1
|
Moskal P, Baran J, Bass S, Choiński J, Chug N, Curceanu C, Czerwiński E, Dadgar M, Das M, Dulski K, Eliyan KV, Fronczewska K, Gajos A, Kacprzak K, Kajetanowicz M, Kaplanoglu T, Kapłon Ł, Klimaszewski K, Kobylecka M, Korcyl G, Kozik T, Krzemień W, Kubat K, Kumar D, Kunikowska J, Mączewska J, Migdał W, Moskal G, Mryka W, Niedźwiecki S, Parzych S, Del Rio EP, Raczyński L, Sharma S, Shivani S, Shopa RY, Silarski M, Skurzok M, Tayefi F, Ardebili KT, Tanty P, Wiślicki W, Królicki L, Stępień EŁ. Positronium image of the human brain in vivo. SCIENCE ADVANCES 2024; 10:eadp2840. [PMID: 39270027 PMCID: PMC11397496 DOI: 10.1126/sciadv.adp2840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/09/2024] [Indexed: 09/15/2024]
Abstract
Positronium is abundantly produced within the molecular voids of a patient's body during positron emission tomography (PET). Its properties dynamically respond to the submolecular architecture of the tissue and the partial pressure of oxygen. Current PET systems record only two annihilation photons and cannot provide information about the positronium lifetime. This study presents the in vivo images of positronium lifetime in a human, for a patient with a glioblastoma brain tumor, by using the dedicated Jagiellonian PET system enabling simultaneous detection of annihilation photons and prompt gamma emitted by a radionuclide. The prompt gamma provides information on the time of positronium formation. The photons from positronium annihilation are used to reconstruct the place and time of its decay. In the presented case study, the determined positron and positronium lifetimes in glioblastoma cells are shorter than those in salivary glands and those in healthy brain tissues, indicating that positronium imaging could be used to diagnose disease in vivo.
Collapse
Affiliation(s)
- Paweł Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Jakub Baran
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Steven Bass
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
- Kitzbühel Centre for Physics, Kitzbühel, Austria
| | | | - Neha Chug
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Catalina Curceanu
- INFN, Laboratori Nazionali di Frascati, Via E. Fermi 40, 00044 Frascati, Italy
| | - Eryk Czerwiński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Meysam Dadgar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Manish Das
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Kamil Dulski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Kavya V Eliyan
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Katarzyna Fronczewska
- Department of Nuclear Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Aleksander Gajos
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Krzysztof Kacprzak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Marcin Kajetanowicz
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Tevfik Kaplanoglu
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Łukasz Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Konrad Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - Małgorzata Kobylecka
- Department of Nuclear Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Grzegorz Korcyl
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Tomasz Kozik
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Wojciech Krzemień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
- High Energy Department, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - Karol Kubat
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Deepak Kumar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Jolanta Kunikowska
- Department of Nuclear Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Joanna Mączewska
- Department of Nuclear Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Wojciech Migdał
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Gabriel Moskal
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
- Department of Chemical Technology, Faculty of Chemistry of the Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Wiktor Mryka
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Szymon Niedźwiecki
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Szymon Parzych
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Elena P Del Rio
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Lech Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - Sushil Sharma
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Shivani Shivani
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Roman Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - Michał Silarski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Magdalena Skurzok
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Faranak Tayefi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Keyvan T Ardebili
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Pooja Tanty
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| | - Wojciech Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland
| | - Leszek Królicki
- Department of Nuclear Medicine, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland
| | - Ewa Ł Stępień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Łojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40, 31-501 Krakow, Poland
| |
Collapse
|
2
|
Bayerlein R, Swarnakar V, Selfridge A, Spencer BA, Nardo L, Badawi RD. Cloud-based serverless computing enables accelerated monte carlo simulations for nuclear medicine imaging. Biomed Phys Eng Express 2024; 10:10.1088/2057-1976/ad5847. [PMID: 38876087 PMCID: PMC11254166 DOI: 10.1088/2057-1976/ad5847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Objective.This study investigates the potential of cloud-based serverless computing to accelerate Monte Carlo (MC) simulations for nuclear medicine imaging tasks. MC simulations can pose a high computational burden-even when executed on modern multi-core computing servers. Cloud computing allows simulation tasks to be highly parallelized and considerably accelerated.Approach.We investigate the computational performance of a cloud-based serverless MC simulation of radioactive decays for positron emission tomography imaging using Amazon Web Service (AWS) Lambda serverless computing platform for the first time in scientific literature. We provide a comparison of the computational performance of AWS to a modern on-premises multi-thread reconstruction server by measuring the execution times of the processes using between105and2·1010simulated decays. We deployed two popular MC simulation frameworks-SimSET and GATE-within the AWS computing environment. Containerized application images were used as a basis for an AWS Lambda function, and local (non-cloud) scripts were used to orchestrate the deployment of simulations. The task was broken down into smaller parallel runs, and launched on concurrently running AWS Lambda instances, and the results were postprocessed and downloaded via the Simple Storage Service.Main results.Our implementation of cloud-based MC simulations with SimSET outperforms local server-based computations by more than an order of magnitude. However, the GATE implementation creates more and larger output file sizes and reveals that the internet connection speed can become the primary bottleneck for data transfers. Simulating 109decays using SimSET is possible within 5 min and accrues computation costs of about $10 on AWS, whereas GATE would have to run in batches for more than 100 min at considerably higher costs.Significance.Adopting cloud-based serverless computing architecture in medical imaging research facilities can considerably improve processing times and overall workflow efficiency, with future research exploring additional enhancements through optimized configurations and computational methods.
