion Research GmbHDarmstadtGermany
| | - Nikolaos Dikaios
- Centre for Vision Speech and Signal ProcessingUniversity of SurreyGuildfordUK
- Mathematics Research CenterAcademy of AthensAthensGreece
| | - Reinhard Schulte
- Department of Basic SciencesDivision of Biomedical Engineering SciencesLoma Linda UniversityLoma LindaCaliforniaUSA
| | - Gary Royle
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Philip M. Evans
- Centre for Vision Speech and Signal ProcessingUniversity of SurreyGuildfordUK
- Chemical, Medical and Environmental ScienceNational Physical LaboratoryTeddingtonUK
| | - Joao Seco
- Department of Biomedical Physics in Radiation OncologyDeutsches Krebsforschungszentrum (DKFZ)HeidelbergGermany
- Department of Physics and AstronomyHeidelberg UniversityHeidelbergGermany
| | | |
Collapse
|
4
|
Mairani A, Mein S, Blakely E, Debus J, Durante M, Ferrari A, Fuchs H, Georg D, Grosshans DR, Guan F, Haberer T, Harrabi S, Horst F, Inaniwa T, Karger CP, Mohan R, Paganetti H, Parodi K, Sala P, Schuy C, Tessonnier T, Titt U, Weber U. Roadmap: helium ion therapy. Phys Med Biol 2022; 67. [PMID: 35395649 DOI: 10.1088/1361-6560/ac65d3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/08/2022] [Indexed: 12/16/2022]
Abstract
Helium ion beam therapy for the treatment of cancer was one of several developed and studied particle treatments in the 1950s, leading to clinical trials beginning in 1975 at the Lawrence Berkeley National Laboratory. The trial shutdown was followed by decades of research and clinical silence on the topic while proton and carbon ion therapy made debuts at research facilities and academic hospitals worldwide. The lack of progression in understanding the principle facets of helium ion beam therapy in terms of physics, biological and clinical findings persists today, mainly attributable to its highly limited availability. Despite this major setback, there is an increasing focus on evaluating and establishing clinical and research programs using helium ion beams, with both therapy and imaging initiatives to supplement the clinical palette of radiotherapy in the treatment of aggressive disease and sensitive clinical cases. Moreover, due its intermediate physical and radio-biological properties between proton and carbon ion beams, helium ions may provide a streamlined economic steppingstone towards an era of widespread use of different particle species in light and heavy ion therapy. With respect to the clinical proton beams, helium ions exhibit superior physical properties such as reduced lateral scattering and range straggling with higher relative biological effectiveness (RBE) and dose-weighted linear energy transfer (LETd) ranging from ∼4 keVμm-1to ∼40 keVμm-1. In the frame of heavy ion therapy using carbon, oxygen or neon ions, where LETdincreases beyond 100 keVμm-1, helium ions exhibit similar physical attributes such as a sharp lateral penumbra, however, with reduced radio-biological uncertainties and without potentially spoiling dose distributions due to excess fragmentation of heavier ion beams, particularly for higher penetration depths. This roadmap presents an overview of the current state-of-the-art and future directions of helium ion therapy: understanding physics and improving modeling, understanding biology and improving modeling, imaging techniques using helium ions and refining and establishing clinical approaches and aims from learned experience with protons. These topics are organized and presented into three main sections, outlining current and future tasks in establishing clinical and research programs using helium ion beams-A. Physics B. Biological and C. Clinical Perspectives.
Collapse
Affiliation(s)
- Andrea Mairani
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Centre of Oncological Hadrontherapy (CNAO), Medical Physics, Pavia, Italy.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - Stewart Mein
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eleanor Blakely
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
| | - Jürgen Debus
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Molecular and Translational Radiation Oncology, National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany.,Technische Universität Darmstadt, Institut für Physik Kondensierter Materie, Darmstadt, Germany
| | - Alfredo Ferrari
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Hermann Fuchs
- Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dietmar Georg
- Division of Medical Physics, Department of Radiation Oncology, Medical University of Vienna, Austria.,MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - David R Grosshans
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Fada Guan
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America.,Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510, United States of America
| | - Thomas Haberer
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Semi Harrabi
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,German Cancer Consortium (DKTK) Core-Center Heidelberg, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg University and German Cancer Research Center (DKFZ), Heidelberg, Germany.,National Center for Tumor Diseases (NCT), Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Felix Horst
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| | - Taku Inaniwa
- Department of Accelerator and Medical Physics, Institute for Quantum Medical Science, QST, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan.,Medical Physics Laboratory, Division of Health Science, Graduate School of Medicine, Osaka University, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Christian P Karger
- National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Radhe Mohan
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Harald Paganetti
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, United States of America.,Harvard Medical School, Boston, United States of America
| | - Katia Parodi
- Ludwig-Maximilians-Universität München, Department of Experimental Physics-Medical Physics, Munich, Germany
| | - Paola Sala
- Ludwig-Maximilians-Universität München, Department of Experimental Physics-Medical Physics, Munich, Germany
| | - Christoph Schuy
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| | - Thomas Tessonnier
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Uwe Titt
- The University of Texas MD Anderson cancer Center, Houston, Texas, United States of America
| | - Ulrich Weber
- GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany
| |
Collapse
|
5
|
