1
|
Verona C, Barna S, Georg D, Hamad Y, Magrin G, Marinelli M, Meouchi C, Verona Rinati G. Diamond based integrated detection system for dosimetric and microdosimetric characterization of radiotherapy ion beams. Med Phys 2024; 51:533-544. [PMID: 37656015 DOI: 10.1002/mp.16698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND Ion beam therapy allows for a substantial sparing of normal tissues and higher biological efficacy. Synthetic single crystal diamond is a very good material to produce high-spatial-resolution and highly radiation hard detectors for both dosimetry and microdosimetry in ion beam therapy. PURPOSE The aim of this work is the design, fabrication and test of an integrated waterproof detector based on synthetic single crystal diamond able to simultaneously perform dosimetric and microdosimetric characterization of clinical ion beams. METHODS The active elements of the integrated diamond device, that is, dosimeter and microdosimeter, were both realized in a Schottky diode configuration featured by different area, thickness, and shape by means of photolithography technologies for the selective growth of intrinsic and boron-doped CVD diamond. The cross-section of the sensitive volume of the dosimetric element is 4 mm2 and 1 μm-thick, while the microdosimetric one has an active cross-sectional area of 100 × 100 μm2 and a thickness of about 6.2 μm. The dosimetric and microdosimetric performance of the developed device was assessed at different depths in a water phantom at the MedAustron ion beam therapy facility using a monoenergetic uniformly scanned carbon ion beam of 284.7 MeV/u and proton beam of 148.7 MeV. The particle flux in the region of the microdosimeter was 6·107 cm2 /s for both irradiation fields. At each depth, dose and dose distributions in lineal energy were measured simultaneously and the dose mean lineal energy values were then calculated. Monte Carlo simulations were also carried out by using the GATE-Geant4 code to evaluate the relative dose, dose averaged linear energy transfer (LETd ), and microdosimetric spectra at various depths in water for the radiation fields used, by considering the contribution from the secondary particles generated in the ion interaction processes as well. RESULTS Dosimetric and microdosimetric quantities were measured by the developed prototype with relatively low noise (∼2 keV/μm). A good agreement between the measured and simulated dose profiles was found, with discrepancies in the peak to plateau ratio of about 3% and 4% for proton and carbon ion beams respectively, showing a negligible LET dependence of the dosimetric element of the device. The microdosimetric spectra were validated with Monte Carlo simulations and a good agreement between the spectra shapes and positions was found. Dose mean lineal energy values were found to be in close agreement with those reported in the literature for clinical ion beams, showing a sharp increase along the Bragg curve, being also consistent with the calculated LETd for all depths within the experimental error of 10%. CONCLUSIONS The experimental indicate that the proposed device can allow enhanced dosimetry in particle therapy centers, where the absorbed dose measurement is implemented by the microdosimetric characterization of the radiation field, thus providing complementary results. In addition, the proposed device allows for the reduction of the experimental uncertainties associated with detector positioning and could facilitate the partial overcoming of some drawbacks related to the low sensitivity of diamond microdosimeters to low LET radiation.
Collapse
Affiliation(s)
- Claudio Verona
- Dipartimento di Ingegneria Industriale, Università di Roma "Tor Vergata", Sez. INFN-Roma2, Roma, Italia, Italy
| | - Sandra Barna
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Georg
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Yasmin Hamad
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Giulio Magrin
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Marco Marinelli
- Dipartimento di Ingegneria Industriale, Università di Roma "Tor Vergata", Sez. INFN-Roma2, Roma, Italia, Italy
| | - Cynthia Meouchi
- Institute of Atomic and Subatomic Physics, Vienna University of Technology, Vienna, Austria
| | - Gianluca Verona Rinati
- Dipartimento di Ingegneria Industriale, Università di Roma "Tor Vergata", Sez. INFN-Roma2, Roma, Italia, Italy
| |
Collapse
|
2
|
Bachiller-Perea D, Zhang M, Fleta C, Quirion D, Bassignana D, Gómez F, Guardiola C. Microdosimetry performance of the first multi-arrays of 3D-cylindrical microdetectors. Sci Rep 2022; 12:12240. [PMID: 35851050 PMCID: PMC9293924 DOI: 10.1038/s41598-022-14940-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 05/04/2022] [Indexed: 11/28/2022] Open
Abstract
