1
|
Beyer C, Paul KM, Dorsch S, Echner G, Dinkel F, Welzel T, Seidensaal K, Hörner-Rieber J, Jäkel O, Debus J, Klüter S. Compliance of volunteers in a fully-enclosed patient rotation system for MR-guided radiation therapy: a prospective study. Radiat Oncol 2024; 19:71. [PMID: 38849900 PMCID: PMC11162055 DOI: 10.1186/s13014-024-02461-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/24/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Particle therapy makes a noteworthy contribution in the treatment of tumor diseases. In order to be able to irradiate from different angles, usually expensive, complex and large gantries are used. Instead rotating the beam via a gantry, the patient itself might be rotated. Here we present tolerance and compliance of volunteers for a fully-enclosed patient rotation system in a clinical magnetic resonance (MR)-scanner for potential use in MR-guided radiotherapy, conducted within a prospective evaluation study. METHODS A patient rotation system was used to simulate and perform magnetic resonance imaging (MRI)-examinations with 50 volunteers without an oncological question. For 20 participants, the MR-examination within the bore was simulated by introducing realistic MRI noise, whereas 30 participants received an examination with image acquisition. Initially, body parameters and claustrophobia were assessed. The subjects were then rotated to different angles for simulation (0°, 45°, 90°, 180°) and imaging (0°, 70°, 90°, 110°). At each angle, anxiety and motion sickness were assessed using a 6-item State-Trait-Anxiety-Inventory (STAI-6) and a modified Motion Sickness Assessment Questionnaire (MSAQ). In addition, general areas of discomfort were evaluated. RESULTS Out of 50 subjects, three (6%) subjects terminated the study prematurely. One subject dropped out during simulation due to nausea while rotating to 45°. During imaging, further two subjects dropped out due to shoulder pain from positioning at 90° and 110°, respectively. The average result for claustrophobia (0 = no claustrophobia to 4 = extreme claustrophobia) was none to light claustrophobia (average score: simulation 0.64 ± 0.33, imaging 0.51 ± 0.39). The mean anxiety scores (0% = no anxiety to 100% = maximal anxiety) were 11.04% (simulation) and 15.82% (imaging). Mean motion sickness scores (0% = no motion sickness to 100% = maximal motion sickness) of 3.5% (simulation) and 6.76% (imaging) were obtained across all participants. CONCLUSION Our study proves the feasibility of horizontal rotation in a fully-enclosed rotation system within an MR-scanner. Anxiety scores were low and motion sickness was only a minor influence. Both anxiety and motion sickness showed no angular dependency. Further optimizations with regard to immobilization in the rotation device may increase subject comfort.
Collapse
Affiliation(s)
- Cedric Beyer
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
| | - Katharina Maria Paul
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Stefan Dorsch
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gernot Echner
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Fabian Dinkel
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Welzel
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Katharina Seidensaal
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Jäkel
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
- Heidelberg Institute of Radiation Oncology (HIRO) and National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), Heidelberg, Germany.
| |
Collapse
|
2
|
Debrot E, Liu P, Gardner M, Heng SM, Chan CH, Corde S, Downes S, Jackson M, Keall P. Nano X Image Guidance in radiation therapy: feasibility study protocol for cone beam computed tomography imaging with gravity-induced motion. Pilot Feasibility Stud 2023; 9:95. [PMID: 37312127 DOI: 10.1186/s40814-023-01340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/07/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND This paper describes the protocol for the Nano X Image Guidance (Nano X IG) trial, a single-institution, clinical imaging study. The Nano X is a prototype fixed-beam radiotherapy system developed to investigate the feasibility of a low-cost, compact radiotherapy system to increase global access to radiation therapy. This study aims to assess the feasibility of volumetric image guidance with cone beam computed tomography (CBCT) acquired during horizontal patient rotation on the Nano X radiotherapy system. METHODS In the Nano X IG study, we will determine whether radiotherapy image guidance can be performed with the Nano X radiotherapy system where the patient is horizontally rotated while scan projections are acquired. We will acquire both conventional CBCT scans and Nano X CBCT scans for 30 patients aged 18 and above and receiving radiotherapy for head/neck or upper abdomen cancers. For each patient, a panel of experts will assess the image quality of Nano X CBCT scans against conventional CBCT scans. Each patient will receive two Nano X CBCT scans to determine the image quality reproducibility, the extent and reproducibility of patient motion and assess patient tolerance. DISCUSSION Fixed-beam radiotherapy systems have the potential to help ease the current shortfall and increase global access to radiotherapy treatment. Advances in image guidance could facilitate fixed-beam radiotherapy using horizontal patient rotation. The efficacy of this radiotherapy approach is dependent on our ability to image and adapt to motion due to rotation and for patients to tolerate rotation during treatment. TRIAL REGISTRATION ClinicalTrials.gov, NCT04488224. Registered on 27 July 2020.