Knobloch C, Metzner M, Kehrein F, Schömers C, Scheloske S, Brons S, Hermann R, Peters A, Jäkel O, Martišíková M, Gehrke T. Experimental helium-beam radiography with a high-energy beam: Water-equivalent thickness calibration and first image-quality results. Med Phys 2022; 49:5347-5362. [PMID: 35670033 DOI: 10.1002/mp.15795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE A clinical implementation of ion-beam radiography (iRad) is envisaged to provide a method for on-couch verification of ion-beam treatment plans. The aim of this work is to introduce and evaluate a method for quantitative water-equivalent thickness (WET) measurements for a specific helium-ion imaging system for WETs that are relevant for imaging thicker body parts in the future. METHODS Helium-beam radiographs (αRads) are measured at the Heidelberg Ion-beam Therapy Center (HIT) with an initial beam energy of 239.5 MeV/ u. An imaging system based on three pairs of thin silicon pixel detectors is used for ion path reconstruction and measuring the energy deposition (dE) of each particle behind the object to be imaged. The dE behind homogeneous plastic blocks is related to their well-known WETs between 280.6mm and 312.6 mm with a calibration curve that is created by fitting the measured data points. The quality of the quantitative WET measurements is determined by the uncertainty of the measured WET of a single ion (single-ion WET precision) and the deviation of a measured WET value to the well-known WET (WET accuracy). Subsequently, the fitted calibration curve is applied to an energy deposition radiograph of a phantom with a complex geometry. The spatial resolution (modulation transfer function at 10% (MTF10% )) and WET accuracy (mean absolute percentage difference (MAPD)) of the WET map, are determined. RESULTS In the optimal imaging WET-range from ∼ 280 mm to 300 mm, the fitted calibration curve reached a mean single-ion WET precision of 1.55 ± 0.00%. Applying the calibration to an ion radiograph (iRad) of a more complex WET distribution, the spatial resolution was determined to be MTF10% = 0.49 ± 0.03 lp/mm and the WET accuracy was assessed as MAPD to 0.21%. CONCLUSIONS Using a beam energy of 239.5MeV/ u and the proposed calibration procedure, quantitative αRads of WETs between ∼ 280mm to 300 mm can be measured and show high potential for clinical use. The proposed approach with the resulting image qualities encourages further investigation towards the clinical application of helium-beam radiography. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- C Knobloch
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Heidelberg University, Department of Physics and Astronomy, Heidelberg, Germany
| | - M Metzner
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Heidelberg University, Department of Physics and Astronomy, Heidelberg, Germany
| | - F Kehrein
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Heidelberg University, Department of Physics and Astronomy, Heidelberg, Germany
| | - C Schömers
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology Heidelberg University Hospital, Heidelberg, Germany
| | - S Scheloske
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology Heidelberg University Hospital, Heidelberg, Germany
| | - S Brons
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology Heidelberg University Hospital, Heidelberg, Germany
| | - R Hermann
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg University Hospital, Department of Radiation Oncology, Heidelberg, Germany.,Goethe University Frankfurt, Institute of Applied Physics, Frankfurt, Germany
| | - A Peters
- Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology Heidelberg University Hospital, Heidelberg, Germany
| | - O Jäkel
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Centre (HIT), Department of Radiation Oncology Heidelberg University Hospital, Heidelberg, Germany
| | - M Martišíková
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany
| | - T Gehrke
- German Cancer Research Center (DKFZ), Department of Medical Physics in Radiation Oncology, Heidelberg, Germany.,National Center for Radiation Research in Oncology (NCRO), Heidelberg Institute for Radiation Oncology (HIRO), Heidelberg, Germany.,Heidelberg University Hospital, Department of Radiation Oncology, Heidelberg, Germany
| |
Collapse
|
6
|
Götz S, Dickmann J, Rit S, Krah N, Khellaf F, Schulte RW, Parodi K, Dedes G, Landry G. Evaluation of the impact of a scanner prototype on proton CT and helium CT image quality and dose efficiency with Monte Carlo simulation. Phys Med Biol 2022; 67. [PMID: 35086073 DOI: 10.1088/1361-6560/ac4fa4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/27/2022] [Indexed: 11/12/2022]
Abstract
Objective.The use of ion computed tomography (CT) promises to yield improved relative stopping power (RSP) estimation as input to particle therapy treatment planning. Recently, proton CT (pCT) has been shown to yield RSP accuracy on par with state-of-the-art x-ray dual energy CT. There are however concerns that the lower spatial resolution of pCT compared to x-ray CT may limit its potential, which has spurred interest in the use of helium ion CT (HeCT). The goal of this study was to investigate image quality of pCT and HeCT in terms of noise, spatial resolution, RSP accuracy and imaging dose using a detailed Monte Carlo (MC) model of an existing ion CT prototype.Approach.Three phantoms were used in simulated pCT and HeCT scans allowing estimation of noise, spatial resolution and the scoring of dose. An additional phantom was used to evaluate RSP accuracy. The imaging dose required to achieve the same image noise in a water and a head phantom was estimated at both native spatial resolution, and in a scenario where the HeCT spatial resolution was reduced and matched to that of pCT using Hann windowing of the reconstruction filter. A variance reconstruction formalism was adapted to account for Hann windowing.Main results.We confirmed that the scanner prototype would produce higher spatial resolution for HeCT than pCT by a factor 1.8 (0.86 lp mm-1versus 0.48 lp mm-1at the center of a 20 cm water phantom). At native resolution, HeCT required a factor 2.9 more dose than pCT to achieve the same noise, while at matched resolution, HeCT required only 38% of the pCT dose. Finally, RSP mean absolute percent error (MAPE) was found to be 0.59% for pCT and 0.67% for HeCT.Significance.This work compared the imaging performance of pCT and HeCT when using an existing scanner prototype, with the spatial resolution advantage of HeCT coming at the cost of increased dose. When matching spatial resolution via Hann windowing, HeCT had a substantial dose advantage. Both modalities provided state-of-the-art RSP MAPE. HeCT might therefore help reduce the dose exposure of patients with comparable image noise to pCT, enhanced spatial resolution and acceptable RSP accuracy at the same time.
