1
|
Zhang Y, Ye Z, Xia C, Tan Y, Zhang M, Lv X, Tang J, Li Z. Clinical Applications and Recent Updates of Simultaneous Multi-slice Technique in Accelerated MRI. Acad Radiol 2024; 31:1976-1988. [PMID: 38220568 DOI: 10.1016/j.acra.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024]
Abstract
Simultaneous multi-slice (SMS) is a magnetic resonance imaging (MRI) acceleration technique that utilizes multi-band radio-frequency pulses to simultaneously excite and encode multiple slices. Currently, SMS has been widely studied and applied in the MRI examination to reduce acquisition time, which can significantly improve the examination efficiency and patient throughput. Moreover, SMS technique can improve spatial resolution, which is of great value in disease diagnosis, treatment response monitoring, and prognosis prediction. This review will briefly introduce the technical principles of SMS, and summarize its current clinical applications. More importantly, we will discuss the recent technical progress and future research direction of SMS, hoping to highlight the clinical value and scientific potential of this technique.
Collapse
Affiliation(s)
- Yiteng Zhang
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Zheng Ye
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Chunchao Xia
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Yuqi Tan
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Meng Zhang
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Xinyang Lv
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Jing Tang
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China
| | - Zhenlin Li
- Department of Radiology, West China Hospital of Sichuan University, No. 37 Guoxue Alley, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Liu L, Shen L, Johansson A, Balter JM, Cao Y, Vitzthum L, Xing L. Volumetric MRI with sparse sampling for MR-guided 3D motion tracking via sparse prior-augmented implicit neural representation learning. Med Phys 2024; 51:2526-2537. [PMID: 38014764 PMCID: PMC10994763 DOI: 10.1002/mp.16845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/22/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Volumetric reconstruction of magnetic resonance imaging (MRI) from sparse samples is desirable for 3D motion tracking and promises to improve magnetic resonance (MR)-guided radiation treatment precision. Data-driven sparse MRI reconstruction, however, requires large-scale training datasets for prior learning, which is time-consuming and challenging to acquire in clinical settings. PURPOSE To investigate volumetric reconstruction of MRI from sparse samples of two orthogonal slices aided by sparse priors of two static 3D MRI through implicit neural representation (NeRP) learning, in support of 3D motion tracking during MR-guided radiotherapy. METHODS A multi-layer perceptron network was trained to parameterize the NeRP model of a patient-specific MRI dataset, where the network takes 4D data coordinates of voxel locations and motion states as inputs and outputs corresponding voxel intensities. By first training the network to learn the NeRP of two static 3D MRI with different breathing motion states, prior information of patient breathing motion was embedded into network weights through optimization. The prior information was then augmented from two motion states to 31 motion states by querying the optimized network at interpolated and extrapolated motion state coordinates. Starting from the prior-augmented NeRP model as an initialization point, we further trained the network to fit sparse samples of two orthogonal MRI slices and the final volumetric reconstruction was obtained by querying the trained network at 3D spatial locations. We evaluated the proposed method using 5-min volumetric MRI time series with 340 ms temporal resolution for seven abdominal patients with hepatocellular carcinoma, acquired using golden-angle radial MRI sequence and reconstructed through retrospective sorting. Two volumetric MRI with inhale and exhale states respectively were selected from the first 30 s of the time series for prior embedding and augmentation. The remaining 4.5-min time series was used for volumetric reconstruction evaluation, where we retrospectively subsampled each MRI to two orthogonal slices and compared model-reconstructed images to ground truth images in terms of image quality and the capability of supporting 3D target motion tracking. RESULTS Across the seven patients evaluated, the peak signal-to-noise-ratio between model-reconstructed and ground truth MR images was 38.02 ± 2.60 dB and the structure similarity index measure was 0.98 ± 0.01. Throughout the 4.5-min time period, gross tumor volume (GTV) motion estimated by deforming a reference state MRI to model-reconstructed and ground truth MRI showed good consistency. The 95-percentile Hausdorff distance between GTV contours was 2.41 ± 0.77 mm, which is less than the voxel dimension. The mean GTV centroid position difference between ground truth and model estimation was less than 1 mm in all three orthogonal directions. CONCLUSION A prior-augmented NeRP model has been developed to reconstruct volumetric MRI from sparse samples of orthogonal cine slices. Only one exhale and one inhale 3D MRI were needed to train the model to learn prior information of patient breathing motion for sparse image reconstruction. The proposed model has the potential of supporting 3D motion tracking during MR-guided radiotherapy for improved treatment precision and promises a major simplification of the workflow by eliminating the need for large-scale training datasets.