Collapse
Affiliation(s)
- Emily Debrot
- Faculty of Medicine and Health, ACRF Image X Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Paul Liu
- Faculty of Medicine and Health, ACRF Image X Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Mark Gardner
- Faculty of Medicine and Health, ACRF Image X Institute, The University of Sydney, Camperdown, NSW, Australia.
| | - Soo Min Heng
- Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Chin Hwa Chan
- Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Stephanie Corde
- Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Simon Downes
- Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Michael Jackson
- Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Paul Keall
- Faculty of Medicine and Health, ACRF Image X Institute, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
3
|
Chinniah S, Deisher AJ, Herman MG, Johnson JE, Mahajan A, Foote RL. Rotating Gantries Provide Individualized Beam Arrangements for Charged Particle Therapy. Cancers (Basel) 2023; 15:cancers15072044. [PMID: 37046705 PMCID: PMC10093456 DOI: 10.3390/cancers15072044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/12/2023] [Accepted: 03/25/2023] [Indexed: 04/14/2023] Open
Abstract
PURPOSE This study evaluates beam angles used to generate highly individualized proton therapy treatment plans for patients eligible for carbon ion radiotherapy (CIRT). METHODS AND MATERIALS We retrospectively evaluated patients treated with pencil beam scanning intensity modulated proton therapy from 2015 to 2020 who had indications for CIRT. Patients were treated with a 190° rotating gantry with a robotic patient positioning system. Treatment plans were individualized to provide maximal prescription dose delivery to the tumor target volume while sparing organs at risk. The utilized beam angles were grouped, and anatomic sites with at least 10 different beam angles were sorted into histograms. RESULTS A total of 467 patients with 484 plans and 1196 unique beam angles were evaluated and characterized by anatomic treatment site and the number of beam angles utilized. The most common beam angles used were 0° and 180°. A wide range of beam angles were used in treating almost all anatomic sites. Only esophageal cancers had a predominantly unimodal grouping of beam angles. Pancreas cancers showed a modest grouping of beam angles. CONCLUSIONS The wide distribution of beam angles used to treat CIRT-eligible patients suggests that a rotating gantry is optimal to provide highly individualized beam arrangements.
Collapse
Affiliation(s)
- Siven Chinniah
- Mayo Clinic Alix School of Medicine, Jacksonville, FL 32224, USA
| | - Amanda J Deisher
- Department of Radiation Oncology, Division of Medical Physics, Rochester, MN 55905, USA
| | - Michael G Herman
- Department of Radiation Oncology, Division of Medical Physics, Rochester, MN 55905, USA
| | - Jedediah E Johnson
- Department of Radiation Oncology, Division of Medical Physics, Rochester, MN 55905, USA
| | - Anita Mahajan
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert L Foote
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Chen X, Cao Y, Zhang K, Wang Z, Xie X, Wang Y, Men K, Dai J. Technical note: A method to synthesize magnetic resonance images in different patient rotation angles with deep learning for gantry-free radiotherapy. Med Phys 2023; 50:1746-1755. [PMID: 36135718 DOI: 10.1002/mp.15981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Recently, patient rotating devices for gantry-free radiotherapy, a new approach to implement external beam radiotherapy, have been introduced. When a patient is rotated in the horizontal position, gravity causes anatomic deformation. For treatment planning, one feasible method is to acquire simulation images at different horizontal rotation angles. PURPOSE This study aimed to investigate the feasibility of synthesizing magnetic resonance (MR) images at patient rotation angles of 180° (prone position) and 90° (lateral position) from those at a rotation angle of 0° (supine position) using deep learning. METHODS This study included 23 healthy male volunteers. They underwent MR imaging (MRI) in the supine position and then in the prone (23 