1
|
Androulakis I, Schiphof-Godart J, van Heerden LE, Luthart L, Rijnsdorp R, Hoogeman MS, Westerveld H, Christianen MEMC, Mens JWM, van Paassen R, Negenman EM, Nout RA, Karine K Kolkman-Deurloo I. Assessment of integrated electromagnetic tracking for dwell position monitoring in a clinical HDR brachytherapy setting for prostate cancer. Radiother Oncol 2024; 200:110501. [PMID: 39191302 DOI: 10.1016/j.radonc.2024.110501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Electromagnetic Tracking (EMT) technology has been integrated in a prototype high-dose-rate brachytherapy (HDR-BT) afterloading device. Its potential for dwell position (DP) monitoring has earlier been demonstrated in prostate phantoms. However, its performance for prostate BT in the clinical setting remains to be assessed. AIM Assess the reliability and value of EMT measurements in transrectal ultrasound-based (TRUS-based) and computed tomography-based (CT-based) prostate HDR-BT. METHODS EMT measurements were conducted on 20 patients undergoing dual-fraction prostate HDR-BT monotherapy. In each treatment fraction an individual TRUS-based or CT-based treatment plan was generated. The measurements were compared to DPs of manually reconstructed needles in those TRUS-based or CT-based treatment plans. An internal reference sensor was also placed in one needle to assess internal movement levels and its potential for movement correction. RESULTS For TRUS-based treatments, median Euclidean distances (ED) of 1.00 mm were observed between EMT measurements and manual DP determination. Reference sensor movement was minimal at a median of 0.18 mm. For DPs measured in the CT-room and treatment room, median EDs of 1.60 mm and 2.24 mm compared to CT-based DP determination respectively were observed, indicating the system's ability to detect changes in implant geometry over time and after patient repositioning. Median reference sensor movement of 0.97 mm was observed. Implementing reference sensor-based movement correction led to a significant but small decrease in ED for CT-based treatments. CONCLUSION EMT is suitable for TRUS-based prostate HDR-BT quality assurance and error detection. While EMT can identify changes in implant geometry in CT-based prostate HDR-BT treatments, it showed lower accuracy in this setting.
Collapse
Affiliation(s)
- Ioannis Androulakis
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands.
| | - Jeremy Schiphof-Godart
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands; Department of Medical Physics & Informatics, HollandPTC, Delft, the Netherlands
| | - Laura E van Heerden
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Lorne Luthart
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - René Rijnsdorp
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Mischa S Hoogeman
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands; Department of Medical Physics & Informatics, HollandPTC, Delft, the Netherlands
| | - Henrike Westerveld
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Miranda E M C Christianen
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Jan Willem M Mens
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Rosemarijn van Paassen
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Eva M Negenman
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Remi A Nout
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Inger Karine K Kolkman-Deurloo
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| |
Collapse
|
2
|
Gomez-Sarmiento IN, Tho D, Dürrbeck C, de Jager W, Laurendeau D, Beaulieu L. Accuracy of an electromagnetic tracking enabled afterloader based on the automated registration with CT phantom images. Med Phys 2024; 51:799-808. [PMID: 38127342 DOI: 10.1002/mp.16903] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Electromagnetic tracking (EMT) has been researched for brachytherapy applications, showing a great potential for automating implant reconstruction, and overcoming image-based limitations such as contrast and spatial resolution. One of the challenges of this technology is that it does not intrinsically share the same reference frame as the patient's medical imaging. PURPOSE To present a novel phantom that can be used for a comprehensive quality assurance (QA) program of brachytherapy EMT systems and use this phantom to validate a novel applicator-based registration method of EMT and image reference frames for gynecological (GYN) interstitial brachytherapy. MATERIALS AND METHODS Eleven 6F-catheters (20 cm long), one 6F round tip catheter (29.4 cm long) and a tandem and ring gynecological applicator (Elekta, CT/MR 60°, 40 mm long tandem, 30 mm diameter ring) were placed in a rigid custom-made phantom (Elekta Brachytherapy, Veenendaal, The Netherlands) to reconstruct their geometry using a five-degree of freedom EMT sensor attached to an afterloader's check cable. All EMT reconstructions were done in three different environments: disturbance free (no metal nearby), computed tomography (CT)-on-rails brachytherapy suite and magnetic resonance imaging (MRI) brachytherapy suite. Implants were placed parallel to a magnetic field generatorand were reconstructed using two different acquisition