1
|
Stefano A. Challenges and limitations in applying radiomics to PET imaging: Possible opportunities and avenues for research. Comput Biol Med 2024; 179:108827. [PMID: 38964244 DOI: 10.1016/j.compbiomed.2024.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/05/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Radiomics, the high-throughput extraction of quantitative imaging features from medical images, holds immense potential for advancing precision medicine in oncology and beyond. While radiomics applied to positron emission tomography (PET) imaging offers unique insights into tumor biology and treatment response, it is imperative to elucidate the challenges and constraints inherent in this domain to facilitate their translation into clinical practice. This review examines the challenges and limitations of applying radiomics to PET imaging, synthesizing findings from the last five years (2019-2023) and highlights the significance of addressing these challenges to realize the full clinical potential of radiomics in oncology and molecular imaging. A comprehensive search was conducted across multiple electronic databases, including PubMed, Scopus, and Web of Science, using keywords relevant to radiomics issues in PET imaging. Only studies published in peer-reviewed journals were eligible for inclusion in this review. Although many studies have highlighted the potential of radiomics in predicting treatment response, assessing tumor heterogeneity, enabling risk stratification, and personalized therapy selection, various challenges regarding the practical implementation of the proposed models still need to be addressed. This review illustrates the challenges and limitations of radiomics in PET imaging across various cancer types, encompassing both phantom and clinical investigations. The analyzed studies highlight the importance of reproducible segmentation methods, standardized pre-processing and post-processing methodologies, and the need to create large multicenter studies registered in a centralized database to promote the continuous validation and clinical integration of radiomics into PET imaging.
Collapse
Affiliation(s)
- Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy.
| |
Collapse
|
2
|
Liu Z, Mhlanga JC, Xia H, Siegel BA, Jha AK. Need for Objective Task-Based Evaluation of Image Segmentation Algorithms for Quantitative PET: A Study with ACRIN 6668/RTOG 0235 Multicenter Clinical Trial Data. J Nucl Med 2024; 65:jnumed.123.266018. [PMID: 38360049 PMCID: PMC10924158 DOI: 10.2967/jnumed.123.266018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/19/2023] [Accepted: 12/19/2023] [Indexed: 02/17/2024] Open
Abstract
Reliable performance of PET segmentation algorithms on clinically relevant tasks is required for their clinical translation. However, these algorithms are typically evaluated using figures of merit (FoMs) that are not explicitly designed to correlate with clinical task performance. Such FoMs include the Dice similarity coefficient (DSC), the Jaccard similarity coefficient (JSC), and the Hausdorff distance (HD). The objective of this study was to investigate whether evaluating PET segmentation algorithms using these task-agnostic FoMs yields interpretations consistent with evaluation on clinically relevant quantitative tasks. Methods: We conducted a retrospective study to assess the concordance in the evaluation of segmentation algorithms using the DSC, JSC, and HD and on the tasks of estimating the metabolic tumor volume (MTV) and total lesion glycolysis (TLG) of primary tumors from PET images of patients with non-small cell lung cancer. The PET images were collected from the American College of Radiology Imaging Network 6668/Radiation Therapy Oncology Group 0235 multicenter clinical trial data. The study was conducted in 2 contexts: (1) evaluating conventional segmentation algorithms, namely those based on thresholding (SUVmax40% and SUVmax50%), boundary detection (Snakes), and stochastic modeling (Markov random field-Gaussian mixture model); (2) evaluating the impact of network depth and loss function on the performance of a state-of-the-art U-net-based segmentation algorithm. Results: Evaluation of conventional segmentation algorithms based on the DSC, JSC, and HD showed that SUVmax40% significantly outperformed SUVmax50%. However, SUVmax40% yielded lower accuracy on the tasks of estimating MTV and TLG, with a 51% and 54% increase, respectively, in the ensemble normalized bias. Similarly, the Markov random field-Gaussian mixture model significantly outperformed Snakes on the basis of the task-agnostic FoMs but yielded a 24% increased bias in estimated MTV. For the U-net-based algorithm, our evaluation showed that although the network depth did not significantly alter the DSC, JSC, and HD values, a deeper network yielded substantially higher accuracy in the estimated MTV and TLG, with a decreased bias of 91% and 87%, respectively. Additionally, whereas there was no significant difference in the DSC, JSC, and HD values for different loss functions, up to a 73% and 58% difference in the bias of the estimated MTV and TLG, respectively, existed. Conclusion: Evaluation of PET segmentation algorithms using task-agnostic FoMs could yield findings discordant with evaluation on clinically relevant quantitative tasks. This study emphasizes the need for objective task-based evaluation of image segmentation algorithms for quantitative PET.
