1
|
Paternò G, Cardarelli P, Fantoni S, Masoumi F, Mettivier G, Cialdi S, Taibi A. Effect of the local energy distribution of x-ray beams generated through inverse Compton scattering in dual-energy imaging applications. APPLIED OPTICS 2023; 62:4399-4408. [PMID: 37707130 DOI: 10.1364/ao.489239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/07/2023] [Indexed: 09/15/2023]
Abstract
X-ray sources based on the inverse Compton interaction between a laser and a relativistic electron beam are emerging as a promising compact alternative to synchrotron for the production of intense monochromatic and tunable radiation. The emission characteristics enable several innovative imaging techniques, including dual-energy K-edge subtraction (KES) imaging. The performance of these techniques is optimal in the case of perfectly monochromatic x-ray beams, and the implementation of KES was proven to be very effective with synchrotron radiation. Nonetheless, the features of inverse Compton scattering (ICS) sources make them good candidates for a more compact implementation of KES techniques. The energy and intensity distribution of the emitted radiation is related to the emission direction, which means different beam qualities in different spatial positions. In fact, as the polar angle increases, the average energy decreases, while the local energy bandwidth increases and the emission intensity decreases. The scope of this work is to describe the impact of the local energy distribution variations on KES imaging performance. By means of analytical simulations, the reconstructed signal, signal-to-noise ratio, and background contamination were evaluated as a function of the position of each detector pixel. The results show that KES imaging is possible with ICS x-ray beams, even if the image quality slightly degrades at the detector borders for a fixed collimation angle and, in general, as the beam divergence increases. Finally, an approach for the optimization of specific imaging tasks is proposed by considering the characteristics of a given source.
Collapse
|
2
|
Kulpe S, Dierolf M, Günther B, Brantl J, Busse M, Achterhold K, Pfeiffer F, Pfeiffer D. Spectroscopic imaging at compact inverse Compton X-ray sources. Phys Med 2020; 79:137-144. [PMID: 33271418 DOI: 10.1016/j.ejmp.2020.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/22/2020] [Accepted: 11/07/2020] [Indexed: 10/22/2022] Open
Abstract
While K-edge subtraction (KES) imaging is a commonly applied technique at synchrotron sources, the application of this imaging method in clinical imaging is limited although results have shown its superiority to conventional clinical subtraction imaging. Over the past decades, compact synchrotron X-ray sources, based on inverse Compton scattering, have been developed to fill the gap between conventional X-ray tubes and synchrotron facilities. These so called inverse Compton sources (ICSs) provide a tunable, quasi-monochromatic X-ray beam in a laboratory setting with reduced spatial and financial requirements. This allows for the transfer of imaging techniques that have been limited to synchrotrons until now, like KES imaging, into a laboratory environment. This review article presents the first studies that have successfully performed KES at ICSs. These have shown that KES provides improved image quality in comparison to conventional X-ray imaging. The results indicate that medical imaging could benefit from monochromatic imaging and KES techniques. Currently, the clinical application of KES is limited by the low K-edge energy of available iodine contrast agents. However, several ICSs are under development or already in commissioning which will provide monochromatic X-ray beams with higher X-ray energies and will enable KES using high-Z elements as contrast media. With these developments, KES at an ICS has the ability to become an important tool in pre-clinical research and potentially advancing existing clinical imaging techniques.
Collapse
Affiliation(s)
- Stephanie Kulpe
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany.
| | - Martin Dierolf
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Benedikt Günther
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Johannes Brantl
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Madleen Busse
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Klaus Achterhold
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany
| | - Franz Pfeiffer
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany; Department of Diagnostic and Interventional Radiology, Munich School of Medicine and Klinikum rechts der Isar, Ismaniger Str. 22, 81675 Munich, Germany
| | - Daniela Pfeiffer
- Department of Diagnostic and Interventional Radiology, Munich School of Medicine and Klinikum rechts der Isar, Ismaniger Str. 22, 81675 Munich, Germany
| |
Collapse
|
3
|
BriXS, a new X-ray inverse Compton source for medical applications. Phys Med 2020; 77:127-137. [PMID: 32829101 DOI: 10.1016/j.ejmp.2020.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
MariX is a research infrastructure conceived for multi-disciplinary studies, based on a cutting-edge system of combined electron accelerators at the forefront of the world-wide scenario of X-ray sources. The generation of X-rays over a large photon energy range will be enabled by two unique X-ray sources: a Free Electron Laser and an inverse Compton source, called BriXS (Bright compact X-ray Source). The X-ray beam provided by BriXS is expected to have an average energy tunable in the range 20-180 keV and intensities between 1011 and 1013 photon/s within a relative bandwidth ΔE/E=1-10%. These characteristics, together with a very small source size (~20 μm) and a good transverse coherence, will enable a wide range of applications in the bio-medical field. An additional unique feature of BriXS will be the possibility to make a quick switch of the X-ray energy between two values for dual-energy and K-edge subtraction imaging. In this paper, the expected characteristics of BriXS will be presented, with a particular focus on the features of interest to its possible medical applications.
Collapse
|