Collapse
Affiliation(s)
- S Götz
- Department of Medical Physics, Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU Munich), D-85748 Garching bei München, Germany
| | - J Dickmann
- Department of Medical Physics, Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU Munich), D-85748 Garching bei München, Germany
| | - S Rit
- University of Lyon, INSA-Lyon, Unversité Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, UMR 5220, U1294 F-69373, Lyon, France
| | - N Krah
- University of Lyon, INSA-Lyon, Unversité Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, UMR 5220, U1294 F-69373, Lyon, France.,IP2I, UMR 5822 F-69622, Villeurbanne, France
| | - F Khellaf
- University of Lyon, INSA-Lyon, Unversité Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS, UMR 5220, U1294 F-69373, Lyon, France
| | - R W Schulte
- Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA 92354, United States of America
| | - K Parodi
- Department of Medical Physics, Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU Munich), D-85748 Garching bei München, Germany
| | - G Dedes
- Department of Medical Physics, Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU Munich), D-85748 Garching bei München, Germany
| | - G Landry
- Department of Medical Physics, Fakultät für Physik, Ludwig-Maximilians-Universität München (LMU Munich), D-85748 Garching bei München, Germany.,Department of Radiation Oncology, University Hospital, LMU Munich, D-81377 Munich, Germany.,German Cancer Consortium (DKTK), D-81377 Munich, Germany
| |
Collapse
|
7
|
Dedes G, Dickmann J, Giacometti V, Rit S, Krah N, Meyer S, Bashkirov V, Schulte R, Johnson RP, Parodi K, Landry G. The role of Monte Carlo simulation in understanding the performance of proton computed tomography. Z Med Phys 2022; 32:23-38. [PMID: 32798033 PMCID: PMC9948882 DOI: 10.1016/j.zemedi.2020.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/18/2020] [Accepted: 06/16/2020] [Indexed: 01/28/2023]
Abstract
Proton computed tomography (pCT) is a promising tomographic imaging modality allowing direct reconstruction of proton relative stopping power (RSP) required for proton therapy dose calculation. In this review article, we aim at highlighting the role of Monte Carlo (MC) simulation in pCT studies. After describing the requirements for performing proton computed tomography and the various pCT scanners actively used in recent research projects, we present an overview of available MC simulation platforms. The use of MC simulations in the scope of investigations of image reconstruction, and for the evaluation of optimal RSP accuracy, precision and spatial resolution omitting detector effects is then described. In the final sections of the review article, we present specific applications of realistic MC simulations of an existing pCT scanner prototype, which we describe in detail.
Collapse
Affiliation(s)
- George Dedes
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching b. München, Germany.
| | - Jannis Dickmann
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching b. München, Germany
| | - Valentina Giacometti
- The Patrick G Johnston Centre for Cancer Research, Queen's University of Belfast, Northern Ireland Cancer Centre, Belfast, Northern Ireland, United Kingdom
| | - Simon Rit
- University of Lyon, CREATIS, CNRS UMR5220; Inserm U1044, INSA-Lyon, Université Lyon 1, Centre Léon Bérard, Lyon, France
| | - Nils Krah
- University of Lyon, CREATIS, CNRS UMR5220; Inserm U1044, INSA-Lyon, Université Lyon 1, Centre Léon Bérard, Lyon, France; University of Lyon, Institute of Nuclear Physics Lyon (IPNL), CNRS UMR 5822, Villeurbanne, France
| | - Sebastian Meyer
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching b. München, Germany; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Vladimir Bashkirov
- Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, United States of America
| | - Reinhard Schulte
- Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, CA, United States of America
| | - Robert P Johnson
- Department of Physics, U. C. Santa Cruz, Santa Cruz, CA, United States of America
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching b. München, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, Department of Medical Physics, University Hospital, LMU Munich, Munich, Germany; German Cancer Consortium, (DKTK), Munich, Germany; Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Garching b. München, Germany
| |
Collapse
|
8
|