Collapse
Affiliation(s)
- Lianli Liu
- Department of Radiation Oncology, Stanford University, Palo Alto, California, USA
| | - Liyue Shen
- Department of Electrical Engineering, Stanford University, Palo Alto, California, USA
| | - Adam Johansson
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Immunology Genetics and pathology, Uppsala University, Uppsala, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - James M Balter
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lucas Vitzthum
- Department of Radiation Oncology, Stanford University, Palo Alto, California, USA
| | - Lei Xing
- Department of Radiation Oncology, Stanford University, Palo Alto, California, USA
- Department of Electrical Engineering, Stanford University, Palo Alto, California, USA
| |
Collapse
|
3
|
Terpstra ML, Maspero M, Verhoeff JJC, van den Berg CAT. Accelerated respiratory-resolved 4D-MRI with separable spatio-temporal neural networks. Med Phys 2023; 50:5331-5342. [PMID: 37527331 DOI: 10.1002/mp.16643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/30/2023] [Accepted: 06/20/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Respiratory-resolved four-dimensional magnetic resonance imaging (4D-MRI) provides essential motion information for accurate radiation treatments of mobile tumors. However, obtaining high-quality 4D-MRI suffers from long acquisition and reconstruction times. PURPOSE To develop a deep learning architecture to quickly acquire and reconstruct high-quality 4D-MRI, enabling accurate motion quantification for MRI-guided radiotherapy (MRIgRT). METHODS A small convolutional neural network called MODEST is proposed to reconstruct 4D-MRI by performing a spatial and temporal decomposition, omitting the need for 4D convolutions to use all the spatio-temporal information present in 4D-MRI. This network is trained on undersampled 4D-MRI after respiratory binning to reconstruct high-quality 4D-MRI obtained by compressed sensing reconstruction. The network is trained, validated, and tested on 4D-MRI of 28 lung cancer patients acquired with a T1-weighted golden-angle radial stack-of-stars (GA-SOS) sequence. The 4D-MRI of 18, 5, and 5 patients were used for training, validation, and testing. Network performances are evaluated on image quality measured by the structural similarity index (SSIM) and motion consistency by comparing the position of the lung-liver interface on undersampled 4D-MRI before and after respiratory binning. The network is compared to conventional architectures such as a U-Net, which has 30 times more trainable parameters. RESULTS MODEST can reconstruct high-quality 4D-MRI with higher image quality than a U-Net, despite a thirty-fold reduction in trainable parameters. High-quality 4D-MRI can be obtained using MODEST in approximately 2.5 min, including acquisition, processing, and reconstruction. CONCLUSION High-quality accelerated 4D-MRI can be obtained using MODEST, which is particularly interesting for MRIgRT.
Collapse
Affiliation(s)
- Maarten L Terpstra
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
- Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Matteo Maspero
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
- Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Joost J C Verhoeff
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis A T van den Berg
- Department of Radiotherapy, University Medical Center Utrecht, Utrecht, The Netherlands
- Computational Imaging Group for MR Diagnostics & Therapy, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Li T, Wang J, Yang Y, Glide-Hurst CK, Wen N, Cai J. Multi-parametric MRI for radiotherapy simulation. Med Phys 2023; 50:5273-5293. [PMID: 36710376 PMCID: PMC10382603 DOI: 10.1002/mp.16256] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 09/10/2022] [Accepted: 12/06/2022] [Indexed: 01/31/2023] Open
Abstract
Magnetic resonance imaging (MRI) has become an important imaging modality in the field of radiotherapy (RT) in the past decade, especially with the development of various novel MRI and image-guidance techniques. In this review article, we will describe recent developments and discuss the applications of multi-parametric MRI (mpMRI) in RT simulation. In this review, mpMRI refers to a general and loose definition which includes various multi-contrast MRI techniques. Specifically, we will focus on the implementation, challenges, and future directions of mpMRI techniques for RT simulation.