methods: step-and-record and continuous motion. In all cases, the acquisition is performed at a rate of approximately 40 Hz. A CT scan of the phantom inside a water cube was obtained. In the treatment planning system (TPS), all catheters in the CT images were manually reconstructed and the applicator reconstruction was achieved by manually placing its solid 3D model, found in the applicator library of the TPS. The Iterative Closest Point and the Coherent Point Drift algorithms were used, initialized with four known points, to register both EMT and CT scan reference frames using corresponding points from the EMT and CT based reconstructions of the phantom, following three approaches: one gynecological applicator, four interstitial catheters inside four calibration plates having an S-shaped path, and four 5 mm diameter ceramic marbles found in each of the four calibration plates. Once registered, the registration error (perpendicular distance) was computed. RESULTS The absolute median deviation from the expected value for EMT measurements in the disturbance free environment, CT-on-rails brachytherapy suite, and MRI-brachytherapy suite are 0.41, 0.23, and 0.31 mm, respectively, while for the CT scan it is 0.18 mm. These values significantly lie below the sensor's expected accuracy of 0.70 mm (p < 0.001), suggesting that the environment did not have a significant impact on the measurements, given that care is taken in the immediate surroundings. In all three environments, the two acquisitions and three registration approaches have mean and median registration errors that lie at or below 1 mm, which is lower than the clinical acceptable threshold of 2 mm. CONCLUSIONS The novel phantom allowed to successfully evaluate the accuracy of EMT-based reconstructions of catheters and a GYN tandem and ring applicator in different clinical environments. A registration method based only on the applicator geometry, reconstructed withan EMT sensor and the TPS solid applicator library, was validated and shows clinically acceptable accuracy, comparable to CT-based reconstruction but within a few minutes. Since the applicator is also visible in MRI, this method could potentially be used in clinics in an EMT-MR interstitial GYN brachytherapy workflow.
Collapse
Affiliation(s)
- Isaac Neri Gomez-Sarmiento
- Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, Québec, Canada
- Service de physique médicale et de radioprotection, Centre Intégré de Cancérologie, CHU de Québec - Université Laval et Centre de recherche du CHU de Québec, Québec, Québec, Canada
| | - Daline Tho
- Division of Radiation Oncology, Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Christopher Dürrbeck
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Wim de Jager
- Elekta Brachytherapy, Veenendaal, The Netherlands
| | - Denis Laurendeau
- Département de génie électrique et de génie informatique, Faculté de sciences et de génie, Université Laval, Québec, Québec, Canada
| | - Luc Beaulieu
- Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Québec, Québec, Canada
- Service de physique médicale et de radioprotection, Centre Intégré de Cancérologie, CHU de Québec - Université Laval et Centre de recherche du CHU de Québec, Québec, Québec, Canada
| |
Collapse
|
3
|
Tho D, Lavallée M, Beaulieu L. A scintillation dosimeter with real-time positional tracking information for in vivo dosimetry error detection in HDR brachytherapy. J Appl Clin Med Phys 2023; 24:e14150. [PMID: 37731203 PMCID: PMC10691625 DOI: 10.1002/acm2.14150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/26/2023] [Accepted: 08/09/2023] [Indexed: 09/22/2023] Open
Abstract
PURPOSE To evaluate the performance of an electromagnetic (EM)-tracked scintillation dosimeter in detecting source positional errors of IVD in HDR brachytherapy treatment. MATERIALS AND METHODS Two different scintillator dosimeter prototypes were coupled to 5 degrees-of-freedom (DOF) EM sensors read by an Aurora V3 system. The scintillators used were a 0.3 × 0.4 × 0.4 mm3 ZnSe:O and a BCF-60 plastic scintillator of 0.5 mm diameter and 2.0 mm in length (Saint-Gobain Crystals). The sensors were placed at the dosimeter's tip at 20.0 mm from the scintillator. The EM sampling rate was 40/s while the scintillator signal was sampled at 100 000/s using two photomultiplier tubes from Hamamatsu (series H10722) connected to a data acquisition board. A high-pass filter and a low-pass filter were used to separate the light signal into two different channels. All measurements were performed with an afterloader unit (Flexitron-Elekta AB, Sweden) in full-scattered (TG43) conditions. EM tracking was further used to provide distance/angle-dependent energy correction for the ZnSe:O inorganic scintillator. For the error detection part, lateral shifts of 0.5 to 3 mm were induced by moving the source away from its planned position. Indexer length (longitudinal) errors between 0.5 to 10 mm were also introduced. The measured dose rate difference was converted to a shift distance, with and without using the positional information from the EM sensor. RESULTS The inorganic scintillator had both a signal-to-noise-ratio (SNR) and signal-to-background-ratio (SBR) close