Bär E, Volz L, Collins-Fekete CA, Brons S, Runz A, Schulte RW, Seco J. Experimental comparison of photon versus particle computed tomography to predict tissue relative stopping powers. Med Phys 2022; 49:474-487. [PMID: 34709667 DOI: 10.1002/mp.15283] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Measurements comparing relative stopping power (RSP) accuracy of state-of-the-art systems representing single-energy and dual-energy computed tomography (SECT/DECT) with proton CT (pCT) and helium CT (HeCT) in biological tissue samples. METHODS We used 16 porcine and bovine samples of various tissue types and water, covering an RSP range from 0.90 ± 0.06 to 1.78 ± 0.05. Samples were packed and sealed into 3D-printed cylinders ( d = 2 cm, h = 5 cm) and inserted into an in-house designed cylindrical polymethyl methacrylate (PMMA) phantom ( d = 10 cm, h = 10 cm). We scanned the phantom in a commercial SECT and DECT (120 kV; 100 and 140 kV/Sn (tin-filtered)); and acquired pCT and HeCT ( E ∼ 200 MeV/u, 2 ∘ steps, ∼ 6.2 × 10 6 (p)/ ∼ 2.3 × 10 6 (He) particles/projection) with a particle imaging prototype. RSP maps were calculated from SECT/DECT using stoichiometric methods and from pCT/HeCT using the DROP-TVS algorithm. We estimated the average RSP of each tissue per modality in cylindrical volumes of interest and compared it to ground truth RSP taken from peak-detection measurements. RESULTS Throughout all samples, we observe the following root-mean-squared RSP prediction errors ± combined uncertainty from reference measurement and imaging: SECT 3.10 ± 2.88%, DECT 0.75 ± 2.80%, pCT 1.19 ± 2.81%, and HeCT 0.78 ± 2.81%. The largest mean errors ± combined uncertainty per modality are SECT 8.22 ± 2.79% in cortical bone, DECT 1.74 ± 2.00% in back fat, pCT 1.80 ± 4.27% in bone marrow, and HeCT 1.37 ± 4.25% in bone marrow. Ring artifacts were observed in both pCT and HeCT reconstructions, imposing a systematic shift to predicted RSPs. CONCLUSION Comparing state-of-the-art SECT/DECT technology and a pCT/HeCT prototype, DECT provided the most accurate RSP prediction, closely followed by particle imaging. The novel modalities pCT and HeCT have the potential to further improve on RSP accuracies with work focusing on the origin and correction of ring artifacts. Future work will study accuracy of proton treatment plans using RSP maps from investigated imaging modalities.
Collapse
Affiliation(s)
- Esther Bär
- Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, Radiotherapy Physics, London, UK
| | - Lennart Volz
- Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | | | - Stephan Brons
- Heidelberg Ion Beam Therapy Center, Im Neuenheimer Feld, Heidelberg, Germany
| | - Armin Runz
- Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany
| | | | - Joao Seco
- Biomedical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld, Heidelberg, Germany.,Department of Physics and Astronomy, Heidelberg University, Germany
| |
Collapse
|
9
|
Volz L, Collins-Fekete CA, Bär E, Brons S, Graeff C, Johnson RP, Runz A, Sarosiek C, Schulte RW, Seco J. The accuracy of helium ion CT based particle therapy range prediction: an experimental study comparing different particle and x-ray CT modalities. Phys Med Biol 2021; 66:10.1088/1361-6560/ac33ec. [PMID: 34706355 PMCID: PMC8792995 DOI: 10.1088/1361-6560/ac33ec] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/27/2021] [Indexed: 11/12/2022]
Abstract
This work provides a quantitative assessment of helium ion CT (HeCT) for particle therapy treatment planning. For the first time, HeCT based range prediction accuracy in a heterogeneous tissue phantom is presented and compared to single-energy x-ray CT (SECT), dual-energy x-ray CT (DECT) and proton CT (pCT). HeCT and pCT scans were acquired using the US pCT collaboration prototype particle CT scanner at the Heidelberg Ion-Beam Therapy Center. SECT and DECT scans were done with a Siemens Somatom Definition Flash and converted to RSP. A Catphan CTP404 module was used to study the RSP accuracy of HeCT. A custom phantom of 20 cm diameter containing several tissue equivalent plastic cubes was used to assess the spatial resolution of HeCT and compare it to DECT. A clinically realistic heterogeneous tissue phantom was constructed using cranial slices from a pig head placed inside a cylindrical phantom (ø150 mm). A proton beam (84.67 mm range) depth-dose measurement was acquired using a stack of GafchromicTM EBT-XD films in a central dosimetry insert in the phantom. CT scans of the phantom were acquired with each modality, and proton depth-dose estimates were simulated based on the reconstructions. The RSP accuracy of HeCT for the plastic phantom was found to be 0.3 ± 0.1%. The spatial resolution for HeCT of the cube phantom was 5.9 ± 0.4 lp cm-1for central, and 7.6 ± 0.8 lp cm-1for peripheral cubes, comparable to DECT spatial resolution (7.7 ± 0.3 lp cm-1and 7.4 ± 0.2 lp cm-1, respectively). For the pig head, HeCT, SECT, DECT and pCT predicted range accuracy was 0.25%, -1.40%, -0.45% and 0.39%, respectively. In this study, HeCT acquired with a prototype system showed potential for particle therapy treatment planning, offering RSP accuracy, spatial resolution, and range prediction accuracy comparable to that achieved with a commercial DECT scanner. Still, technical improvements of HeCT are needed to enable clinical implementation.