Collapse
Affiliation(s)
- Ziping Liu
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Joyce C Mhlanga
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
| | - Huitian Xia
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Barry A Siegel
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| | - Abhinav K Jha
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri;
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri; and
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
3
|
Herington J, McCradden MD, Creel K, Boellaard R, Jones EC, Jha AK, Rahmim A, Scott PJH, Sunderland JJ, Wahl RL, Zuehlsdorff S, Saboury B. Ethical Considerations for Artificial Intelligence in Medical Imaging: Deployment and Governance. J Nucl Med 2023; 64:1509-1515. [PMID: 37620051 DOI: 10.2967/jnumed.123.266110] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 07/11/2023] [Indexed: 08/26/2023] Open
Abstract
The deployment of artificial intelligence (AI) has the potential to make nuclear medicine and medical imaging faster, cheaper, and both more effective and more accessible. This is possible, however, only if clinicians and patients feel that these AI medical devices (AIMDs) are trustworthy. Highlighting the need to ensure health justice by fairly distributing benefits and burdens while respecting individual patients' rights, the AI Task Force of the Society of Nuclear Medicine and Molecular Imaging has identified 4 major ethical risks that arise during the deployment of AIMD: autonomy of patients and clinicians, transparency of clinical performance and limitations, fairness toward marginalized populations, and accountability of physicians and developers. We provide preliminary recommendations for governing these ethical risks to realize the promise of AIMD for patients and populations.
Collapse
Affiliation(s)
- Jonathan Herington
- Department of Health Humanities and Bioethics and Department of Philosophy, University of Rochester, Rochester, New York
| | - Melissa D McCradden
- Department of Bioethics, Hospital for Sick Children, and Dana Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Kathleen Creel
- Department of Philosophy and Religion and Khoury College of Computer Sciences, Northeastern University, Boston, Massachusetts
| | - Ronald Boellaard
- Department of Radiology and Nuclear Medicine, Cancer Centre Amsterdam, Amsterdam University Medical Centres, Amsterdam, The Netherlands
| | - Elizabeth C Jones
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Abhinav K Jha
- Department of Biomedical Engineering and Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Arman Rahmim
- Departments of Radiology and Physics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Peter J H Scott
- Department of Radiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - John J Sunderland
- Departments of Radiology and Physics, University of Iowa, Iowa City, Iowa
| | - Richard L Wahl
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri; and
| | | | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland;
| |
Collapse
|
4
|
Li R, Zheng J, Zayed MA, Saffitz JE, Woodard PK, Jha AK. Carotid atherosclerotic plaque segmentation in multi-weighted MRI using a two-stage neural network: advantages of training with high-resolution imaging and histology. Front Cardiovasc Med 2023; 10:1127653. [PMID: 37293278 PMCID: PMC10244753 DOI: 10.3389/fcvm.2023.1127653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction A reliable and automated method to segment and classify carotid artery atherosclerotic plaque components is needed to efficiently analyze multi-weighted magnetic resonance (MR) images to allow their integration into patient risk assessment for ischemic stroke. Certain plaque components such as lipid-rich necrotic core (LRNC) with hemorrhage suggest a greater likelihood of plaque rupture and stroke event. Assessment for presence and extent of LRNC could assist in directing treatment with impact upon patient outcomes. Methods To address the need to accurately determine the presence and extent of plaque components on carotid plaque MRI, we proposed a two-staged deep-learning-based approach that consists of a convolutional neural network (CNN), followed by a Bayesian neural network (BNN). The rationale for the two-stage network approach is to account for the class imbalance of vessel wall and background by providing an attention mask to the BNN. A unique feature of the network training was to use ground truth defined by both high-resolution ex vivo MRI data and histopathology. More specifically, standard resolution 1.5 T in vivo MR image sets with corresponding high resolution 3.0 T ex vivo MR image sets and histopathology image sets were used to define ground-truth segmentations. Of these, data from 7 patients was used for training and from the remaining two was used for testing the proposed method. Next, to evaluate the generalizability of the method, we tested the method with an additional standard resolution 3.0 T in vivo data set of 23 patients obtained from a different scanner. Results Our results show that the proposed method yielded accurate segmentation of carotid atherosclerotic plaque and outperforms not only manual segmentation by trained readers, who did not have access to the ex vivo or histopathology data, but also three state-of-the-art deep-learning-based segmentation methods. Further, the proposed approach outperformed a strategy where the ground truth was generated without access to the high resolution ex vivo MRI and histopathology. The accurate performance of this method was also observed in the additional 23-patient dataset from a different scanner. Conclusion In conclusion, the proposed method provides a mechanism to perform accurate segmentation of the carotid atherosclerotic plaque in multi-weighted MRI. Further, our study shows the advantages of using high-resolution imaging and histology to define ground truth for training deep-learning-based segmentation methods.
