1
|
Lee MS, Shim HS, Lee JS. Strategies for mitigating inter-crystal scattering effects in positron emission tomography: a comprehensive review. Biomed Eng Lett 2024; 14:1243-1258. [PMID: 39465104 PMCID: PMC11502689 DOI: 10.1007/s13534-024-00427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 10/29/2024] Open
Abstract
Inter-crystal scattering (ICS) events in Positron Emission Tomography (PET) present challenges affecting system sensitivity and image quality. Understanding the physics and factors influencing ICS occurrence is crucial for developing strategies to mitigate its impact. This review paper explores the physics behind ICS events and their occurrence within PET detectors. Various methodologies, including energy-based comparisons, Compton kinematics-based approaches, statistical methods, and Artificial Intelligence (AI) techniques, which have been proposed for identifying and recovering ICS events accurately are introduced. Energy-based methods offer simplicity by comparing energy depositions in crystals. Compton kinematics-based approaches utilize trajectory information for first interaction position estimation, yielding reasonably good results. Additionally, statistical approach and AI algorithms contribute by optimizing likelihood analysis and neural network models for improved positioning accuracy. Experimental validations and simulation studies highlight the potential of recovering ICS events and enhancing PET sensitivity and image quality. Especially, AI technologies offers a promising avenue for addressing ICS challenges and improving PET image accuracy and resolution. These methods offer promising solutions for overcoming the challenges posed by ICS events and enhancing the accuracy and resolution of PET imaging, ultimately improving diagnostic capabilities and patient outcomes. Further studies applying these approaches to real PET systems are needed to validate theoretical results and assess practical implementation feasibility.
Collapse
Affiliation(s)
- Min Sun Lee
- Environmental Radioactivity Assessment Team, Nuclear Emergency & Environmental Protection Division, Korea Atomic Energy Research Institute, Daejeon, Republic of Korea
| | - Hyeong Seok Shim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Jae Sung Lee
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
- Integrated Major in Innovative Medical Science, Seoul National University Graduate School, Seoul, Republic of Korea
- Department of Nuclear Medicine, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Brightonix Imaging Inc, Seoul, Republic of Korea
| |
Collapse
|
2
|
Saaidi R, Rodríguez-Villafuerte M, Alva-Sánchez H, Martínez-Dávalos A. Crystal scatter effects in a large-area dual-panel Positron Emission Mammography system. PLoS One 2024; 19:e0297829. [PMID: 38427663 PMCID: PMC10906883 DOI: 10.1371/journal.pone.0297829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/11/2024] [Indexed: 03/03/2024] Open
Abstract
Positron Emission Mammography (PEM) is a valuable molecular imaging technique for breast studies using pharmaceuticals labeled with positron emitters and dual-panel detectors. PEM scanners normally use large scintillation crystals coupled to sensitive photodetectors. Multiple interactions of the 511 keV annihilation photons in the crystals can result in event mispositioning leading to a negative impact in radiopharmaceutical uptake quantification. In this work, we report the study of crystal scatter effects of a large-area dual-panel PEM system designed with either monolithic or pixelated lutetium yttrium orthosilicate (LYSO) crystals using the Monte Carlo simulation platform GATE. The results show that only a relatively small fraction of coincidences (~20%) arise from events where both coincidence photons undergo single interactions (mostly through photoelectric absorption) in the crystals. Most of the coincidences are events where at least one of the annihilation photons undergoes a chain of Compton scatterings: approximately 79% end up in photoelectric absorption while the rest (<1%) escape the detector. Mean positioning errors, calculated as the distance between first hit and energy weighted (assigned) positions of interaction, were 1.70 mm and 1.92 mm for the monolithic and pixelated crystals, respectively. Reconstructed spatial resolution quantification with a miniDerenzo phantom and a list mode iterative reconstruction algorithm shows that, for both crystal types, 2 mm diameter hot rods were resolved, indicating a relatively small effect in spatial resolution. A drastic reduction in peak-to-valley ratios for the same hot-rod diameters was observed, up to a factor of 14 for the monolithic crystals and 7.5 for the pixelated ones.
Collapse
Affiliation(s)
- Rahal Saaidi
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City, Mexico
| | | | - Héctor Alva-Sánchez
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City, Mexico
| | - Arnulfo Martínez-Dávalos
- Instituto de Física, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Mexico City, Mexico
| |
Collapse
|
3
|
Lee JS, Lee MS. Advancements in Positron Emission Tomography Detectors: From Silicon Photomultiplier Technology to Artificial Intelligence Applications. PET Clin 2024; 19:1-24. [PMID: 37802675 DOI: 10.1016/j.cpet.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
This review article focuses on PET detector technology, which is the most crucial factor in determining PET image quality. The article highlights the desired properties of PET detectors, including high detection efficiency, spatial resolution, energy resolution, and timing resolution. Recent advancements in PET detectors to improve these properties are also discussed, including the use of silicon photomultiplier technology, advancements in depth-of-interaction and time-of-flight PET detectors, and the use of artificial intelligence for detector development. The article provides an overview of PET detector technology and its recent advancements, which can significantly enhance PET image quality.