Collapse
Affiliation(s)
- L Volz
- Department of Biomedical Physics in Radiation Oncology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - C-A Collins-Fekete
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - E Bär
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - S Brons
- Heidelberg Ion-Beam Therapy Center, Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - C Graeff
- Biophysics, GSI Helmholtz Center for Heavy Ion Research GmbH, Darmstadt, Germany
| | - R P Johnson
- Department of Physics, University of California at Santa Cruz, Santa Cruz, United States of America
| | - A Runz
- Department of Medical Physics in Radiation Therapy, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - C Sarosiek
- Department of Physics, Northern Illinois University, DeKalb, United States of America
| | - R W Schulte
- Department of Basic Sciences, Division of Biomedical Engineering Sciences, Loma Linda University, Loma Linda, United States of America
| | - J Seco
- Department of Biomedical Physics in Radiation Oncology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
10
|
Kaser S, Bergauer T, Hirtl A, Irmler C, Pitters F, Ulrich-Pur F. Calculating 1/β 2p 2 for most likely path estimates for protons and helium ions using an analytical model. Phys Med 2021; 89:169-175. [PMID: 34388556 DOI: 10.1016/j.ejmp.2021.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
In ion computed tomography, limited spatial resolution can be related to the non-straight path of ions resulting from multiple Coulomb scattering in the object to be imaged. By including sophisticated path estimates such as most likely path (MLP) or optimized cubic spline into the image reconstruction algorithm, the achieved spatial resolution can be substantially improved compared to assuming a simple straight line path only. The typically used implementation of the MLP is a matrix-based approach employing Bayesian statistics and modelling multiple Coulomb scattering as Gaussian distribution. For the elements of the scattering matrices, the term 1/β(w)2p(w)2, depending on the momentum and velocity of an ion within a phantom depth w, has to be known and integrated along the depth w. Usually, this term is extracted from a Monte Carlo simulation and approximated by a polynomial fit to solve the integral. In the present study, an existing analytical model for ion ranges and stopping powers was used to calculate 1/β(w)2p(w)2 and the scattering matrices for the MLP and was tested for protons and helium ions. The model was investigated for 10 cm to 40 cm water targets and initial energies ranging from 150 MeV to 300 MeV for protons and 150 MeV/u to 300 MeV/u for helium ions. In all cases, the calculated value obtained for 1/β(w)2p(w)2 was compared to a GATE simulation. The difference between root-mean-square errors of MLP estimates using calculated and simulated 1/β(w)2p(w)2 values were found to be smaller than 3 μm for all investigated water targets and energies.
Collapse
Affiliation(s)
- Stefanie Kaser
- Institute of High Energy Physics, Austrian Academy of Sciences, Vienna 1050, Austria.
| | - Thomas Bergauer
- Institute of High Energy Physics, Austrian Academy of Sciences, Vienna 1050, Austria
| | | | - Christian Irmler
- Institute of High Energy Physics, Austrian Academy of Sciences, Vienna 1050, Austria
| | - Florian Pitters
- Institute of High Energy Physics, Austrian Academy of Sciences, Vienna 1050, Austria
| | - Felix Ulrich-Pur
- Institute of High Energy Physics, Austrian Academy of Sciences, Vienna 1050, Austria
| |
Collapse
|
11
|
Collins-Fekete CA, Dikaios N, Bär E, Evans PM. Statistical limitations in ion imaging. Phys Med Biol 2021; 66. [PMID: 33711829 PMCID: PMC8112161 DOI: 10.1088/1361-6560/abee57] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/12/2021] [Indexed: 11/12/2022]
Abstract
In this study, we investigated the capacity of various ion beams available for radiotherapy to produce high quality relative stopping power map acquired from energy-loss measurements. The image quality metrics chosen to compare the different ions were signal-to-noise ratio (SNR) as a function of dose and spatial resolution. Geant4 Monte Carlo simulations were performed for: hydrogen, helium, lithium, boron and carbon ion beams crossing a 20 cm diameter water phantom to determine SNR and spatial resolution. It has been found that protons possess a significantly larger SNR when compared with other ions at a fixed range (up to 36% higher than helium) due to the proton nuclear stability and low dose per primary. However, it also yields the lowest spatial resolution against all other ions, with a resolution lowered by a factor 4 compared to that of carbon imaging, for a beam with the same initial range. When comparing for a fixed spatial resolution of 10 lp cm−1, carbon ions produce the highest image quality metrics with proton ions producing the lowest. In conclusion, it has been found that no ion can maximize all image quality metrics simultaneously and that a choice must be made between spatial resolution, SNR, and dose.