Collapse
Affiliation(s)
- Ran Li
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Mohamed A. Zayed
- Department of Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Jeffrey E. Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Pamela K. Woodard
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Abhinav K. Jha
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
5
|
Liu Z, Wolfe S, Yu Z, Laforest R, Mhlanga JC, Fraum TJ, Itani M, Dehdashti F, Siegel BA, Jha AK. Observer-study-based approaches to quantitatively evaluate the realism of synthetic medical images. Phys Med Biol 2023; 68:10.1088/1361-6560/acc0ce. [PMID: 36863028 PMCID: PMC10411234 DOI: 10.1088/1361-6560/acc0ce] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/02/2023] [Indexed: 03/04/2023]
Abstract
Objective.Synthetic images generated by simulation studies have a well-recognized role in developing and evaluating imaging systems and methods. However, for clinically relevant development and evaluation, the synthetic images must be clinically realistic and, ideally, have the same distribution as that of clinical images. Thus, mechanisms that can quantitatively evaluate this clinical realism and, ideally, the similarity in distributions of the real and synthetic images, are much needed.Approach.We investigated two observer-study-based approaches to quantitatively evaluate the clinical realism of synthetic images. In the first approach, we presented a theoretical formalism for the use of an ideal-observer study to quantitatively evaluate the similarity in distributions between the real and synthetic images. This theoretical formalism provides a direct relationship between the area under the receiver operating characteristic curve, AUC, for an ideal observer and the distributions of real and synthetic images. The second approach is based on the use of expert-human-observer studies to quantitatively evaluate the realism of synthetic images. In this approach, we developed a web-based software to conduct two-alternative forced-choice (2-AFC) experiments with expert human observers. The usability of this software was evaluated by conducting a system usability scale (SUS) survey with seven expert human readers and five observer-study designers. Further, we demonstrated the application of this software to evaluate a stochastic and physics-based image-synthesis technique for oncologic positron emission tomography (PET). In this evaluation, the 2-AFC study with our software was performed by six expert human readers, who were highly experienced in reading PET scans, with years of expertise ranging from 7 to 40 years (median: 12 years, average: 20.4 years).Main results.In the ideal-observer-study-based approach, we theoretically demonstrated that the AUC for an ideal observer can be expressed, to an excellent approximation, by the Bhattacharyya distance between the distributions of the real and synthetic images. This relationship shows that a decrease in the ideal-observer AUC indicates a decrease in the distance between the two image distributions. Moreover, a lower bound of ideal-observer AUC = 0.5 implies that the distributions of synthetic and real images exactly match. For the expert-human-observer-study-based approach, our software for performing the 2-AFC experiments is available athttps://apps.mir.wustl.edu/twoafc. Results from the SUS survey demonstrate that the web application is very user friendly and accessible. As a secondary finding, evaluation of a stochastic and physics-based PET image-synthesis technique using our software showed that expert human readers had limited ability to distinguish the real images from the synthetic images.Significance.This work addresses the important need for mechanisms to quantitatively evaluate the clinical realism of synthetic images. The mathematical treatment in this paper shows that quantifying the similarity in the distribution of real and synthetic images is theoretically possible by using an ideal-observer-study-based approach. Our developed software provides a platform for designing and performing 2-AFC experiments with human observers in a highly accessible, efficient, and secure manner. Additionally, our results on the evaluation of the stochastic and physics-based image-synthesis technique motivate the application of this technique to develop and evaluate a wide array of PET imaging methods.