Collapse
Affiliation(s)
- Tian Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jihong Wang
- Department of Radiation Physics, Division of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Yingli Yang
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong Univeristy School of Medicine, Shanghai, China
- SJTU-Ruijing-UIH Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Carri K Glide-Hurst
- Department of Radiation Oncology, University of Wisconsin, Madison, Wisconsin, USA
| | - Ning Wen
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong Univeristy School of Medicine, Shanghai, China
- SJTU-Ruijing-UIH Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- The Global Institute of Future Technology, Shanghai Jiaotong University, Shanghai, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
5
|
Wu C, Krishnamoorthy G, Yu V, Subashi E, Rimner A, Otazo R. 4D lung MRI with high-isotropic-resolution using half-spoke (UTE) and full-spoke 3D radial acquisition and temporal compressed sensing reconstruction. Phys Med Biol 2023; 68. [PMID: 36535035 DOI: 10.1088/1361-6560/acace6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/19/2022] [Indexed: 12/23/2022]
Abstract
Objective. To develop a respiratory motion-resolved four-dimensional (4D) magnetic resonance imaging (MRI) technique with high-isotropic-resolution (1.1 mm) using 3D radial sampling, camera-based respiratory motion sensing, and temporal compressed sensing reconstruction for lung cancer imaging.Approach. Free-breathing half- and full-spoke 3D golden-angle radial acquisitions were performed on eight healthy volunteers and eight patients with lung tumors of varying size. A back-and-forth k-space ordering between consecutive interleaves of the 3D radial acquisition was performed to minimize eddy current-related artifacts. Data were sorted into respiratory motion states using camera-based motion navigation and 4D images were reconstructed using temporal compressed sensing to reduce scan time. Normalized sharpness indices of the diaphragm, apparent signal-to-noise ratio (aSNR) and contrast-to-noise ratio (CNR) of the lung tumor (patients only), liver, and aortic arch were compared between half- and full-spoke 4D MRI images to evaluate the impact of respiratory motion and image contrast on 4D MRI image quality. Respiration-induced changes in lung volumes and center of mass shifts were compared between half- and full-spoke 4D MRI measurements. In addition, the motion measurements from 4D MRI and the same-day 4D CT were presented in one of the lung tumor patients.Main results. Half-spoke 4D MRI provides better visualization of the lung parenchyma, while full-spoke 4D MRI presents sharper diaphragm images and higher aSNR and CNR in the lung tumor, liver, and aortic arch. Lung volume changes and center of mass shifts measured by half- and full-spoke 4D MRI were not statistically different. For the patient with 4D MRI and same-day 4D CT, lung volume changes and center of mass shifts were generally comparable.Significance. This work demonstrates the feasibility of a motion-resolved 4D MRI technique with high-isotropic-resolution using 3D radial acquisition, camera-based respiratory motion sensing, and temporal compressed sensing reconstruction for treatment planning and motion monitoring in radiotherapy of lung cancer.
Collapse
Affiliation(s)
- Can Wu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | | | - Victoria Yu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Ergys Subashi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Ricardo Otazo
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America.,Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| |
Collapse
|
6
|
Keijnemans K, Borman PTS, Uijtewaal P, Woodhead PL, Raaymakers BW, Fast MF. A hybrid 2D/4D-MRI methodology using simultaneous multislice imaging for radiotherapy guidance. Med Phys 2022; 49:6068-6081. [PMID: 35694905 PMCID: PMC9545880 DOI: 10.1002/mp.15802] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/18/2022] [Accepted: 05/27/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Respiratory motion management is important in abdominothoracic radiotherapy. Fast imaging of the tumor can facilitate multileaf collimator (MLC) tracking that allows for smaller treatment margins, while repeatedly imaging the full field‐of‐view is necessary for 4D dose accumulation. This study introduces a hybrid 2D/4D‐MRI methodology that can be used for simultaneous MLC tracking and dose accumulation on a 1.5 T Unity MR‐linac (Elekta AB, Stockholm, Sweden). Methods We developed a hybrid 2D/4D‐MRI methodology that uses a simultaneous multislice (SMS) accelerated MRI sequence, which acquires two coronal slices simultaneously and repeatedly cycles through slice positions over the image volume. As a result, the fast 2D imaging can be used prospectively for MLC tracking and the SMS slices can be sorted retrospectively into respiratory‐correlated 4D‐MRIs for dose accumulation. Data were acquired in five healthy volunteers with an SMS‐bTFE and SMS‐TSE