Collapse
Affiliation(s)
- Charles-Antoine Collins-Fekete
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, United Kingdom.,Chemical, Medical and Environmental Science, National Physical Laboratory, Hampton Road, Teddington, United Kingdom
| | - Nikolaos Dikaios
- Centre for Vision Speech and Signal Processing, University of Surrey, Guildford, United Kingdom
| | - Esther Bär
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, United Kingdom
| | - Philip M Evans
- Chemical, Medical and Environmental Science, National Physical Laboratory, Hampton Road, Teddington, United Kingdom.,Centre for Vision Speech and Signal Processing, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
12
|
Kaser S, Bergauer T, Birkfellner W, Burker A, Georg D, Hatamikia S, Hirtl A, Irmler C, Pitters F, Ulrich-Pur F. First application of the GPU-based software framework TIGRE for proton CT image reconstruction. Phys Med 2021; 84:56-64. [PMID: 33848784 DOI: 10.1016/j.ejmp.2021.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/26/2021] [Accepted: 03/03/2021] [Indexed: 11/28/2022] Open
Abstract
In proton therapy, the knowledge of the proton stopping power, i.e. the energy deposition per unit length within human tissue, is essential for accurate treatment planning. One suitable method to directly measure the stopping power is proton computed tomography (pCT). Due to the proton interaction mechanisms in matter, pCT image reconstruction faces some challenges: the unique path of each proton has to be considered separately in the reconstruction process adding complexity to the reconstruction problem. This study shows that the GPU-based open-source software toolkit TIGRE, which was initially intended for X-ray CT reconstruction, can be applied to the pCT image reconstruction problem using a straight line approach for the proton path. This simplified approach allows for reconstructions within seconds. To validate the applicability of TIGRE to pCT, several Monte Carlo simulations modeling a pCT setup with two Catphan® modules as phantoms were performed. Ordered-Subset Simultaneous Algebraic Reconstruction Technique (OS-SART) and Adaptive-Steepest-Descent Projection Onto Convex Sets (ASD-POCS) were used for image reconstruction. Since the accuracy of the approach is limited by the straight line approximation of the proton path, requirements for further improvement of TIGRE for pCT are addressed.
Collapse
Affiliation(s)
- Stefanie Kaser
- Institute of High Energy Physics, Austrian Academy of Sciences, Vienna, Austria.
| | - Thomas Bergauer
- Institute of High Energy Physics, Austrian Academy of Sciences, Vienna, Austria
| | - Wolfgang Birkfellner
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria; MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Sepideh Hatamikia
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; Austrian Center for Medical Innovation and Technology, Wiener Neustadt, Austria
| | | | - Christian Irmler
- Institute of High Energy Physics, Austrian Academy of Sciences, Vienna, Austria
| | - Florian Pitters
- Institute of High Energy Physics, Austrian Academy of Sciences, Vienna, Austria
| | - Felix Ulrich-Pur
- Institute of High Energy Physics, Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
13
|
Pettersen HES, Volz L, Sølie JR, Alme J, Barnaföldi GG, Barthel R, van den Brink A, Borshchov V, Chaar M, Eikeland V, Genov G, Grøttvik O, Helstrup H, Keidel R, Kobdaj C, van der Kolk N, Mehendale S, Meric I, Harald Odland O, Papp G, Peitzmann T, Piersimoni P, Protsenko M, Ur Rehman A, Richter M, Tefre Samnøy A, Seco J, Shafiee H, Songmoolnak A, Tambave G, Tymchuk I, Ullaland K, Varga-Kofarago M, Wagner B, Xiao R, Yang S, Yokoyama H, Röhrich D. Helium radiography with a digital tracking calorimeter-a Monte Carlo study for secondary track rejection. Phys Med Biol 2021; 66:035004. [PMID: 33181502 DOI: 10.1088/1361-6560/abca03] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Radiation therapy using protons and heavier ions is a fast-growing therapeutic option for cancer patients. A clinical system for particle imaging in particle therapy would enable online patient position verification, estimation of the dose deposition through range monitoring and a reduction of uncertainties in the calculation of the relative stopping power of the patient. Several prototype imaging modalities offer radiography and computed tomography using protons and heavy ions. A Digital Tracking Calorimeter (DTC), currently under development, has been proposed as one such detector. In the DTC 43 longitudinal layers of laterally stacked ALPIDE CMOS monolithic active pixel sensor chips are able to reconstruct a large number of simultaneously recorded proton tracks. In this study, we explored the capability of the DTC for helium imaging which offers favorable spatial resolution over proton imaging. Helium ions exhibit a larger cross section for inelastic nuclear interactions, increasing the number of produced secondaries in the imaged object and in the detector itself. To that end, a filtering process able to remove a large fraction of the secondaries was identified, and the track reconstruction process was adapted for helium ions. By filtering on the energy loss along the tracks, on the incoming angle and on the particle ranges, 97.5% of the secondaries were removed. After passing through 16 cm water, 50.0% of the primary helium ions survived; after the proposed filtering 42.4% of the primaries remained; finally after subsequent image reconstruction 31% of the primaries remained. Helium track reconstruction leads to more track matching errors compared to protons due to the increased available focus strength of the helium beam. In a head phantom radiograph, the Water Equivalent Path Length error envelope was 1.0 mm for helium and 1.1 mm for protons. This accuracy is expected to be sufficient for helium imaging for pre-treatment verification purposes.