Collapse
Affiliation(s)
- Ziping Liu
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States of America
| | - Scott Wolfe
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Zitong Yu
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States of America
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Joyce C Mhlanga
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Tyler J Fraum
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Malak Itani
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Farrokh Dehdashti
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Barry A Siegel
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| | - Abhinav K Jha
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States of America
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States of America
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, United States of America
| |
Collapse
|
6
|
Liu Z, Mhlanga JC, Siegel BA, Jha AK. Need for objective task-based evaluation of AI-based segmentation methods for quantitative PET. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12467:124670R. [PMID: 37990707 PMCID: PMC10659582 DOI: 10.1117/12.2647894] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Artificial intelligence (AI)-based methods are showing substantial promise in segmenting oncologic positron emission tomography (PET) images. For clinical translation of these methods, assessing their performance on clinically relevant tasks is important. However, these methods are typically evaluated using metrics that may not correlate with the task performance. One such widely used metric is the Dice score, a figure of merit that measures the spatial overlap between the estimated segmentation and a reference standard (e.g., manual segmentation). In this work, we investigated whether evaluating AI-based segmentation methods using Dice scores yields a similar interpretation as evaluation on the clinical tasks of quantifying metabolic tumor volume (MTV) and total lesion glycolysis (TLG) of primary tumor from PET images of patients with non-small cell lung cancer. The investigation was conducted via a retrospective analysis with the ECOG-ACRIN 6668/RTOG 0235 multi-center clinical trial data. Specifically, we evaluated different structures of a commonly used AI-based segmentation method using both Dice scores and the accuracy in quantifying MTV/TLG. Our results show that evaluation using Dice scores can lead to findings that are inconsistent with evaluation using the task-based figure of merit. Thus, our study motivates the need for objective task-based evaluation of AI-based segmentation methods for quantitative PET.
Collapse
Affiliation(s)
- Ziping Liu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Joyce C. Mhlanga
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Barry A. Siegel
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Abhinav K. Jha
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
7
|
Jha AK, Bradshaw TJ, Buvat I, Hatt M, Kc P, Liu C, Obuchowski NF, Saboury B, Slomka PJ, Sunderland JJ, Wahl RL, Yu Z, Zuehlsdorff S, Rahmim A, Boellaard R. Nuclear Medicine and Artificial Intelligence: Best Practices for Evaluation (the RELAINCE Guidelines). J Nucl Med 2022; 63:1288-1299. [PMID: 35618476 PMCID: PMC9454473 DOI: 10.2967/jnumed.121.263239] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 05/11/2022] [Indexed: 01/26/2023] Open
Abstract
An important need exists for strategies to perform rigorous objective clinical-task-based evaluation of artificial intelligence (AI) algorithms for nuclear medicine. To address this need, we propose a 4-class framework to evaluate AI algorithms for promise, technical task-specific efficacy, clinical decision making, and postdeployment efficacy. We provide best practices to evaluate AI algorithms for each of these classes. Each class of evaluation yields a claim that provides a descriptive performance of the AI algorithm. Key best practices are tabulated as the RELAINCE (Recommendations for EvaLuation of AI for NuClear medicinE) guidelines. The report was prepared by the Society of Nuclear Medicine and Molecular Imaging AI Task Force Evaluation team, which consisted of nuclear-medicine physicians, physicists, computational imaging scientists, and representatives from industry and regulatory agencies.