Collapse
Affiliation(s)
- Reimund Bayerlein
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Vivek Swarnakar
- Department of Radiology, University of California Davis, Davis, CA, USA
| | - Aaron Selfridge
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | - Benjamin A Spencer
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
- Department of Radiology, University of California Davis, Davis, CA, USA
| | - Lorenzo Nardo
- Department of Radiology, University of California Davis, Davis, CA, USA
| | - Ramsey D Badawi
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
- Department of Radiology, University of California Davis, Davis, CA, USA
| |
Collapse
|
3
|
Huang B, Li T, Arino-Estrada G, Dulski K, Shopa RY, Moskal P, Stepien E, Qi J. SPLIT: Statistical Positronium Lifetime Image Reconstruction via Time-Thresholding. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2148-2158. [PMID: 38261489 PMCID: PMC11409919 DOI: 10.1109/tmi.2024.3357659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Positron emission tomography (PET) is a widely utilized medical imaging modality that uses positron-emitting radiotracers to visualize biochemical processes in a living body. The spatiotemporal distribution of a radiotracer is estimated by detecting the coincidence photon pairs generated through positron annihilations. In human tissue, about 40% of the positrons form positroniums prior to the annihilation. The lifetime of these positroniums is influenced by the microenvironment in the tissue and could provide valuable information for better understanding of disease progression and treatment response. Currently, there are few methods available for reconstructing high-resolution lifetime images in practical applications. This paper presents an efficient statistical image reconstruction method for positronium lifetime imaging (PLI). We also analyze the random triple-coincidence events in PLI and propose a correction method for random events, which is essential for real applications. Both simulation and experimental studies demonstrate that the proposed method can produce lifetime images with high numerical accuracy, low variance, and resolution comparable to that of the activity images generated by a PET scanner with currently available time-of-flight resolution.
Collapse
|
4
|
Dadgar M, Maebe J, Vandenberghe S. Evaluation of lesion contrast in the walk-through long axial FOV PET scanner simulated with XCAT anthropomorphic phantoms. EJNMMI Phys 2024; 11:44. [PMID: 38722428 PMCID: PMC11082126 DOI: 10.1186/s40658-024-00645-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND This study evaluates the lesion contrast in a cost-effective long axial field of view (FOV) PET scanner, called the walk-through PET (WT-PET). The scanner consists of two flat detector panels covering the entire torso and head, scanning patients in an upright position for increased throughput. High-resolution, depth-of-interaction capable, monolithic detector technology is used to provide good spatial resolution and enable detection of smaller lesions. METHODS Monte Carlo GATE simulations are used in conjunction with XCAT anthropomorphic phantoms to evaluate lesion contrast in lung, liver and breast for various lesion diameters (10, 7 and 5 mm), activity concentration ratios (8:1, 4:1 and 2:1) and patient BMIs (18-37). Images were reconstructed iteratively with listmode maximum likelihood expectation maximization, and contrast recovery coefficients (CRCs) were obtained for the reconstructed lesions. RESULTS Results shows notable variations in contrast recovery coefficients (CRC) across different lesion sizes and organ locations within the XCAT phantoms. Specifically, our findings reveal that 10 mm lesions consistently exhibit higher CRC compared to 7 mm and 5 mm lesions, with increases of approximately 54% and 330%, respectively, across all investigated organs. Moreover, high contrast recovery is observed in most liver lesions regardless of diameter or activity ratio (average CRC = 42%), as well as in the 10 mm lesions in the lung. Notably, for the 10 mm lesions, the liver demonstrates 42% and 62% higher CRC compared to the lung and breast, respectively. This trend remains consistent across lesion sizes, with the liver consistently exhibiting higher CRC values compared to the lung and breast: 7 mm lesions show an increase of 96% and 41%, while 5 mm lesions exhibit approximately 294% and 302% higher CRC compared to the lung and breast, respectively. CONCLUSION A comparison with a conventional pixelated LSO long axial FOV PET shows similar performance, achieved at a reduced cost for the WT-PET due to a reduction in required number of detectors.