to 70 times higher than those of the plastic scintillator. The mean absolute difference from the dose measurement to the dose calculated with TG-43U1 was 1.5% ±0.7%. The mean absolute error for BCF-60 detector was 1.7%± 1.2 % $\pm 1.2\%$ when compared to TG-43 calculations formalism. With the inorganic scintillator and EM tracking, a maximum area under the curve (AUC) gain of 24.0% was obtained for a 0.5-mm lateral shift when using the EMT data with the ZnSe:O. Lower AUC gains were obtained for a 3-mm lateral shifts with both scintillators. For the plastic scintillator, the highest gain from using EM tracking information occurred for a 0.5-mm lateral shift at 20 mm from the source. The maximal gain (17.4%) for longitudinal errors was found at the smallest shifts (0.5 mm). CONCLUSIONS This work demonstrates that integrating EM tracking to in vivo scintillation dosimeters enables the detection of smaller shifts, by decreasing the dosimeter positioning uncertainty. It also serves to perform position-dependent energy correction for the inorganic scintillator,providing better SNR and SBR, allowing detection of errors at greater distances from the source.
Collapse
Affiliation(s)
- Daline Tho
- Department of Radiation OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Marie‐Claude Lavallée
- Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancerUniversité LavalQuébecQuébecCanada
- Service de physique médicale et de radioprotection, Centre intégré de cancérologieCHU de Québec‐Université Laval et Centre de recherche du CHU de QuébecQuébecCanada
| | - Luc Beaulieu
- Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancerUniversité LavalQuébecQuébecCanada
- Service de physique médicale et de radioprotection, Centre intégré de cancérologieCHU de Québec‐Université Laval et Centre de recherche du CHU de QuébecQuébecCanada
| |
Collapse
|
4
|
Dürrbeck C, Schuster S, Sauer BC, Abu-Hossin N, Strnad V, Fietkau R, Bert C. Localization of reference points in electromagnetic tracking data and their application for treatment error detection in interstitial breast brachytherapy. Med Phys 2023; 50:5772-5783. [PMID: 37458615 DOI: 10.1002/mp.16629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 09/11/2023] Open
Abstract
BACKGROUND Electromagnetic tracking (EMT) is a promising technology that holds great potential to advance patient-specific pre-treatment verification in interstitial brachytherapy (iBT). It allows easy determination of the implant geometry without line-of-sight restrictions and without dose exposure to the patient. What it cannot provide, however, is a link to anatomical landmarks, such as the exit points of catheters or needles on the skin surface. These landmarks are required for the registration of EMT data with other imaging modalities and for the detection of treatment errors such as incorrect indexer lengths, and catheter or needle shifts. PURPOSE To develop an easily applicable method to detect reference points in the positional data of the trajectory of an EMT sensor, specifically the exit points of catheters in breast iBT, and to apply the approach to pre-treatment error detection. METHODS Small metal objects were attached to catheter fixation buttons that rest against the breast surface to intentionally induce a local, spatially limited perturbation of the magnetic field on which the working principle of EMT relies. This perturbation can be sensed by the EMT sensor as it passes by, allowing it to localize the metal object and thus the catheter exit point. For the proof-of-concept, different small metal objects (magnets, washers, and bushes) and EMT sensor drive speeds were used to find the optimal parameters. The approach was then applied to treatment error detection and validated in-vitro on a phantom. Lastly, the in-vivo feasibility of the approach was tested on a patient cohort of four patients to assess the impact on the clinical workflow. RESULTS All investigated metal objects were able to measurably perturb the magnetic field, which resulted in missing sensor readings, that is two data gaps, one for the sensor moving towards the tip end and one when retracting from there. The size of the resulting data gaps varied depending on the choice of gap points used for calculation of the gap size; it was found that the start points of the gaps in both directions showed the smallest variability. The median size of data gaps was ⩽8 mm for all tested materials and sensor drive speeds. The variability of the determined object position was ⩽0.5 mm at a speed of 1.0 cm/s and ⩽0.7 mm at 2.5 cm/s, with an increase up to 2.3 mm at 5.0 cm/s. The in-vitro validation of the error detection yielded a 100% detection rate for catheter shifts of ≥2.2 mm. All simulated wrong indexer lengths were correctly identified. The in-vivo feasibility assessment showed that the metal objects did not interfere with the routine clinical workflow. CONCLUSIONS The developed approach was able to successfully detect reference points in EMT data, which can be used for registration to other imaging modalities, but also for treatment error detection. It can thus advance the automation of patient-specific, pre-treatment quality assurance in iBT.