Collapse
Affiliation(s)
- Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul 03080, South Korea; Brightonix Imaging Inc., Seoul 04782, South Korea
| | - Min Sun Lee
- Environmental Radioactivity Assessment Team, Nuclear Emergency & Environmental Protection Division, Korea Atomic Energy Research Institute, Daejeon 34057, South Korea.
| |
Collapse
|
4
|
Llosá G, Rafecas M. Hybrid PET/Compton-camera imaging: an imager for the next generation. EUROPEAN PHYSICAL JOURNAL PLUS 2023; 138:214. [PMID: 36911362 PMCID: PMC9990967 DOI: 10.1140/epjp/s13360-023-03805-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Compton cameras can offer advantages over gamma cameras for some applications, since they are well suited for multitracer imaging and for imaging high-energy radiotracers, such as those employed in radionuclide therapy. While in conventional clinical settings state-of-the-art Compton cameras cannot compete with well-established methods such as PET and SPECT, there are specific scenarios in which they can constitute an advantageous alternative. The combination of PET and Compton imaging can benefit from the improved resolution and sensitivity of current PET technology and, at the same time, overcome PET limitations in the use of multiple radiotracers. Such a system can provide simultaneous assessment of different radiotracers under identical conditions and reduce errors associated with physical factors that can change between acquisitions. Advances are being made both in instrumentation developments combining PET and Compton cameras for multimodal or three-gamma imaging systems, and in image reconstruction, addressing the challenges imposed by the combination of the two modalities or the new techniques. This review article summarizes the advances made in Compton cameras for medical imaging and their combination with PET.
Collapse
Affiliation(s)
- Gabriela Llosá
- Instituto de Física Corpuscular (IFIC), CSIC-UV, Catedrático Beltrán, 2., 46980 Paterna, Valencia, Spain
| | - Magdalena Rafecas
- Institute of Medical Engineering (IMT), Universität zu Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| |
Collapse
|
5
|
Du J, Jones T. Technical opportunities and challenges in developing total-body PET scanners for mice and rats. EJNMMI Phys 2023; 10:2. [PMID: 36592266 PMCID: PMC9807733 DOI: 10.1186/s40658-022-00523-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/20/2022] [Indexed: 01/03/2023] Open
Abstract
Positron emission tomography (PET) is the most sensitive in vivo molecular imaging technique available. Small animal PET has been widely used in studying pharmaceutical biodistribution and disease progression over time by imaging a wide range of biological processes. However, it remains true that almost all small animal PET studies using mouse or rat as preclinical models are either limited by the spatial resolution or the sensitivity (especially for dynamic studies), or both, reducing the quantitative accuracy and quantitative precision of the results. Total-body small animal PET scanners, which have axial lengths longer than the nose-to-anus length of the mouse/rat and can provide high sensitivity across the entire body of mouse/rat, can realize new opportunities for small animal PET. This article aims to discuss the technical opportunities and challenges in developing total-body small animal PET scanners for mice and rats.
Collapse
Affiliation(s)
- Junwei Du
- grid.27860.3b0000 0004 1936 9684Department of Biomedical Engineering, University of California at Davis, Davis, CA 95616 USA
| | - Terry Jones
- grid.27860.3b0000 0004 1936 9684Department of Radiology, University of California at Davis, Davis, CA 95616 USA
| |
Collapse
|
6
|
Takyu S, Yoshida E, Nishikido F, Obata F, Tashima H, Kamada K, Yoshikawa A, Yamaya T. Development of a Two-Layer Staggered GAGG Scatter Detector for Whole Gamma Imaging. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2022. [DOI: 10.1109/trpms.2021.3131811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sodai Takyu
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Eiji Yoshida
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Fumihiko Nishikido
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Fujino Obata
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Hideaki Tashima
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | | | | | - Taiga Yamaya
- Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
7
|
Kang HG, Tashima H, Nishikido F, Akamatsu G, Wakizaka H, Higuchi M, Yamaya T. Initial results of a mouse brain PET insert with a staggered 3-layer DOI detector. Phys Med Biol 2021; 66. [PMID: 34666328 DOI: 10.1088/1361-6560/ac311c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/19/2021] [Indexed: 11/11/2022]
Abstract
Objective.Small animal positron emission tomography (PET) requires a submillimeter resolution for better quantification of radiopharmaceuticals. On the other hand, depth-of-interaction (DOI) information is essential to preserve the spatial resolution while maintaining the sensitivity. Recently, we developed a staggered 3-layer DOI detector with 1 mm crystal pitch and 15 mm total crystal thickness, but we did not demonstrate the imaging performance of the DOI detector with full ring geometry. In this study we present initial imaging results obtained for a mouse brain PET prototype developed with the staggered 3-layer DOI detector.Approach.The prototype had 53 mm inner diameter and 11 mm axial field-of-view. The PET scanner consisted of 16 DOI detectors each of which had a staggered 3-layer LYSO crystal array (4/4/7 mm) coupled to a 4 × 4 silicon photomultiplier array. The physical performance was evaluated in terms of the NEMA NU 4 2008 protocol.Main Results.The measured spatial resolutions at the center and 15 mm radial offset were 0.67 mm and 1.56 mm for filtered-back-projection, respectively. The peak absolute sensitivity of 0.74% was obtained with an energy window of 400-600 keV. The resolution phantom imaging results show the clear identification of a submillimetric rod pattern with the ordered-subset expectation maximization algorithm. The inter-crystal scatter rejection using a narrow energy window could enhance the resolvability of a 0.75 mm rod significantly.Significance.In an animal imaging experiment, the detailed mouse brain structures such as cortex and thalamus were clearly identified with high contrast. In conclusion, we successfully developed the mouse brain PET insert prototype with a staggered 3-layer DOI detector.