Collapse
Affiliation(s)
- Abhinav K Jha
- Department of Biomedical Engineering and Mallinckrodt Institute of Radiology, Washington University in St. Louis, Missouri;
| | - Tyler J Bradshaw
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Irène Buvat
- LITO, Institut Curie, Université PSL, U1288 Inserm, Orsay, France
| | - Mathieu Hatt
- LaTiM, INSERM, UMR 1101, Univ Brest, Brest, France
| | - Prabhat Kc
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland
| | - Chi Liu
- Department of Radiology and Biomedical Imaging, Yale University, Connecticut
| | | | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Maryland
| | - Piotr J Slomka
- Department of Imaging, Medicine, and Cardiology, Cedars-Sinai Medical Center, California
| | | | - Richard L Wahl
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, Missouri
| | - Zitong Yu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | | | - Arman Rahmim
- Departments of Radiology and Physics, University of British Columbia, Canada; and
| | - Ronald Boellaard
- Department of Radiology & Nuclear Medicine, Cancer Centre Amsterdam, Amsterdam University Medical Centers, Netherlands
| |
Collapse
|
8
|
Liu Z, Moon HS, Li Z, Laforest R, Perlmutter JS, Norris SA, Jha AK. A tissue-fraction estimation-based segmentation method for quantitative dopamine transporter SPECT. Med Phys 2022; 49:5121-5137. [PMID: 35635327 PMCID: PMC9703616 DOI: 10.1002/mp.15778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Quantitative measures of dopamine transporter (DaT) uptake in caudate, putamen, and globus pallidus (GP) derived from dopamine transporter-single-photon emission computed tomography (DaT-SPECT) images have potential as biomarkers for measuring the severity of Parkinson's disease. Reliable quantification of this uptake requires accurate segmentation of the considered regions. However, segmentation of these regions from DaT-SPECT images is challenging, a major reason being partial-volume effects (PVEs) in SPECT. The PVEs arise from two sources, namely the limited system resolution and reconstruction of images over finite-sized voxel grids. The limited system resolution results in blurred boundaries of the different regions. The finite voxel size leads to TFEs, that is, voxels contain a mixture of regions. Thus, there is an important need for methods that can account for the PVEs, including the TFEs, and accurately segment the caudate, putamen, and GP, from DaT-SPECT images. PURPOSE Design and objectively evaluate a fully automated tissue-fraction estimation-based segmentation method that segments the caudate, putamen, and GP from DaT-SPECT images. METHODS The proposed method estimates the posterior mean of the fractional volumes occupied by the caudate, putamen, and GP within each voxel of a three-dimensional DaT-SPECT image. The estimate is obtained by minimizing a cost function based on the binary cross-entropy loss between the true and estimated fractional volumes over a population of SPECT images, where the distribution of true fractional volumes is obtained from existing populations of clinical magnetic resonance images. The method is implemented using a supervised deep-learning-based approach. RESULTS Evaluations using clinically guided highly realistic simulation studies show that the proposed method accurately segmented the caudate, putamen, and GP with high mean Dice similarity coefficients of ∼ 0.80 and significantly outperformed (p < 0.01 $p < 0.01$ ) all other considered segmentation methods. Further, an objective evaluation of the proposed method on the task of quantifying regional uptake shows that the method yielded reliable quantification with low ensemble normalized root mean square error (NRMSE) < 20% for all the considered regions. In particular, the method yielded an even lower ensemble NRMSE of ∼ 10% for the caudate and putamen. CONCLUSIONS The proposed tissue-fraction estimation-based segmentation method for DaT-SPECT images demonstrated the ability to accurately segment the caudate, putamen, and GP, and reliably quantify the uptake within these regions. The results motivate further evaluation of the method with physical-phantom and patient studies.
Collapse
Affiliation(s)
- Ziping Liu
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Hae Sol Moon
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Zekun Li
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joel S. Perlmutter
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology,Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scott A. Norris
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology,Washington University School of Medicine, St. Louis, Missouri, USA
| | - Abhinav K. Jha
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Rahman MA, Yu Z, Jha AK. Ideal-Observer Computation with anthropomorphic phantoms using Markov chain Monte Carlo. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2022; 2022:10.1109/isbi52829.2022.9761579. [PMID: 36388622 PMCID: PMC9648621 DOI: 10.1109/isbi52829.2022.9761579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
In medical imaging, it is widely recognized that image quality should be objectively evaluated based on performance in clinical tasks. To evaluate performance in signal-detection tasks, the ideal observer (IO) is optimal but also challenging to compute in clinically realistic settings. Markov Chain Monte Carlo (MCMC)-based strategies have demonstrated the ability to compute the IO using pre-computed projections of an anatomical database. To evaluate image quality in clinically realistic scenarios, the observer performance should be measured for a realistic patient distribution. This implies that the anatomical database should also be derived from a realistic population. In this manuscript, we propose to advance the MCMC-based approach towards achieving these goals. We then use the proposed approach to study the effect of anatomical database size on IO computation for the task of detecting perfusion defects in simulated myocardial perfusion SPECT images. Our preliminary results provide evidence that the size of the anatomical database affects the computation of the IO.