Collapse
|
14
|
Blakely EA. The 20th Gray lecture 2019: health and heavy ions. Br J Radiol 2020; 93:20200172. [PMID: 33021811 PMCID: PMC8519642 DOI: 10.1259/bjr.20200172] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Particle radiobiology has contributed new understanding of radiation safety and underlying mechanisms of action to radiation oncology for the treatment of cancer, and to planning of radiation protection for space travel. This manuscript will highlight the significance of precise physical and biologically effective dosimetry to this translational research for the benefit of human health.This review provides a brief snapshot of the evolving scientific basis for, and the complex current global status, and remaining challenges of hadron therapy for the treatment of cancer. The need for particle radiobiology for risk planning in return missions to the Moon, and exploratory deep-space missions to Mars and beyond are also discussed. METHODS Key lessons learned are summarized from an impressive collective literature published by an international cadre of multidisciplinary experts in particle physics, radiation chemistry, medical physics of imaging and treatment planning, molecular, cellular, tissue radiobiology, biology of microgravity and other stressors, theoretical modeling of biophysical data, and clinical results with accelerator-produced particle beams. RESULTS Research pioneers, many of whom were Nobel laureates, led the world in the discovery of ionizing radiations originating from the Earth and the Cosmos. Six radiation pioneers led the way to hadron therapy and the study of charged particles encountered in outer space travel. Worldwide about 250,000 patients have been treated for cancer, or other lesions such as arteriovenous malformations in the brain between 1954 and 2019 with charged particle radiotherapy, also known as hadron therapy. The majority of these patients (213,000) were treated with proton beams, but approximately 32,000 were treated with carbon ion radiotherapy. There are 3500 patients who have been treated with helium, pions, neon or other ions. There are currently 82 facilities operating to provide ion beam clinical treatments. Of these, only 13 facilities located in Asia and Europe are providing carbon ion beams for preclinical, clinical, and space research. There are also numerous particle physics accelerators worldwide capable of producing ion beams for research, but not currently focused on treating patients with ion beam therapy but are potentially available for preclinical and space research. Approximately, more than 550 individuals have traveled into Lower Earth Orbit (LEO) and beyond and returned to Earth. CONCLUSION Charged particle therapy with controlled beams of protons and carbon ions have significantly impacted targeted cancer therapy, eradicated tumors while sparing normal tissue toxicities, and reduced human suffering. These modalities still require further optimization and technical refinements to reduce cost but should be made available to everyone in need worldwide. The exploration of our Universe in space travel poses the potential risk of exposure to uncontrolled charged particles. However, approaches to shield and provide countermeasures to these potential radiation hazards in LEO have allowed an amazing number of discoveries currently without significant life-threatening medical consequences. More basic research with components of the Galactic Cosmic Radiation field are still required to assure safety involving space radiations and combined stressors with microgravity for exploratory deep space travel. ADVANCES IN KNOWLEDGE The collective knowledge garnered from the wealth of available published evidence obtained prior to particle radiation therapy, or to space flight, and the additional data gleaned from implementing both endeavors has provided many opportunities for heavy ions to promote human health.
Collapse
|
15
|
Dickmann J, Sarosiek C, Rykalin V, Pankuch M, Rit S, Detrich N, Coutrakon G, Johnson RP, Schulte RW, Parodi K, Landry G, Dedes G. Experimental realization of dynamic fluence field optimization for proton computed tomography. ACTA ACUST UNITED AC 2020; 65:195001. [DOI: 10.1088/1361-6560/ab9f5f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
16
|
Volz L, Collins-Fekete CA, Sølie JR, Seco J. Theoretical considerations on the spatial resolution limit of single-event particle radiography. Biomed Phys Eng Express 2020; 6:055002. [DOI: 10.1088/2057-1976/ab9c3f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
17
|
Abstract
Proton imaging is a promising technology for proton radiotherapy as it can be used for: (1) direct sampling of the tissue stopping power, (2) input information for multi-modality RSP reconstruction, (3) gold-standard calibration against concurrent techniques, (4) tracking motion and (5) pre-treatment positioning. However, no end-to-end characterization of the image quality (signal-to-noise ratio and spatial resolution, blurring uncertainty) against the dose has been done. This work aims to establish a model relating these characteristics and to describe their relationship with proton energy and object size. The imaging noise originates from two processes: the Coulomb scattering with the nucleus, producing a path deviation, and the energy loss straggling with electrons. The noise is found to increases with thickness crossed and, independently, decreases with decreasing energy. The scattering noise is dominant around high-gradient edge whereas the straggling noise is maximal in homogeneous regions. Image quality metrics are found to behave oppositely against energy: lower energy minimizes both the noise and the spatial resolution, with the optimal energy choice depending on the application and location in the imaged object. In conclusion, the model presented will help define an optimal usage of proton imaging to reach the promised application of this technology and establish a fair comparison with other imaging techniques.
Collapse
Affiliation(s)
- Charles-Antoine Collins-Fekete
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, United Kingdom. Chemical,Medical and Environmental Science, National Physical Laboratory, Hampton Road, Teddington, United Kingdom
| | | | | | | |
Collapse
|
18
|
Faddegon B, Ramos-Méndez J, Schuemann J, McNamara A, Shin J, Perl J, Paganetti H. The TOPAS tool for particle simulation, a Monte Carlo simulation tool for physics, biology and clinical research. Phys Med 2020; 72:114-121. [PMID: 32247964 DOI: 10.1016/j.ejmp.2020.03.019] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/06/2020] [Accepted: 03/19/2020] [Indexed: 01/02/2023] Open
Abstract
PURPOSE This paper covers recent developments and applications of the TOPAS TOol for PArticle Simulation and presents the approaches used to disseminate TOPAS. MATERIALS AND METHODS Fundamental understanding of radiotherapy and imaging is greatly facilitated through accurate and detailed simulation of the passage of ionizing radiation through apparatus and into a patient using Monte Carlo (MC). TOPAS brings Geant4, a reliable, experimentally validated MC tool mainly developed for high energy physics, within easy reach of medical physicists, radiobiologists and clinicians. Requiring no programming knowledge, TOPAS provides all of the flexibility of Geant4. RESULTS After 5 years of development followed by its initial release, TOPAS was subsequently expanded from its focus on proton therapy physics to incorporate radiobiology modeling. Next, in 2018, the developers expanded their user support and code maintenance as well as the scope of TOPAS towards supporting X-ray and electron therapy and medical imaging. Improvements have been achieved in user enhancement through software engineering and a graphical user interface, calculational efficiency, validation through experimental benchmarks and QA measurements, and either newly available or recently published applications. A large and rapidly increasing user base demonstrates success in our approach to dissemination of this uniquely accessible and flexible MC research tool. CONCLUSIONS The TOPAS developers continue to make strides in addressing the needs of the medical community in applications of ionizing radiation to medicine, creating the only fully integrated platform for four-dimensional simulation of all forms of radiotherapy and imaging with ionizing radiation, with a design that promotes inter-institutional collaboration.