Collapse
Affiliation(s)
- Meysam Dadgar
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, C. Heymanslaan 10, Ghent, Belgium.
| | - Jens Maebe
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, C. Heymanslaan 10, Ghent, Belgium
| | - Stefaan Vandenberghe
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, C. Heymanslaan 10, Ghent, Belgium
| |
Collapse
|
5
|
Bayerlein R, Spencer BA, Leung EK, Omidvari N, Abdelhafez YG, Wang Q, Nardo L, Cherry SR, Badawi RD. Development of a Monte Carlo-based scatter correction method for total-body PET using the uEXPLORER PET/CT scanner. Phys Med Biol 2024; 69:045033. [PMID: 38266297 DOI: 10.1088/1361-6560/ad2230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
Objective.This study presents and evaluates a robust Monte Carlo-based scatter correction (SC) method for long axial field of view (FOV) and total-body positron emission tomography (PET) using the uEXPLORER total-body PET/CT scanner.Approach.Our algorithm utilizes the Monte Carlo (MC) tool SimSET to compute SC factors in between individual image reconstruction iterations within our in-house list-mode and time-of-flight-based image reconstruction framework. We also introduced a unique scatter scaling technique at the detector block-level for optimal estimation of the scatter contribution in each line of response. First image evaluations were derived from phantom data spanning the entire axial FOV along with image data from a human subject with a large body mass index. Data was evaluated based on qualitative inspections, and contrast recovery, background variability, residual scatter removal from cold regions, biases and axial uniformity were quantified and compared to non-scatter-corrected images.Main results.All reconstructed images demonstrated qualitative and quantitative improvements compared to non-scatter-corrected images: contrast recovery coefficients improved by up to 17.2% and background variability was reduced by up to 34.3%, and the residual lung error was between 1.26% and 2.08%. Low biases throughout the axial FOV indicate high quantitative accuracy and axial uniformity of the corrections. Up to 99% of residual activity in cold areas in the human subject was removed, and the reliability of the method was demonstrated in challenging body regions like in the proximity of a highly attenuating knee prosthesis.Significance.The MC SC method employed was demonstrated to be accurate and robust in TB-PET. The results of this study can serve as a benchmark for optimizing the quantitative performance of future SC techniques.
Collapse
Affiliation(s)
- Reimund Bayerlein
- Departments of Radiology and Biomedical Engineering, University of California-Davis, Davis, CA, United States of America
| | - Benjamin A Spencer
- Biomedical Engineering, University of California-Davis, Davis, CA, United States of America
| | | | - Negar Omidvari
- Biomedical Engineering, University of California-Davis, Davis, CA, United States of America
| | - Yasser G Abdelhafez
- Departments of Radiology and Biomedical Engineering, University of California-Davis, Davis, CA, United States of America
| | - Qian Wang
- Biomedical Engineering, University of California-Davis, Davis, CA, United States of America
| | - Lorenzo Nardo
- Departments of Radiology and Biomedical Engineering, University of California-Davis, Davis, CA, United States of America
| | - Simon R Cherry
- Departments of Radiology and Biomedical Engineering, University of California-Davis, Davis, CA, United States of America
- Biomedical Engineering, University of California-Davis, Davis, CA, United States of America
| | - Ramsey D Badawi
- Departments of Radiology and Biomedical Engineering, University of California-Davis, Davis, CA, United States of America
- Biomedical Engineering, University of California-Davis, Davis, CA, United States of America
| |
Collapse
|
6
|
Baran J, Borys D, Brzeziński K, Gajewski J, Silarski M, Chug N, Coussat A, Czerwiński E, Dadgar M, Dulski K, Eliyan KV, Gajos A, Kacprzak K, Kapłon Ł, Klimaszewski K, Konieczka P, Kopeć R, Korcyl G, Kozik T, Krzemień W, Kumar D, Lomax AJ, McNamara K, Niedźwiecki S, Olko P, Panek D, Parzych S, Perez Del Rio E, Raczyński L, Simbarashe M, Sharma S, Shivani, Shopa RY, Skóra T, Skurzok M, Stasica P, Stępień EŁ, Tayefi K, Tayefi F, Weber DC, Winterhalter C, Wiślicki W, Moskal P, Ruciński A. Feasibility of the J-PET to monitor the range of therapeutic proton beams. Phys Med 2024; 118:103301. [PMID: 38290179 DOI: 10.1016/j.ejmp.2024.103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