volunteers) and lateral (16 volunteers) positions. T1-weighted fast spin echo was performed for all positions with the same parameters. Two two-dimensional deep learning networks, pix2pix generative adversarial network (pix2pix GAN) and CycleGAN, were developed for synthesizing MR images in the prone and lateral positions from those in the supine position, respectively. For the evaluation of the models, leave-one-out cross-validation was performed. The mean absolute error (MAE), Dice similarity coefficient (DSC), and Hausdorff distance (HD) were used to determine the agreement between the prediction and ground truth for the entire body and four specific organs. RESULTS For pix2pix GAN, the synthesized images were visually bad, and no quantitative evaluation was performed. The quantitative evaluation metrics of the body outlines calculated for the synthesized prone and lateral images using CycleGAN were as follows: MAE, 35.63 ± 3.98 and 40.45 ± 5.83, respectively; DSC, 0.97 ± 0.01 and 0.94 ± 0.01, respectively; and HD (in pixels), 16.74 ± 3.55 and 31.69 ± 12.03, respectively. The quantitative metrics of the bladder and prostate performed were also promising for both the prone and lateral images, with mean values >0.90 in DSC (p > 0.05). The mean DSC and HD values of the bilateral femur for the prone images were 0.96 and 3.63 (in pixels), respectively, and 0.78 and 12.65 (in pixels) for the lateral images, respectively (p < 0.05). CONCLUSIONS The CycleGAN could synthesize the MRI at lateral and prone positions using images at supine position, and it could benefit gantry-free radiation therapy.
Collapse
Affiliation(s)
- Xinyuan Chen
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- National Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer Hospital, Chinese Academy of Medical Sciences, Langfang, China
| | - Ying Cao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kaixuan Zhang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuejie Xie
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunxiang Wang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kuo Men
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianrong Dai
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Hegarty S, Hardcastle N, Korte J, Kron T, Everitt S, Rahim S, Hegi-Johnson F, Franich R. Please Place Your Seat in the Full Upright Position: A Technical Framework for Landing Upright Radiation Therapy in the 21 st Century. Front Oncol 2022; 12:821887. [PMID: 35311128 PMCID: PMC8929673 DOI: 10.3389/fonc.2022.821887] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022] Open
Abstract
Delivering radiotherapy to patients in an upright position can allow for increased patient comfort, reduction in normal tissue irradiation, or reduction of machine size and complexity. This paper gives an overview of the requirements for the delivery of contemporary arc and modulated radiation therapy to upright patients. We explore i) patient positioning and immobilization, ii) simulation imaging, iii) treatment planning and iv) online setup and image guidance. Treatment chairs have been designed to reproducibly position seated patients for treatment and can be augmented by several existing immobilisation systems or promising emerging technologies such as soft robotics. There are few solutions for acquiring CT images for upright patients, however, cone beam computed tomography (CBCT) scans of upright patients can be produced using the imaging capabilities of standard Linacs combined with an additional patient rotation device. While these images will require corrections to make them appropriate for treatment planning, several methods indicate the viability of this approach. Treatment planning is largely unchanged apart from translating gantry rotation to patient rotation, allowing for a fixed beam with a patient rotating relative to it. Rotation can be provided by a turntable during treatment delivery. Imaging the patient with the same machinery as used in treatment could be advantageous for online plan adaption. While the current focus is using clinical linacs in existing facilities, developments in this area could also extend to lower-cost and mobile linacs and heavy ion therapy.