The present work reports on the microdosimetry measurements performed with the two first multi-arrays of microdosimeters with the highest radiation sensitive surface covered so far. The sensors are based on new silicon-based radiation detectors with a novel 3D cylindrical architecture. Each system consists of arrays of independent microdetectors covering 2 mm\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\times$$\end{document}×2 mm and 0.4 mm\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\times$$\end{document}×12 cm radiation sensitive areas, the sensor distributions are arranged in layouts of 11\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\times$$\end{document}×11 microdetectors and 3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\times$$\end{document}×3 multi-arrays, respectively. We have performed proton irradiations at several energies to compare the microdosimetry performance of the two systems, which have different spatial resolution and detection surface. The unitcell of both arrays is a 3D cylindrical diode with a 25 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu$$\end{document}μm diameter and a 20 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu$$\end{document}μm depth that results in a welldefined and isolated radiation sensitive micro-volume etched inside a silicon wafer. Measurements were carried out at the Accélérateur Linéaire et Tandem à Orsay (ALTO) facility by irradiating the two detection systems with monoenergetic proton beams from 6 to 20 MeV at clinical-equivalent fluence rates. The microdosimetry quantities were obtained with a spatial resolution of 200 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu$$\end{document}μm and 600 \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mu$$\end{document}μm for the 11\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\times$$\end{document}×11 system and for the 3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\times$$\end{document}×3 multi-array system, respectively. Experimental results were compared with Monte Carlo simulations and an overall good agreement was found. The good performance of both microdetector arrays demonstrates that this architecture and both configurations can be used clinically as microdosimeters for measuring the lineal energy distributions and, thus, for RBE optimization of hadron therapy treatments. Likewise, the results have shown that the devices can be also employed as a multipurpose device for beam monitoring in particle accelerators.
Collapse
Affiliation(s)
- Diana Bachiller-Perea
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405, Orsay, France. .,Université Paris-Cité, IJCLab, 91405, Orsay, France.
| | - Mingming Zhang
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405, Orsay, France.,Université Paris-Cité, IJCLab, 91405, Orsay, France
| | - Celeste Fleta
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), 08193, Barcelona, Spain
| | - David Quirion
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), 08193, Barcelona, Spain
| | - Daniela Bassignana
- Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), 08193, Barcelona, Spain
| | - Faustino Gómez
- Departamento de Física de Partículas, Universidad de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Consuelo Guardiola
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405, Orsay, France.,Université Paris-Cité, IJCLab, 91405, Orsay, France.,Instituto de Microelectrónica de Barcelona (IMB-CNM, CSIC), 08193, Barcelona, Spain
| |
Collapse
|
3
|
Guardiola C, Bachiller-Perea D, Prieto-Pena J, Jiménez-Ramos MC, García López J, Esnault C, Fleta C, Quirion D, Gómez F. Microdosimetry in low energy proton beam at therapeutic-equivalent fluence rate with silicon 3D-cylindrical microdetectors. Phys Med Biol 2021; 66. [PMID: 33853055 DOI: 10.1088/1361-6560/abf811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/14/2021] [Indexed: 11/11/2022]
Abstract
In this work we show the first microdosimetry measurements on a low energy proton beam with therapeutic-equivalent fluence rates by using the second generation of 3D-cylindrical microdetectors. The sensors belong to an improved version of a novel silicon-based 3D-microdetector design with electrodes etched inside silicon, which were manufactured at the National Microelectronics Centre (IMB-CNM, CSIC) in Spain. A new microtechnology has been employed using quasi-toroid electrodes of 25μm diameter and a depth of 20μm within the silicon bulk, resulting in a well-defined cylindrical radiation sensitive volume. These detectors were tested at the 18 MeV proton beamline of the cyclotron at the National Accelerator Centre (CNA, Spain). They were assembled into an in-house low-noise readout electronics to assess their performance at a therapeutic-equivalent fluence rate. Microdosimetry spectra of lineal energy were recorded at several proton energies starting from 18 MeV by adding 50μm thick tungsten foils gradually at the exit-window of the cyclotron external beamline, which corresponds to different depths along the Bragg curve. The experimentalyF¯values in silicon cover from (5.7 ± 0.9) to (8.5 ± 0.4) keV μm-1in the entrance to (27.4 ± 2.3) keV μm-1in the distal edge. Pulse height energy spectra were crosschecked with Monte Carlo simulations and an excellent agreement was obtained. This work demonstrates the capability of the second generation 3D-microdetectors to assess accurate microdosimetric distributions at fluence rates as high as those used in clinical centers in proton therapy.