Collapse
Affiliation(s)
- Han Gyu Kang
- National Institutes for Quantum Science and Technology (QST), 4-9-1, Anagawa, Inage-ku, Chiba, Japan
| | - Hideaki Tashima
- National Institutes for Quantum Science and Technology (QST), 4-9-1, Anagawa, Inage-ku, Chiba, Japan
| | - Fumihiko Nishikido
- National Institutes for Quantum Science and Technology (QST), 4-9-1, Anagawa, Inage-ku, Chiba, Japan
| | - Go Akamatsu
- National Institutes for Quantum Science and Technology (QST), 4-9-1, Anagawa, Inage-ku, Chiba, Japan
| | - Hidekazu Wakizaka
- National Institutes for Quantum Science and Technology (QST), 4-9-1, Anagawa, Inage-ku, Chiba, Japan
| | - Makoto Higuchi
- National Institutes for Quantum Science and Technology (QST), 4-9-1, Anagawa, Inage-ku, Chiba, Japan
| | - Taiga Yamaya
- National Institutes for Quantum Science and Technology (QST), 4-9-1, Anagawa, Inage-ku, Chiba, Japan
| |
Collapse
|
8
|
Lee S, Lee JS. Inter-crystal scattering recovery of light-sharing PET detectors using convolutional neural networks. Phys Med Biol 2021; 66. [PMID: 34438380 DOI: 10.1088/1361-6560/ac215d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/26/2021] [Indexed: 11/12/2022]
Abstract
Inter-crystal scattering (ICS) is a type of Compton scattering of photons from one crystal to adjacent crystals and causes inaccurate assignment of the annihilation photon interaction position in positron emission tomography (PET). Because ICS frequently occurs in highly light-shared PET detectors, its recovery is crucial for the spatial resolution improvement. In this study, we propose two different convolutional neural networks (CNNs) for ICS recovery, exploiting the good pattern recognition ability of CNN techniques. Using the signal distribution of a photosensor array as input, one network estimates the energy deposition in each crystal (ICS-eNet) and another network chooses the first-interacted crystal (ICS-cNet). We performed GATE Monte Carlo simulations with optical photon tracking to test PET detectors comprising different crystal arrays (8 × 8 to 21 × 21) with lengths of 20 mm and the same photosensor array (3 mm 8 × 8 array) covering an area of 25.8 × 25.8 mm2. For each detector design, we trained ICS-eNet and ICS-cNet and evaluated their respective performance. ICS-eNet accurately identified whether the events were ICS (accuracy > 90%) and selected interacted crystals (accuracy > 60%) with appropriate energy estimation performance (R2 > 0.7) in the 8 × 8, 12 × 12, and 16 × 16 arrays. ICS-cNet also exhibited satisfactory performance, which was less dependent on the crystal-to-sensor ratio, with an accuracy enhancement that exceeds 10% in selecting the first-interacted crystal and a reduction in error distances compared when no recovery was applied. Both ICS-eNet and ICS-cNet exhibited consistent performances under various optical property settings of the crystals. For spatial resolution measurements in PET rings, both networks achieved significant enhancements particularly for highly pixelated arrays. We also discuss approaches for training the networks in an actual experimental setup. This proof-of-concept study demonstrated the feasibility of CNNs for ICS recovery in various light-sharing designs to efficiently improve the spatial resolution of PET in various applications.