Collapse
Affiliation(s)
- Sarah Hegarty
- School of Science, RMIT University, Melbourne, VIC, Australia.,Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.,Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia
| | - James Korte
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Department of Biomedical Engineering, School of Engineering, University of Melbourne, Melbourne, VIC, Australia
| | - Tomas Kron
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.,Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia
| | - Sarah Everitt
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia.,Department of Radiation Therapy, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Sulman Rahim
- Department of Radiation Therapy, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Fiona Hegi-Johnson
- Sir Peter MacCallum Department of Oncology, Faculty of Medicine, Dentistry and Health Science, University of Melbourne, Parkville, VIC, Australia.,Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Rick Franich
- School of Science, RMIT University, Melbourne, VIC, Australia.,Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Pham TT, Whelan B, Oborn BM, Delaney GP, Vinod S, Brighi C, Barton M, Keall P. Magnetic resonance imaging (MRI) guided proton therapy: A review of the clinical challenges, potential benefits and pathway to implementation. Radiother Oncol 2022; 170:37-47. [DOI: 10.1016/j.radonc.2022.02.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/09/2022] [Accepted: 02/25/2022] [Indexed: 10/18/2022]
|
7
|
Gardner M, Dillon O, Shieh CC, O'Brien R, Debrot E, Barber J, Ahern V, Bennett P, Heng SM, Corde S, Jackson M, Keall P. The adaptation and investigation of cone-beam CT reconstruction algorithms for horizontal rotation fixed-gantry scans of rabbits. Phys Med Biol 2021; 66. [PMID: 33878747 DOI: 10.1088/1361-6560/abf9dd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/20/2021] [Indexed: 11/11/2022]
Abstract
Fixed-gantry radiation therapy has been proposed as a low-cost alternative to the conventional rotating-gantry radiation therapy, that may help meet the rising global treatment demand. Fixed-gantry systems require gravitational motion compensated reconstruction algorithms to produce cone-beam CT (CBCT) images of sufficient quality for image guidance. The aim of this work was to adapt and investigate five CBCT reconstruction algorithms for fixed-gantry CBCT images. The five algorithms investigated were Feldkamp-Davis-Kress (FDK), prior image constrained compressed sensing (PICCS), gravitational motion compensated FDK (GMCFDK), motion compensated PICCS (MCPICCS) (a novel CBCT reconstruction algorithm) and simultaneous motion estimation and iterative reconstruction (SMEIR). Fixed-gantry and rotating-gantry CBCT scans were acquired of 3 rabbits, with the rotating-gantry scans used as a reference. Projections were sorted into rotation bins, based on the angle of rotation of the rabbit during image acquisition. The algorithms were compared using the structural similarity index measure root mean square error, and reconstruction time. Evaluation of the reconstructed volumes showed that, when compared with the reference rotating-gantry volume, the conventional FDK algorithm did not accurately reconstruct fixed-gantry CBCT scans. Whilst the PICCS reconstruction algorithm reduced some motion artefacts, the motion estimation reconstruction methods (GMCFDK, MCPICCS and SMEIR) were able to greatly reduce the effect of motion artefacts on the reconstructed volumes. This finding was verified quantitatively, with GMCFDK, MCPICCS and SMEIR reconstructions having RMSE 17%-19% lower and SSIM 1% higher than a conventional FDK. However, all motion compensated fixed-gantry CBCT reconstructions had a 56%-61% higher RMSE and 1.5% lower SSIM than FDK reconstructions of conventional rotating-gantry CBCT scans. The results show that motion compensation is required to reduce motion artefacts for fixed-gantry CBCT reconstructions. This paper further demonstrates the feasibility of fixed-gantry CBCT scans, and the ability of CBCT reconstruction algorithms to compensate for motion due to horizontal rotation.