MRI sequence. For each sequence, a prebeam dataset and a beam‐on dataset were acquired simulating the two phases of MR‐linac treatments. Prebeam data were used to generate a 4D‐based motion model and a reference mid‐position volume, while beam‐on data were used for real‐time motion extraction and reconstruction of beam‐on 4D‐MRIs. In addition, an in‐silico computational phantom was used for validation of the hybrid 2D/4D‐MRI methodology. MLC tracking experiments were performed with the developed methodology, for which real‐time SMS data reconstruction was enabled on the scanner. A 15‐beam 8× 7.5 Gy intensity‐modulated radiotherapy plan for lung stereotactic body radiotherapy with isotropic 3 mm GTV‐to‐PTV margins was created. Dosimetry experiments were performed using a 4D motion phantom. The latency between target motion and updating the radiation beam was determined and compensated. Local gamma analyses were performed to quantify dose differences compared to a static reference delivery, and dose area histograms (DAHs) were used to quantify the GTV and PTV coverage. Results In‐vivo data acquisition and MLC tracking experiments were successfully performed with the developed hybrid 2D/4D‐MRI methodology. Real‐time liver–lung interface motion estimation had a Pearson's correlation of 0.996 (in‐vivo) and 0.998 (in‐silico). A median (5th–95th percentile) error of 0.0 (−0.9 to 0.7) mm and 0.0 (−0.2 to 0.2) mm was found for real‐time motion estimation for in‐vivo and in‐silico, respectively. Target motion prediction beyond the liver–lung interface had a median root mean square error of 1.6 mm (in‐vivo) and 0.5 mm (in‐silico). Beam‐on 4D MRI reconstruction required a median amount of data equal to an acquisition time of 2:21–3:17 min, which was 20% less data compared to the prebeam‐derived 4D‐MRI. System latency was reduced from 501 ± 12 ms to −1 ± 3 ms (SMS‐TSE) and from 398 ± 10 ms to −10 ± 4 ms (SMS‐bTFE) by a linear regression prediction filter. The local gamma analysis agreed within −3.8% to 3.3% (SMS‐bTFE) and −5.3% to 10% (SMS‐TSE) with a reference MRI sequence. The DAHs revealed a relative D98% GTV coverage between 97% and 100% (SMS‐bTFE) and 100% and 101% (SMS‐TSE) compared to the static reference. Conclusions The presented 2D/4D‐MRI methodology demonstrated the potential for accurately extracting real‐time motion for MLC tracking in abdominothoracic radiotherapy, while simultaneously reconstructing contiguous respiratory‐correlated 4D‐MRIs for dose accumulation.
Collapse
Affiliation(s)
- Katrinus Keijnemans
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Pim T S Borman
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Prescilla Uijtewaal
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Peter L Woodhead
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.,Elekta AB, kungstensgatan 18, 113 57 Stockholm, Sweden
| | - Bas W Raaymakers
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Martin F Fast
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
7
|
Wong OL, Law MWK, Poon DMC, Yung RWH, Yu SK, Cheung KY, Yuan J. A pilot study of respiratory motion characterization in the abdomen using a fast volumetric 4D‐MRI for MR‐guided radiotherapy. PRECISION RADIATION ONCOLOGY 2022. [DOI: 10.1002/pro6.1153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Oi Lei Wong
- Research Department Hong Kong Sanatorium & Hospital, Happy Valley Hong Kong Hong Kong SAR China
| | - Max Wai Kong Law
- Medical Physics Department Hong Kong Sanatorium & Hospital, Happy Valley Hong Kong Hong Kong SAR China
| | - Darren Ming Chun Poon
- Comprehensive Oncology Center Hong Kong Sanatorium & Hospital, Happy Valley Hong Kong Hong Kong SAR China
| | - Raymond Wai Hung Yung
- Research Department Hong Kong Sanatorium & Hospital, Happy Valley Hong Kong Hong Kong SAR China
| | - Siu ki Yu
- Medical Physics Department Hong Kong Sanatorium & Hospital, Happy Valley Hong Kong Hong Kong SAR China
| | - Kin yin Cheung
- Medical Physics Department Hong Kong Sanatorium & Hospital, Happy Valley Hong Kong Hong Kong SAR China
| | - Jing Yuan
- Research Department Hong Kong Sanatorium & Hospital, Happy Valley Hong Kong Hong Kong SAR China
| |
Collapse
|
8
|
Liu C, Li M, Xiao H, Li T, Li W, Zhang J, Teng X, Cai J. Advances in MRI‐guided precision radiotherapy. PRECISION RADIATION ONCOLOGY 2022. [DOI: 10.1002/pro6.1143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Chenyang Liu
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR China
| | - Mao Li
- Department of Radiation Oncology Philips Healthcare Chengdu China
| | - Haonan Xiao
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR China
| | - Tian Li
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR China
| | - Wen Li
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR China
| | - Jiang Zhang
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR China
| | - Xinzhi Teng
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR China
| | - Jing Cai
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR China
| |
Collapse
|