Collapse
Affiliation(s)
- Md Ashequr Rahman
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Zitong Yu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Abhinav K Jha
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
10
|
Liu Z, Li Z, Mhlanga JC, Siegel BA, Jha AK. No-gold-standard evaluation of quantitative imaging methods in the presence of correlated noise. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 12035:120350M. [PMID: 36465994 PMCID: PMC9717481 DOI: 10.1117/12.2605762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Objective evaluation of quantitative imaging (QI) methods with patient data is highly desirable, but is hindered by the lack or unreliability of an available gold standard. To address this issue, techniques that can evaluate QI methods without access to a gold standard are being actively developed. These techniques assume that the true and measured values are linearly related by a slope, bias, and Gaussian-distributed noise term, where the noise between measurements made by different methods is independent of each other. However, this noise arises in the process of measuring the same quantitative value, and thus can be correlated. To address this limitation, we propose a no-gold-standard evaluation (NGSE) technique that models this correlated noise by a multi-variate Gaussian distribution parameterized by a covariance matrix. We derive a maximum-likelihood-based approach to estimate the parameters that describe the relationship between the true and measured values, without any knowledge of the true values. We then use the estimated slopes and diagonal elements of the covariance matrix to compute the noise-to-slope ratio (NSR) to rank the QI methods on the basis of precision. The proposed NGSE technique was evaluated with multiple numerical experiments. Our results showed that the technique reliably estimated the NSR values and yielded accurate rankings of the considered methods for 83% of 160 trials. In particular, the technique correctly identified the most precise method for ∼ 97% of the trials. Overall, this study demonstrates the efficacy of the NGSE technique to accurately rank different QI methods when correlated noise is present, and without access to any knowledge of the ground truth. The results motivate further validation of this technique with realistic simulation studies and patient data.
Collapse
Affiliation(s)
- Ziping Liu
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Zekun Li
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Joyce C. Mhlanga
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Barry A. Siegel
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Abhinav K. Jha
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Yu Z, Rahman MA, Jha AK. Investigating the limited performance of a deep-learning-based SPECT denoising approach: An observer-study-based characterization. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 12035:120350D. [PMID: 35847481 PMCID: PMC9286496 DOI: 10.1117/12.2613134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Multiple objective assessment of image-quality (OAIQ)-based studies have reported that several deep-learning (DL)-based denoising methods show limited performance on signal-detection tasks. Our goal was to investigate the reasons for this limited performance. To achieve this goal, we conducted a task-based characterization of a DL-based denoising approach for individual signal properties. We conducted this study in the context of evaluating a DL-based approach for denoising single photon-emission computed tomography (SPECT) images. The training data consisted of signals of different sizes and shapes within a clustered-lumpy background, imaged with a 2D parallel-hole-collimator SPECT system. The projections were generated at normal and 20% low-count level, both of which were reconstructed using an ordered-subset-expectation-maximization (OSEM) algorithm. A convolutional neural network (CNN)-based denoiser was trained to process the low-count images. The performance of this CNN was characterized for five different signal sizes and four different signal-to-background ratio (SBRs) by designing each evaluation as a signal-known-exactly/background-known-statistically (SKE/BKS) signal-detection task. Performance on this task was evaluated using an anthropomorphic channelized Hotelling observer (CHO). As in previous studies, we observed that the DL-based denoising method did not improve performance on signal-detection tasks. Evaluation using the idea of observer-study-based characterization demonstrated that the DL-based denoising approach did not improve performance on the signal-detection task for any of the signal types. Overall, these results provide new insights on the performance of the DL-based denoising approach as a function of signal size and contrast. More generally, the observer study-based characterization provides a mechanism to evaluate the sensitivity of the method to specific object properties, and may be explored as analogous to characterizations such as modulation transfer function for linear systems. Finally, this work underscores the need for objective task-based evaluation of DL-based denoising approaches.