Collapse
Affiliation(s)
- Mark Gardner
- ACRF Image X Institute, The University of Sydney, Eveleigh, NSW 2015, Australia
| | - Owen Dillon
- ACRF Image X Institute, The University of Sydney, Eveleigh, NSW 2015, Australia
| | - Chun-Chien Shieh
- ACRF Image X Institute, The University of Sydney, Eveleigh, NSW 2015, Australia.,Sydney Neuroimaging Analysis Centre, Camperdown, NSW 2050, Australia
| | - Ricky O'Brien
- ACRF Image X Institute, The University of Sydney, Eveleigh, NSW 2015, Australia
| | - Emily Debrot
- ACRF Image X Institute, The University of Sydney, Eveleigh, NSW 2015, Australia
| | - Jeffrey Barber
- Western Sydney Local Health District, Blacktown, NSW 2148, Australia
| | - Verity Ahern
- Western Sydney Local Health District, Blacktown, NSW 2148, Australia
| | - Peter Bennett
- Faculty of Science, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Soo-Min Heng
- Nelune Comprehensive Cancer Centre, Randwick, NSW 2031, Australia
| | - Stéphanie Corde
- Nelune Comprehensive Cancer Centre, Randwick, NSW 2031, Australia
| | - Michael Jackson
- Nelune Comprehensive Cancer Centre, Randwick, NSW 2031, Australia
| | - Paul Keall
- ACRF Image X Institute, The University of Sydney, Eveleigh, NSW 2015, Australia
| |
Collapse
|
8
|
Liu PZY, Gardner M, Heng SM, Shieh CC, Nguyen DT, Debrot E, O'Brien R, Downes S, Jackson M, Keall PJ. Pre-treatment and real-time image guidance for a fixed-beam radiotherapy system. Phys Med Biol 2021; 66:064003. [PMID: 33661762 DOI: 10.1088/1361-6560/abdc12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE A radiotherapy system with a fixed treatment beam and a rotating patient positioning system could be smaller, more robust and more cost effective compared to conventional rotating gantry systems. However, patient rotation could cause anatomical deformation and compromise treatment delivery. In this work, we demonstrate an image-guided treatment workflow with a fixed beam prototype system that accounts for deformation during rotation to maintain dosimetric accuracy. METHODS The prototype system consists of an Elekta Synergy linac with the therapy beam orientated downward and a custom-built patient rotation system (PRS). A phantom that deforms with rotation was constructed and rotated within the PRS to quantify the performance of two image guidance techniques: motion compensated cone-beam CT (CBCT) for pre-treatment volumetric imaging and kilovoltage infraction monitoring (KIM) for real-time image guidance. The phantom was irradiated with a 3D conformal beam to evaluate the dosimetric accuracy of the workflow. RESULTS The motion compensated CBCT was used to verify pre-treatment position and the average calculated position was within -0.3 ± 1.1 mm of the phantom's ground truth position at 0°. KIM tracked the position of the target in real-time as the phantom was rotated and the average calculated position was within -0.2 ± 0.8 mm of the phantom's ground truth position. A 3D conformal treatment delivered on the prototype system with image guidance had a 3%/2 mm gamma pass rate of 96.3% compared to 98.6% delivered using a conventional rotating gantry linac. CONCLUSIONS In this work, we have shown that image guidance can be used with fixed-beam treatment systems to measure and account for changes in target position in order to maintain dosimetric coverage during horizontal rotation. This treatment modality could provide a viable treatment option when there insufficient space for a conventional linear accelerator or where the cost is prohibitive.
Collapse
Affiliation(s)
- Paul Z Y Liu
- ACRF Image X Institute, University of Sydney Central Clinical School, Sydney, NSW, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Whelan B, Leghissa M, Amrei P, Zaitsev M, Heinrich B, Fahrig R, Rohdjess H. Magnetic modeling of actively shielded rotating MRI magnets in the presence of environmental steel. Phys Med Biol 2021; 66:045004. [PMID: 33264755 DOI: 10.1088/1361-6560/abd010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rotating MRI systems could enable novel integrated medical devices such as MRI-Linacs, MRI-xray-angiography systems, and MRI-proton therapy systems. This work aimed to investigate the feasibility of rotating actively shielded superconducting MRI magnets in the presence of environmental steel-in particular, construction steel in the floor of the installation site. Two magnets were investigated: a 1.0 T split bore magnet, and a 1.5 T closed bore magnet. Each magnet was scaled to emulate field strengths of 0.5, 1.0, and 1.5 T. Finite Element Modeling was used to simulate these magnets in the presence of a 3 × 4 m steel plate located 1250 mm or 1400 mm below the isocenter. There are two possible rotation directions: around the longitudinal (z) axis or around the transverse (x) axis. Each model was solved for rotation angles between 0 and 360° in 30° intervals around each of these axes. For each simulation, a 300 mm DSV was extracted and decomposed into spherical harmonics. For the closed-bore magnet, total induced perturbation for the zero degree rotation angle was 223, 432, and 562 μT peak-to-peak (pk-pk) for the 0.5, 1.0, and 1.5 T models respectively (steel at 1250 mm). For the split-bore magnet, the same numbers were 1477, 16747, and 1766 μT. The substantially higher perturbation for the split-bore magnet can be traced to its larger fringe field. For rotation around the z-axis, total perturbation does not change as a function of angle but is exchanged between different harmonics. For rotation around the x-axis, total perturbation is different at each rotation angle. For the closed bore magnet, maximum perturbations occurred for a 90° rotation around the transverse axis. For the split-bore magnet, the opposite was observed, with the same 90° rotation yielding total perturbation lower than the conventional position. In all cases, at least 95% of the total perturbation was composed of 1st and 2nd order harmonics. The presence of environmental steel poses a major challenge to the realization of an actively shielded rotating superconducting MRI system, requiring some novel form of shimming. Possible shimming strategies are discussed at length.