Collapse
Affiliation(s)
- C Guardiola
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, F-91405 Orsay, France.,Université de Paris, IJCLab, F-91405 Orsay France
| | - D Bachiller-Perea
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, F-91405 Orsay, France.,Université de Paris, IJCLab, F-91405 Orsay France
| | - J Prieto-Pena
- Departamento de Física de Partículas, Universidad de Santiago de Compostela, E-15782, Spain
| | | | - J García López
- Centro Nacional de Aceleradores, E-41092 Sevilla, Spain.,Departamento de Física Atómica, Molecular y Nuclear, University of Sevilla, E-41080, Sevilla, Spain
| | - C Esnault
- Université Paris-Saclay, CNRS/IN2P3, IJCLab, F-91405 Orsay, France.,Université de Paris, IJCLab, F-91405 Orsay France
| | - C Fleta
- Centro Nacional de Microelectrónica (IMB-CNM, CSIC), Bellaterra, E-08193, Spain
| | - D Quirion
- Centro Nacional de Microelectrónica (IMB-CNM, CSIC), Bellaterra, E-08193, Spain
| | - F Gómez
- Departamento de Física de Partículas, Universidad de Santiago de Compostela, E-15782, Spain
| |
Collapse
|
4
|
Silicon 3D Microdetectors for Microdosimetry in Hadron Therapy. MICROMACHINES 2020; 11:mi11121053. [PMID: 33260634 PMCID: PMC7760635 DOI: 10.3390/mi11121053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022]
Abstract
The present overview describes the evolution of new microdosimeters developed in the National Microelectronics Center in Spain (IMB-CNM, CSIC), ranging from the first ultra-thin 3D diodes (U3DTHINs) to the advanced 3D-cylindrical microdetectors, which have been developed over the last 10 years. In this work, we summarize the design, main manufacture processes, and electrical characterization of these devices. These sensors were specifically customized for use in particle therapy and overcame some of the technological challenges in this domain, namely the low noise capability, well-defined sensitive volume, high spatial resolution, and pile-up robustness. Likewise, both architectures reduce the loss of charge carriers due to trapping effects, the charge collection time, and the voltage required for full depletion compared to planar silicon detectors. In particular, a 3D‒cylindrical architecture with electrodes inserted into the silicon bulk and with a very well‒delimited sensitive volume (SV) mimicked a cell array with shapes and sizes similar to those of mammalian cells for the first time. Experimental tests of the carbon beamlines at the Grand Accélérateur National d’Lourds (GANIL, France) and Centro Nazionale Adroterapia Oncologica (CNAO, Italy) showed the feasibility of the U3DTHINs in hadron therapy beams and the good performance of the 3D‒cylindrical microdetectors for assessing linear energy distributions of clinical beams, with clinical fluence rates of 5 × 107 s−1cm−2 without saturation. The dose-averaged lineal energies showed a generally good agreement with Monte Carlo simulations. The results indicated that these devices can be used to characterize the microdosimetric properties in hadron therapy, even though the charge collection efficiency (CCE) and electronic noise may pose limitations on their performance, which is studied and discussed herein. In the last 3D‒cylindrical microdetector generation, we considerably improved the CCE due to the microfabrication enhancements, which have led to shallower and steeper dopant profiles. We also summarize the successive microdosimetric characterizations performed with both devices in proton and carbon beamlines.
Collapse
|
5
|
Verona C, Cirrone GAP, Magrin G, Marinelli M, Palomba S, Petringa G, Rinati GV. Microdosimetric measurements of a monoenergetic and modulated Bragg Peaks of 62 MeV therapeutic proton beam with a synthetic single crystal diamond microdosimeter. Med Phys 2020; 47:5791-5801. [DOI: 10.1002/mp.14466] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Affiliation(s)
- C. Verona
- Dipartimento di Ingegneria Industriale Universita di Roma “Tor Vergata” via del Politecnico 1 Roma00133 Italy
| | - G. A. P. Cirrone
- Istituto Nazionale di Fisica Nucleare INFN Laboratori Nazionali del Sud via Santa Sofia 62 Catania Italy
| | - G. Magrin
- MedAustron Ion Therapy Center Marie Curie‐Strasse 5 Wiener NeustadtA‐2700 Austria
| | - M. Marinelli
- Dipartimento di Ingegneria Industriale Universita di Roma “Tor Vergata” via del Politecnico 1 Roma00133 Italy
| | - S. Palomba
- Dipartimento di Ingegneria Industriale Universita di Roma “Tor Vergata” via del Politecnico 1 Roma00133 Italy
| | - G. Petringa
- Istituto Nazionale di Fisica Nucleare INFN Laboratori Nazionali del Sud via Santa Sofia 62 Catania Italy
| | - G. Verona Rinati
- Dipartimento di Ingegneria Industriale Universita di Roma “Tor Vergata” via del Politecnico 1 Roma00133 Italy
| |
Collapse
|