Collapse
Affiliation(s)
- Christopher Dürrbeck
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Sabrina Schuster
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Birte Christina Sauer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Nadin Abu-Hossin
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Vratislav Strnad
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| |
Collapse
|
5
|
Dürrbeck C, Schulz M, Pflaum L, Kallis K, Geimer T, Abu-Hossin N, Strnad V, Maier A, Fietkau R, Bert C. Estimating follow-up CTs from geometric deformations of catheter implants in interstitial breast brachytherapy: A feasibility study using electromagnetic tracking. Med Phys 2023; 50:5793-5805. [PMID: 37540071 DOI: 10.1002/mp.16659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 06/20/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Electromagnetic tracking (EMT) systems have been shown to provide valuable information on the geometry of catheter implants in breast cancer patients undergoing interstitial brachytherapy (iBT). In the context of an extended patient-specific, pre-treatment verification, EMT can play a key role in determining the potential need and, if applicable, the appropriate time for treatment adaptation. To detect dosimetric shortcomings the relative position between catheters, and target volume and critical structures must be known. Since EMT cannot provide the anatomical context and standard imaging techniques such as cone-beam CT are not yet available in most brachytherapy suites, it is not possible to detect anatomic changes on a daily or fraction basis, so the need for adaptive planning cannot be identified. PURPOSE The aim of this feasibility study is to develop and evaluate a technique capable of estimating follow-up CTs at any time based on the initial treatment planning CT (PCT) and surrogate information about changes of the implant geometry from an EMT system. METHODS A deformation vector field is calculated from two different implant reconstructions acquired in treatment position through EMT, the first immediately after the PCT and the second at another time point during the course of treatment. The calculation is based on discrete displacement vectors of pairs of control and target points. These are extrapolated by means of different radial basis functions in order to cover the entire CT volume. The adequate parameters for the calculation of the deformation field were identified. By warping the PCT according to the deformation field, one obtains an estimated CT (ECT) that reflects the geometric changes. For the proof of concept, ECTs were computed for the time point of the clinical follow-up CT (FCT) that is embedded in the treatment workflow after the fourth fraction. RESULTS ECT and clinical FCTs of 20 patients were compared to each other quantitatively in terms of absolute Hounsfield unit differences in the planning target volume (PTV) and in a convex hull (CH) enclosing the catheters. The median differences were 31.2 and 29.5 HU for the CH and the PTV, respectively. CONCLUSION The proposed ECT approach was able to approximate the "anatomy of the day" and therefore, in principle, allows a dosimetric appraisal of the treatment plan quality before each fraction. In this way, it can contribute to a more detailed patient-specific quality assurance in iBT of the breast and help to identify the timing for a potential treatment adaptation.