Collapse
Affiliation(s)
- Brendan Whelan
- Innovation, Advanced Therapies, Siemens Healthineers GmbH, Forchheim, Germany. ACRF Image X Institute, Sydney School of Health Sciences, University of Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
10
|
Buckley JG, Smith AB, Sidhom M, Rai R, Liney GP, Dowling JA, Metcalfe PE, Holloway LC, Keall PJ. Measurements of human tolerance to horizontal rotation within an MRI scanner: Towards gantry-free radiation therapy. J Med Imaging Radiat Oncol 2020; 65:112-119. [PMID: 33377303 DOI: 10.1111/1754-9485.13130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Recent advances in image guidance and adaptive radiotherapy could enable gantry-free radiotherapy using patient rotation. Gantry-free radiotherapy could substantially reduce the cost of radiotherapy systems and facilities. MRI guidance complements a gantry-free approach because of its ability to visualise soft tissue deformation during rotation. A potential barrier to gantry-free radiotherapy is patient acceptability, especially when combined with MRI. This study investigates human experiences of horizontal rotation within an MRI scanner. METHODS Ten healthy human participants and nine participants previously treated with radiotherapy were rotated within an MRI scanner. Participants' anxiety and motion sickness was assessed before being rotated in 45-degree increments and paused, representing a multi-field intensity-modulated radiotherapy treatment. An MR image was acquired at each 45-degree angle. Following imaging, anxiety and motion sickness were re-assessed, followed by a comfort questionnaire and exit interview. The significance of the differences in anxiety and motion sickness pre- versus post-imaging was assessed using Wilcoxon signed-rank tests. Content analysis was performed on exit interview transcripts. RESULTS Eight of ten healthy and eight of nine patient participants completed the imaging session. Mean anxiety scores before and after imaging were 7.9/100 and 11.8/100, respectively (P = 0.26), and mean motion sickness scores were 5.3/100 and 13.7/100, respectively (P = 0.02). Most participants indicated likely acceptance of rotation if MRI were to be used in a hypothetical treatment. Physical discomfort was reported to be the biggest concern. CONCLUSIONS Horizontal rotation within an MRI scanner was acceptable for most (17/19) participants.