Collapse
Affiliation(s)
- Bruce Faddegon
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA.
| | - José Ramos-Méndez
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Jan Schuemann
- Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Aimee McNamara
- Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Jungwook Shin
- Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Joseph Perl
- SLAC National Accelerator Laboratory, Menlo Park, USA
| | - Harald Paganetti
- Massachusetts General Hospital and Harvard Medical School, Boston, USA
| |
Collapse
|
19
|
Amato C, Martisikova M, Gehrke T. A technique for spatial resolution improvement in helium‐beam radiography. Med Phys 2020; 47:2212-2221. [DOI: 10.1002/mp.14051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 11/11/2022] Open
Affiliation(s)
- C. Amato
- Department of Medical Physics in Radiation Oncology German Cancer Research Center (DKFZ) Heidelberg Germany
- Heidelberg Institute for Radiation Oncology (HIRO) National Center for Radiation Research in Oncology (NCRO) Heidelberg Germany
- Department of Physics University of Pisa Pisa Italy
| | - M. Martisikova
- Department of Medical Physics in Radiation Oncology German Cancer Research Center (DKFZ) Heidelberg Germany
- Heidelberg Institute for Radiation Oncology (HIRO) National Center for Radiation Research in Oncology (NCRO) Heidelberg Germany
| | - T. Gehrke
- Department of Medical Physics in Radiation Oncology German Cancer Research Center (DKFZ) Heidelberg Germany
- Heidelberg Institute for Radiation Oncology (HIRO) National Center for Radiation Research in Oncology (NCRO) Heidelberg Germany
- Department of Physics and Astronomy Heidelberg University Heidelberg Germany
| |
Collapse
|
20
|
Dickmann J, Rit S, Pankuch M, Johnson RP, Schulte RW, Parodi K, Dedes G, Landry G. An optimization algorithm for dose reduction with fluence‐modulated proton CT. Med Phys 2020; 47:1895-1906. [DOI: 10.1002/mp.14084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 01/12/2023] Open
Affiliation(s)
- J. Dickmann
- Department of Medical Physics Faculty of Physics Ludwig‐Maximilians‐Universität München Am Coulombwall 1 85748 Garching b. München Germany
| | - S. Rit
- Univ Lyon INSA‐Lyon Université Claude Bernard Lyon 1 UJM‐Saint Étienne CNRS, Inserm CREATIS UMR 5220 U1206 F‐69373 Lyon France
| | - M. Pankuch
- Northwestern Medicine Chicago Proton Center Warrenville IL 60555 USA
| | - R. P. Johnson
- Department of Physics University of California Santa Cruz Santa Cruz CA 95064 USA
| | - R. W. Schulte
- Division of Biomedical Engineering Sciences Loma Linda University Loma Linda CA 92354 USA
| | - K. Parodi
- Department of Medical Physics Faculty of Physics Ludwig‐Maximilians‐Universität München Am Coulombwall 1 85748 Garching b. München Germany
| | - G. Dedes
- Department of Medical Physics Faculty of Physics Ludwig‐Maximilians‐Universität München Am Coulombwall 1 85748 Garching b. München Germany
| | - G. Landry
- Department of Medical Physics Faculty of Physics Ludwig‐Maximilians‐Universität München Am Coulombwall 1 85748 Garching b. München Germany
- Department of Radiation Oncology University Hospital, LMU Munich 81377 Munich Germany
- German Cancer Consortium (DKTK) 81377 Munich Germany
| |
Collapse
|
21
|
Dedes G, Dickmann J, Niepel K, Wesp P, Johnson RP, Pankuch M, Bashkirov V, Rit S, Volz L, Schulte RW, Landry G, Parodi K. Experimental comparison of proton CT and dual energy x-ray CT for relative stopping power estimation in proton therapy. ACTA ACUST UNITED AC 2019; 64:165002. [DOI: 10.1088/1361-6560/ab2b72] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Volz L, Piersimoni P, Johnson RP, Bashkirov VA, Schulte RW, Seco J. Improving single-event proton CT by removing nuclear interaction events within the energy/range detector. ACTA ACUST UNITED AC 2019; 64:15NT01. [DOI: 10.1088/1361-6560/ab2671] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
23
|
Dickmann J, Wesp P, Rädler M, Rit S, Pankuch M, Johnson RP, Bashkirov V, Schulte RW, Parodi K, Landry G, Dedes G. Prediction of image noise contributions in proton computed tomography and comparison to measurements. ACTA ACUST UNITED AC 2019; 64:145016. [DOI: 10.1088/1361-6560/ab2474] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|