Collapse
Affiliation(s)
- Zitong Yu
- Department of Biomedical Engineering, Washington University
in St. Louis, St. Louis, MO, USA
| | - Md Ashequr Rahman
- Mallinckrodt Institute of Radiology, Washington University
in St. Louis, St. Louis, MO, USA
| | - Abhinav K. Jha
- Department of Biomedical Engineering, Washington University
in St. Louis, St. Louis, MO, USA
- Mallinckrodt Institute of Radiology, Washington University
in St. Louis, St. Louis, MO, USA
| |
Collapse
|
12
|
Abstract
Built-in decision thresholds for AI diagnostics are ethically problematic, as patients may differ in their attitudes about the risk of false-positive and false-negative results, which will require that clinicians assess patient values.
Collapse
|
13
|
Jha AK, Myers KJ, Obuchowski NA, Liu Z, Rahman MA, Saboury B, Rahmim A, Siegel BA. Objective Task-Based Evaluation of Artificial Intelligence-Based Medical Imaging Methods:: Framework, Strategies, and Role of the Physician. PET Clin 2021; 16:493-511. [PMID: 34537127 DOI: 10.1016/j.cpet.2021.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Artificial intelligence-based methods are showing promise in medical imaging applications. There is substantial interest in clinical translation of these methods, requiring that they be evaluated rigorously. We lay out a framework for objective task-based evaluation of artificial intelligence methods. We provide a list of available tools to conduct this evaluation. We outline the important role of physicians in conducting these evaluation studies. The examples in this article are proposed in the context of PET scans with a focus on evaluating neural network-based methods. However, the framework is also applicable to evaluate other medical imaging modalities and other types of artificial intelligence methods.
Collapse
Affiliation(s)
- Abhinav K Jha
- Department of Biomedical Engineering, Mallinckrodt Institute of Radioly, Alvin J. Siteman Cancer Center, Washington University in St. Louis, 510 S Kingshighway Boulevard, St Louis, MO 63110, USA.
| | - Kyle J Myers
- Division of Imaging, Diagnostics, and Software Reliability, Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, Food and Drug Administration (FDA), Silver Spring, MD, USA
| | | | - Ziping Liu
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St Louis, MO 63130, USA
| | - Md Ashequr Rahman
- Department of Biomedical Engineering, Washington University in St. Louis, 1 Brookings Drive, St Louis, MO 63130, USA
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Arman Rahmim
- Department of Radiology, Department of Physics, University of British Columbia, BC Cancer, BC Cancer Research Institute, 675 West 10th Avenue, Office 6-112, Vancouver, British Columbia V5Z 1L3, Canada
| | - Barry A Siegel
- Division of Nuclear Medicine, Mallinckrodt Institute of Radiology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, 510 S Kingshighway Boulevard #956, St Louis, MO 63110, USA
| |
Collapse
|
14
|
Yousefirizi F, Jha AK, Brosch-Lenz J, Saboury B, Rahmim A. Toward High-Throughput Artificial Intelligence-Based Segmentation in Oncological PET Imaging. PET Clin 2021; 16:577-596. [PMID: 34537131 DOI: 10.1016/j.cpet.2021.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Artificial intelligence (AI) techniques for image-based segmentation have garnered much attention in recent years. Convolutional neural networks have shown impressive results and potential toward fully automated segmentation in medical imaging, and particularly PET imaging. To cope with the limited access to annotated data needed in supervised AI methods, given tedious and prone-to-error manual delineations, semi-supervised and unsupervised AI techniques have also been explored for segmentation of tumors or normal organs in single- and bimodality scans. This work reviews existing AI techniques for segmentation tasks and the evaluation criteria for translational AI-based segmentation efforts toward routine adoption in clinical workflows.
Collapse
Affiliation(s)
- Fereshteh Yousefirizi
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada.
| | - Abhinav K Jha
- Department of Biomedical Engineering, Washington University in St. Louis, St Louis, MO 63130, USA; Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Julia Brosch-Lenz
- Department of Integrative Oncology, BC Cancer Research Institute, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada
| | - Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA; Department of Computer Science and Electrical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA; Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Arman Rahmim
- Department of Radiology, University of British Columbia, BC Cancer, BC Cancer Research Institute, 675 West 10th Avenue, Office 6-112, Vancouver, British Columbia V5Z 1L3, Canada; Department of Physics, University of British Columbia, Senior Scientist & Provincial Medical Imaging Physicist, BC Cancer, BC Cancer Research Institute, 675 West 10th Avenue, Office 6-112, Vancouver, British Columbia V5Z 1L3, Canada
| |
Collapse
|