Collapse
Affiliation(s)
- Jarryd G Buckley
- Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| | - Allan Ben Smith
- Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia
| | - Mark Sidhom
- Liverpool and Macarthur Cancer Therapy Centre, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Robba Rai
- Liverpool and Macarthur Cancer Therapy Centre, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Gary P Liney
- Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia.,Liverpool and Macarthur Cancer Therapy Centre, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Jason A Dowling
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia.,CSIRO Australian eHealth Research Centre, Brisbane, Queensland, Australia
| | - Peter E Metcalfe
- Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia
| | - Lois C Holloway
- Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia.,Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales, Australia.,Liverpool and Macarthur Cancer Therapy Centre, Liverpool Hospital, Sydney, New South Wales, Australia
| | - Paul J Keall
- Ingham Institute for Applied Medical Research, Sydney, New South Wales, Australia.,ACRF Image-X Institute, School of Medicine, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Buckley JG, Dowling JA, Sidhom M, Liney GP, Rai R, Metcalfe PE, Holloway LC, Keall PJ. Pelvic organ motion and dosimetric implications during horizontal patient rotation for prostate radiation therapy. Med Phys 2020; 48:397-413. [PMID: 33151543 DOI: 10.1002/mp.14579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Gantry-free radiation therapy systems utilizing patient rotation would be simpler and more cost effective than the conventional gantry-based systems. Such a system could enable the expansion of radiation therapy to meet global demand and reduce capital costs. Recent advances in adaptive radiation therapy could potentially be applied to correct for gravitational deformation during horizontal patient rotation. This study aims to quantify the pelvic organ motion and the dosimetric implications of horizontal rotation for prostate intensity-modulated radiation therapy (IMRT) treatments. METHODS Eight human participants who previously received prostate radiation therapy were imaged in a clinical magnetic resonance imaging (MRI) scanner using a bespoke patient rotation system (PRS). The patients were imaged every 45 degrees during a full roll rotation (0-360 degrees). Whole pelvic bone, prostate, rectum, and bladder motion were compared to the supine position using dice similarity coefficient (DSC) and mean absolute surface distance (MASD). Prostate centroid motion was compared in the left-right (LR), superior-inferior (SI), and anterior-posterior (AP) direction prior to and following pelvic bone-guided rigid registration. Seven-field prostate IMRT treatment plans were generated for each patient rotation angles under three adaption scenarios: No plan adaption, rigid planning target volume (PTV)-guided alignment to the prostate, and plan re-optimization. Prostate, rectum, and bladder doses were compared for each adaption scenario. RESULTS Pelvic bone motion within the PRS of up to 53 mm relative to the supine position was observed for some participants. Internal organ motion was greatest at the 180-degree PRS couch angle (prone), with prostate centroid motion range < 2 mm LR, 0 mm to 14 mm SI, and -11 mm to 4 mm AP. Rotation with no adaption of the treatment plan resulted in an underdose to the PTV -- in some instances up to 75% (D95%: 78 ± 0.3 Gy at supine to 20 ± 15.0 Gy at the 225-degree PRS couch angle). Bladder dose was reduced during the rotation by up to 98% (V60 Gy: 15.0 ± 9.4% supine to 0.3 ± 0.5% at the 225-degree PRS couch angle). In some instances, the rectum dose increased during rotation (V60Gy: 20.0 ± 4.5% supine to 25.0 ± 15.0% at the 135-degree PRS couch angle). Rigid PTV-guided alignment resulted in PTV coverage which, though statistically lower (P < 0.05 for all D95% values), was within 1 Gy of the supine plans. Plan re-optimization resulted in a statistically equivalent PTV coverage compared to the supine plans (P > 0.05 for all D95% metrics and all within ±0.4 Gy). For both rigid PTV-guided alignment and plan re-optimization, rectum dose volume metrics were reduced compared to the supine position between the 90- and 225-degree PRS couch angles (P < 0.05). Bladder dose volume metrics were not impacted by rotation. CONCLUSION Pelvic bone and internal organ motion are present during patient rotation. Rigid PTV-guided alignment to the prostate will be a requirement if prostate IMRT is to be safely delivered using patient rotation. Plan re-optimization for each PRS couch angle to account for anatomical deformations further improves the PTV coverage.
Collapse
Affiliation(s)
- J G Buckley
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - J A Dowling
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
- CSIRO Australian eHealth Research Centre, Herston, QLD, Australia
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - M Sidhom
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
- Liverpool and Macarthur Cancer Therapy Centre, Sydney, NSW, Australia
| | - G P Liney
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
- Liverpool and Macarthur Cancer Therapy Centre, Sydney, NSW, Australia
| | - R Rai
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- Liverpool and Macarthur Cancer Therapy Centre, Sydney, NSW, Australia
| | - P E Metcalfe
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
| | - L C Holloway
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
- Liverpool and Macarthur Cancer Therapy Centre, Sydney, NSW, Australia
- Institute of Medical Physics, University of Sydney, Sydney, NSW, Australia
| | - P J Keall
- Ingham Institute for Applied Medical Research, Liverpool, NSW, Australia
- ACRF Image-X Institute, School of Health Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
12
|
Buckley JG, Dong B, Liney GP. Imaging performance of a high-field in-line magnetic resonance imaging linear accelerator with a patient rotation system for fixed-gantry radiotherapy. PHYSICS & IMAGING IN RADIATION ONCOLOGY 2020; 16:130-133. [PMID: 33458355 PMCID: PMC7807630 DOI: 10.1016/j.phro.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023]
Abstract
This paper describes the imaging performance of a high-field in-line MRI linear accelerator with a patient rotation system in-situ. Signal quality was quantified using signal-to-noise ratio (SNR) and RF uniformity maps. B0-field inhomogeneity was assessed using magnetic field mapping. SNR was evaluated with various entries into the Faraday cage which were required for extended couch translations. SNR varied between 103 and 87 across PRS rotation angles. Maximum B0-field inhomogeneity corresponded to 0.7 mm of geometric distortion. A 45 × 55 cm2 aperture allowed PRS translation with no reduction in SNR. Imaging performance with the PRS in-situ was found to be acceptable.