Collapse
Affiliation(s)
- Christopher Dürrbeck
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Moritz Schulz
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Leonie Pflaum
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
- Pattern Recognition Lab, FAU, Erlangen, Germany
| | - Karoline Kallis
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tobias Geimer
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Pattern Recognition Lab, FAU, Erlangen, Germany
| | - Nadin Abu-Hossin
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Vratislav Strnad
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | | | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| |
Collapse
|
6
|
Automating implant reconstruction in interstitial brachytherapy of the breast: A hybrid approach combining electromagnetic tracking and image segmentation. Radiother Oncol 2022; 176:172-178. [PMID: 36181920 DOI: 10.1016/j.radonc.2022.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/24/2022] [Accepted: 09/23/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND PURPOSE To develop a method for automatic reconstruction of catheter implants in interstitial brachytherapy (iBT) of the breast by means of electromagnetic tracking (EMT) with the goal of making treatment planning as time-effective and accurate as possible. MATERIALS AND METHODS The implant geometry of 64 patients was recorded using an afterloader prototype with EMT functionality immediately after the planning CT. EMT data were transferred to the CT image space by rigidly registering the catheter fixation buttons as landmarks. To further improve reconstruction accuracy, the EMT reconstruction points were used as starting points to define small regions of interest (ROI) in the CT image. Within these ROIs, the catheter track was segmented in the CT using image processing operations such as thresholding and blob detection, thus refining the reconstruction. The perpendicular distance between the refined EMT implant reconstruction points and the manually reconstructed catheters by an experienced treatment planner was calculated as a measure of their geometric agreement. RESULTS Geometrically, the refined EMT based implant reconstruction shows excellent agreement with the manual reconstruction. The median distance across all patients is 0.25 mm and the 95th percentile is 1 mm. Refinement takes approximately 0.5 s per reconstruction point and typically does not exceed 3 min per implant at no user interaction. CONCLUSION The refined EMT based implant reconstruction proved to be extremely accurate and fast compared to manual reconstruction. The presented procedure can in principle be easily transferred to clinical routine and therefore has enormous potential to provide significant time savings in iBT treatment planning whilst improving reconstruction accuracy.
Collapse
|
7
|
Dürrbeck C, Gulde S, Abu-Hossin N, Fietkau R, Strnad V, Bert C. Influence and compensation of patient motion in electromagnetic tracking based quality assurance in interstitial brachytherapy of the breast. Med Phys 2022; 49:2652-2662. [PMID: 35143053 DOI: 10.1002/mp.15517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/21/2021] [Accepted: 01/21/2022] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Electromagnetic tracking (EMT) is a versatile and viable technique for various quality assurance (QA) tasks in interstitial brachytherapy (iBT). As the duration of EMT measurements in iBT is on the order of minutes, they can be strongly affected by patient motion, especially breathing, which gives rise to motion artefacts. Since the centrepiece of EMT related QA in iBT is to assess the geometry of the iBT implant or applicator, the absence of adequate motion compensation techniques could impede the use of EMT for QA purposes. A common way to compensate for this is to reference the data to either external or internal reference sensors (ERS, IRS) which are fixated on the patient's body or inside the applicator and therefore move with the patient. The purpose of the presented study is to provide a quantitative and in-depth analysis on the use of reference sensors for motion compensation. METHODS First, the need for adequate motion compensation is identified both qualitatively and quantitatively using a phantom subjected to simulated breathing motion. An evaluation routine is developed to assess the influence of motion compensation using reference sensors on the acquired EMT data. The evaluation metric is based on the observed displacement of the EMT sensor from its mean position while dwelling at a dwell position (DP) for a dwell time of 1 s. After that the routine is applied to a cohort of 54 breast cancer patients treated with iBT and the quality of an ERS based compensation approach is assessed. In a subgroup of four patients, an IRS is inserted into the iBT implant and IRS based compensation is compared to the ERS based approach. Moreover, a correlation analysis of the ERS and IRS approach is performed, also including respiratory signals derived from the trajectories of the different reference sensors. RESULTS It was found that motion compensation with ERS effectively reduced the mean sensor displacement per DP to median values as low as 0.11 mm in both phantom and patient measurements, which is below the precision of the EMT system (0.48 mm). Compensation using the IRS yielded comparable results and was as good as compensation with ERS. The results obtained from both approaches showed a strong correlation. Also the respiratory signals calculated from the different reference sensors were well correlated in most cases. CONCLUSION These results indicate that motion compensation with ERS can effectively remove motion artefacts in EMT data. While compensation with an IRS leads to comparable results, the IRS occupies one catheter whose geometry hence cannot be assessed. The use of ERS has proven to be both effective and practical in clinical routine. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Christopher Dürrbeck