Collapse
Affiliation(s)
- Seungeun Lee
- Department of Nuclear Medicine, Seoul National University, Seoul, 03080, Republic of Korea.,Department of Biomedical Sciences, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University, Seoul, 03080, Republic of Korea.,Brightonix Imaging Inc., Seoul, 04782, Republic of Korea
| |
Collapse
|
9
|
Wang L, Fan L, wang T, Wang M, Xie J, Shi Y. Investigation of phase evolution and Gd occupation in (Lu1-xGdx)2SiO5 lattice by Rietveld refinement and DFT simulation. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Kang HG, Nishikido F, Yamaya T. A staggered 3-layer DOI PET detector using BaSO4 reflector for enhanced crystal identification and inter-crystal scattering event discrimination capability. Biomed Phys Eng Express 2021; 7. [DOI: 10.1088/2057-1976/abf6a8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/09/2021] [Indexed: 01/22/2023]
|
11
|
Evaluation of Large-Area Silicon Photomultiplier Arrays for Positron Emission Tomography Systems. ELECTRONICS 2021. [DOI: 10.3390/electronics10060698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
An individual readout of silicon photomultipliers (SiPMs) would enhance the performance of modern positron emission tomography (PET) systems. However, as it difficult to achieve in practice, a multiplexing readout of SiPM arrays could be performed instead. In this study, we characterized the performance of three PET detector modules utilizing three different SiPM models with active areas of 3 × 3, 4 × 4, and 6 × 6 mm2. Each SiPM array was coupled with a 4 × 4 LYSO crystal block. For SiPM multiplexing, we used a discretized positioning circuit to obtain position and energy information, and applied a first-order capacitive high-pass filter to enhance the time-of-flight measurement capability of the PET detector. The energy performance was similar among the three different SiPM arrays, with an energy resolution of 10%–11%. The best timing performance was achieved with the SiPM array with an active area of 6 × 6 mm2, which yielded a coincidence timing resolution (CTR) value of 401 ps FWHM when an analog high-pass filter was applied. We expect that, in combination with high-performance SiPM multiplexing techniques, the SiPM array with an active area of 6 × 6 mm2 can provide a cost-effective solution for developing a whole-body PET scanner.
Collapse
|
12
|
Lai Y, Wang Q, Zhou S, Xie Z, Qi J, Cherry SR, Jin M, Chi Y, Du J. H 2RSPET: a 0.5 mm resolution high-sensitivity small-animal PET scanner, a simulation study. Phys Med Biol 2021; 66:065016. [PMID: 33571980 DOI: 10.1088/1361-6560/abe558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
With the goal of developing a total-body small-animal PET system with a high spatial resolution of ∼0.5 mm and a high sensitivity >10% for mouse/rat studies, we simulated four scanners using the graphical processing unit-based Monte Carlo simulation package (gPET) and compared their performance in terms of spatial resolution and sensitivity. We also investigated the effect of depth-of-interaction (DOI) resolution on the spatial resolution. All the scanners are built upon 128 DOI encoding dual-ended readout detectors with lutetium yttrium oxyorthosilicate (LYSO) arrays arranged in 8 detector rings. The solid angle coverages of the four scanners are all ∼0.85 steradians. Each LYSO element has a cross-section of 0.44 × 0.44 mm2 and the pitch size of the LYSO arrays are all 0.5 mm. The four scanners can be divided into two groups: (1) H2RS110-C10 and H2RS110-C20 with 40 × 40 LYSO arrays, a ring diameter of 110 mm and axial length of 167 mm, and (2) H2RS160-C10 and H2RS160-C20 with 60 × 60 LYSO arrays, a diameter of 160 mm and axial length of 254 mm. C10 and C20 denote the crystal thickness of 10 and 20 mm, respectively. The simulation results show that all scanners have a spatial resolution better than 0.5 mm at the center of the field-of-view (FOV). The radial resolution strongly depends on the DOI resolution and radial offset, but not the axial resolution and tangential resolution. Comparing the C10 and C20 designs, the former provides better resolution, especially at positions away from the center of the FOV, whereas the latter has 2× higher sensitivity (∼10% versus ∼20%). This simulation study provides evidence that the 110 mm systems are a good choice for total-body mouse studies at a lower cost, whereas the 160 mm systems are suited for both total-body mouse and rat studies.
Collapse
Affiliation(s)
- Youfang Lai
- Department of Physics, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Kang HG, Yamaya T, Han YB, Song SH, Ko GB, Lee JS, Hong SJ. Crystal surface and reflector optimization for the SiPM-based dual-ended readout TOF-DOI PET detector. Biomed Phys Eng Express 2020; 6. [DOI: 10.1088/2057-1976/abc45a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/23/2020] [Indexed: 11/12/2022]
|