Collapse
Affiliation(s)
- Jarryd G Buckley
- Centre for Medical Radiation Physics, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia.,Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia
| | - Bin Dong
- Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia.,Liverpool and Macarthur Cancer Therapy Centre, Liverpool Hospital, 75 Elizabeth St, Liverpool, NSW 2170, Australia
| | - Gary P Liney
- Ingham Institute for Applied Medical Research, 1 Campbell St, Liverpool, NSW 2170, Australia.,Liverpool and Macarthur Cancer Therapy Centre, Liverpool Hospital, 75 Elizabeth St, Liverpool, NSW 2170, Australia
| |
Collapse
|
13
|
Brace OJ, Alhujaili SF, Paino JR, Butler DJ, Wilkinson D, Oborn BM, Rosenfeld AB, Lerch MLF, Petasecca M, Davis JA. Evaluation of the PTW microDiamond in edge-on orientation for dosimetry in small fields. J Appl Clin Med Phys 2020; 21:278-288. [PMID: 32441884 PMCID: PMC7484886 DOI: 10.1002/acm2.12906] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/16/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose The PTW microDiamond has an enhanced spatial resolution when operated in an edge‐on orientation but is not typically utilized in this orientation due to the specifications of the IAEA TRS‐483 code of practice for small field dosimetry. In this work the suitability of an edge‐on orientation and advantages over the recommended face‐on orientation will be presented. Methods The PTW microDiamond in both orientations was compared on a Varian TrueBeam linac for: machine output factor (OF), percentage depth dose (PDD), and beam profile measurements from 10 × 10 cm2 to a 0.5 × 0.5 cm2 field size for 6X and 6FFF beam energies in a water tank. A quantification of the stem effect was performed in edge‐on orientation along with tissue to phantom ratio (TPR) measurements. An extensive angular dependence study for the two orientations was also undertaken within two custom PMMA plastic cylindrical phantoms. Results The OF of the PTW microDiamond in both orientations agrees within 1% down to the 2 × 2 cm2 field size. The edge‐on orientation overresponds in the build‐up region but provides improved penumbra and has a maximum observed stem effect of 1%. In the edge‐on orientation there is an angular independent response with a maximum of 2% variation down to a 2 × 2 cm2 field. The PTW microDiamond in edge‐on orientation for TPR measurements agreed to the CC01 ionization chamber within 1% for all field sizes. Conclusions The microDiamond was shown to be suitable for small field dosimetry when operated in edge‐on orientation. When edge‐on, a significantly reduced angular dependence is observed with no significant stem effect, making it a more versatile QA instrument for rotational delivery techniques.
Collapse
Affiliation(s)
- Owen J Brace
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Sultan F Alhujaili
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Jason R Paino
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Duncan J Butler
- Australian Radiation Protection and Nuclear Safety Agency (ARPANSA), Yallambie, VIC, UK
| | - Dean Wilkinson
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Cancer Care Centre Wollongong Hospital Wollongong, Wollongong, NSW, Australia
| | - Brad M Oborn
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Cancer Care Centre Wollongong Hospital Wollongong, Wollongong, NSW, Australia
| | - Anatoly B Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Michael L F Lerch
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Marco Petasecca
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| | - Jeremy A Davis
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|