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Sarah Gulde
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Nadin Abu-Hossin
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Vratislav Strnad
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| |
Collapse
|
8
|
Tho D, Lavallée MC, Beaulieu L. Performance of an enhanced afterloader with electromagnetic tracking capabilities for channel reconstruction and error detection. Med Phys 2021; 48:4402-4410. [PMID: 33938002 DOI: 10.1002/mp.14877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 11/12/2022] Open
Abstract
PURPOSE To assess catheter reconstruction and error detection performance of an afterloader (Elekta Brachytherapy, Veenendaal, The Netherlands) equipped with electromagnetic (EM) tracking capabilities. MATERIALS/METHODS The Flexitron research unit used was equipped with a special check cable integrating an EM sensor (NDI Aurora V3) that enables tracking and reconstruction capability. The reconstructions of a 24-cm long catheter were performed using two methods: continuous fixed-speed check cable backward stepping (at 1, 2.5, 5, 10, 25 and 50 cm/s) and stepping through each dwell position every 1 mm. The ability of the system to differentiate between two closely located (parallel) catheters was investigated by connecting catheters to the afterloader and moving it from its axis with an increment of 1 mm. A robotic arm (Meca500, Mecademic, Montreal) with an accuracy of 0.01 mm was used to move the catheter between each reconstruction. Reconstructions were obtained with a locally weighted scatterplot smoothing algorithm. To quantify the reconstruction accuracy, distances between two catheters were computed along the reconstruction track with a 5 mm step. The reconstructions of curve catheter paths were assessed through parallel and perpendicular phantom configuration to the EM field generator. Indexer length and lateral errors were simulated and a ROC analysis was made. RESULTS Using a 50 cm/s check cable speed does not allow for accurate reconstructions. A slower check cable speed results in better reconstruction performance and smaller standard deviations. At 1 cm/s, a catheter can be shifted laterally down to 1 mm and all paths can be uniquely identified. The optimum operating distance from the field generator (50 to 300 mm) resulted in a lower absolute mean deviation from the expected value (0.2 ± 0.1 mm) versus being positioned on the edge of the electromagnetic sensitive detection volume (0.6 ±0.3 mm). The reconstructions of curved catheters with a check cable speed under 5 cm/s gave a 0.8 mm ±0.3 mm error, or better. All indexer and lateral shifts of 1 mm were detected with a check cable speed of 2.5 cm/s or lower. CONCLUSIONS The EM-equipped Flexitron afterloader is able to track and reconstruct catheters with high accuracy. A speed under 5 cm/s is recommended for straight and curved catheter reconstructions. It allows catheter identification down to 1 mm inter-catheter distance shift. The check cable can also be used to detect common shift errors.
Collapse
Affiliation(s)
- Daline Tho
- Département de radio-oncologie and Centre de recherche du CHU de Québec, CHU de Québec, Quebec, Quebec, G1R 3S1, Canada.,Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Quebec, Quebec, G1V 0A6, Canada
| | - Marie-Claude Lavallée
- Département de radio-oncologie and Centre de recherche du CHU de Québec, CHU de Québec, Quebec, Quebec, G1R 3S1, Canada.,Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Quebec, Quebec, G1V 0A6, Canada
| | - Luc Beaulieu
- Département de radio-oncologie and Centre de recherche du CHU de Québec, CHU de Québec, Quebec, Quebec, G1R 3S1, Canada.,Département de physique, de génie physique et d'optique, et Centre de recherche sur le cancer, Université Laval, Quebec, Quebec, G1V 0A6, Canada
| |
Collapse
|
9
|
Jørgensen EB, Kertzscher G, Buus S, Bentzen L, Hokland SB, Rylander S, Tanderup K, Johansen JG. Accuracy of an in vivo dosimetry-based source tracking method for afterloading brachytherapy - A phantom study. Med Phys 2021; 48:2614-2623. [PMID: 33655555 DOI: 10.1002/mp.14812] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/07/2021] [Accepted: 02/04/2021] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To report on the accuracy of an in vivo dosimetry (IVD)-based source tracking (ST) method for high dose rate (HDR) prostate brachytherapy (BT). METHODS The ST was performed on a needle-by-needle basis. A least square fit of the expected to the measured dose rate was performed using the active dwell positions in the given needle. Two fitting parameters were used to determine the position of each needle relative to the IVD detector: radial (away or toward the detector) and longitudinal (along the axis of the treatment needle). The accuracy of the ST was assessed in a phantom where the geometries of five HDR prostate BT treatments previously treated at our clinic were reproduced. For each of the five treatment geometries, one irradiation was performed with the detector placed in the middle of the implant. Furthermore, four additional irradiations were performed for one of the geometries where the detector was retracted caudally in four steps of 10-15 mm and up to 12 mm inferior of the most inferior active dwell position, which represented the prostate apex. The time resolved dose measurements were retrieved at a rate of 20 Hz using a detector based on an Al2 O3 :C radioluminescence crystal, which was placed inside a standard BT needle. Individual calibrations of the detector were performed prior to each of the nine irradiations. RESULTS Source tracking could be applied in all needles across all nine irradiations. For irradiations with the detector located in the middle region of the implant (a total of 89 needles), the mean ± standard deviation (SD, k = 1) accuracy was -0.01 mm ± 0.38 mm and 0.30 mm ± 0.38 mm in the radial and longitudinal directions, respectively. Caudal retraction of the detector did not lead to reduced accuracy as long as the detector was located superior to the most inferior active dwell positions in all needles. However, reduced accuracy was observed for detector positions inferior to the most inferior active dwell positions which corresponded to detector positions in and inferior to the prostate apex region. Detector positions in the prostate apex and 12 mm inferior to the prostate resulted in mean ± SD (k = 1) ST accuracy of 0.7 mm ± 1 mm and 2.8 mm ± 1.6 mm, respectively, in radial direction, and -1.7 mm ± 1 mm and -2.1 mm ± 1.1 mm, respectively, in longitudinal direction. The largest deviations for the configurations with those detector positions were 2.6 and 5.4 mm, respectively, in the radial direction and -3.5 and -3.8 mm, respectively, in the longitudinal direction. CONCLUSION This phantom study demonstrates that ST based on IVD during prostate BT is adequately accurate for clinical use. The ST yields submillimeter accuracy on needle positions as long as the IVD detector is positioned superior to at least one active dwell position in all needles. Locations of the detector inferior to the prostate apex result in decreased ST accuracy while detector locations in the apex region and above are advantageous for clinical applications.
Collapse
Affiliation(s)
- Erik B Jørgensen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | | - Simon Buus
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Lise Bentzen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Susanne Rylander
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Kari Tanderup
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jacob G Johansen
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
10
|
Accuracy of dwell position detection with a combined electromagnetic tracking brachytherapy system for treatment verification in pelvic brachytherapy. Radiother Oncol 2020; 154:249-254. [PMID: 33038356 DOI: 10.1016/j.radonc.2020.09.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND PURPOSE To investigate the accuracy of dwell position detection with a combined electromagnetic tracking (EMT) brachytherapy (BT) system for treatment verification, by quantifying positional errors due to EM field interference in typical pelvic BT clinical settings. MATERIALS AND METHODS Dedicated prostate and cervix BT phantoms were imaged with CT. For the cervix phantom, the Utrecht applicator + interstitial catheters were used. The implants were reconstructed and treatment plans were created with 270/65 dwell positions for the prostate/cervix phantom. Next, EMT experiments were performed in clinical BT settings using a prototype of a combined EMT/BT system. We quantified positional errors due to EM field interference from surrounding equipment by comparing planned and EMT-measured dwell positions. The mean residual error between planned and EMT-measured dwell positions was calculated in the prostate interstitial catheters and in the whole cervix implant including the applicator. For the cervix phantom, the analysis was repeated for only the interstitial catheters. RESULTS Mean residual errors of less than 0.5/0.4 mm in the prostate/cervix catheters were found. For the whole cervix implant including the applicator, large deviations up to 2.4 mm were found. Compared to the interference free set-up, the CT and patient bed environments showed larger residual errors in the interstitial catheters, but residual errors remained <1 mm in all cases. CONCLUSION Dwell position detection with the combined system in interstitial catheters is sufficiently accurate to perform EMT-based treatment verification. The effect of EM interference from the surrounding equipment was limited.
Collapse
|