PURPOSE The aim of this work is to investigate the feasibility of the Jagiellonian Positron Emission Tomography (J-PET) scanner for intra-treatment proton beam range monitoring. METHODS The Monte Carlo simulation studies with GATE and PET image reconstruction with CASToR were performed in order to compare six J-PET scanner geometries. We simulated proton irradiation of a PMMA phantom with a Single Pencil Beam (SPB) and Spread-Out Bragg Peak (SOBP) of various ranges. The sensitivity and precision of each scanner were calculated, and considering the setup's cost-effectiveness, we indicated potentially optimal geometries for the J-PET scanner prototype dedicated to the proton beam range assessment. RESULTS The investigations indicate that the double-layer cylindrical and triple-layer double-head configurations are the most promising for clinical application. We found that the scanner sensitivity is of the order of 10-5 coincidences per primary proton, while the precision of the range assessment for both SPB and SOBP irradiation plans was found below 1 mm. Among the scanners with the same number of detector modules, the best results are found for the triple-layer dual-head geometry. The results indicate that the double-layer cylindrical and triple-layer double-head configurations are the most promising for the clinical application, CONCLUSIONS:: We performed simulation studies demonstrating that the feasibility of the J-PET detector for PET-based proton beam therapy range monitoring is possible with reasonable sensitivity and precision enabling its pre-clinical tests in the clinical proton therapy environment. Considering the sensitivity, precision and cost-effectiveness, the double-layer cylindrical and triple-layer dual-head J-PET geometry configurations seem promising for future clinical application.
Collapse
Affiliation(s)
- Jakub Baran
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland.
| | - Damian Borys
- Silesian University of Technology, Department of Systems Biology and Engineering, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Gliwice, Poland; Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Karol Brzeziński
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland; Instituto de Física Corpuscular (IFIC), CSIC-UV, Valencia, Spain
| | - Jan Gajewski
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Michał Silarski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Neha Chug
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Aurélien Coussat
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Eryk Czerwiński
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Meysam Dadgar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Kamil Dulski
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Kavya V Eliyan
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Aleksander Gajos
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Krzysztof Kacprzak
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Łukasz Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Konrad Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Paweł Konieczka
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Renata Kopeć
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Grzegorz Korcyl
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Tomasz Kozik
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Wojciech Krzemień
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Deepak Kumar
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Antony J Lomax
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland; Physics Department, ETH Zürich, Zürich, Switzerland
| | - Keegan McNamara
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland; Physics Department, ETH Zürich, Zürich, Switzerland
| | - Szymon Niedźwiecki
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Paweł Olko
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Dominik Panek
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Szymon Parzych
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Elena Perez Del Rio
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Lech Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Moyo Simbarashe
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Sushil Sharma
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Shivani
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Roman Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Tomasz Skóra
- National Oncology Institute, National Research Institute, Krakow Branch, Krakow, Poland
| | - Magdalena Skurzok
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Paulina Stasica
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Ewa Ł Stępień
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Keyvan Tayefi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Faranak Tayefi
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Damien C Weber
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department of Radiation Oncology, University Hospital of Zürich, Zürich Switzerland; Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | - Carla Winterhalter
- Centre for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland; Physics Department, ETH Zürich, Zürich, Switzerland
| | - Wojciech Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Paweł Moskal
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, 11 Łojasiewicza St 30-348 Kraków, Poland; Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, 30-348 Kraków, Poland; Center for Theranostics, Jagiellonian University, Kraków, Poland
| | - Antoni Ruciński
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342, Kraków, Poland
| |
Collapse
|
7
|
Moskal P, Czerwiński E, Raj J, Bass SD, Beyene EY, Chug N, Coussat A, Curceanu C, Dadgar M, Das M, Dulski K, Gajos A, Gorgol M, Hiesmayr BC, Jasińska B, Kacprzak K, Kaplanoglu T, Kapłon Ł, Klimaszewski K, Konieczka P, Korcyl G, Kozik T, Krzemień W, Kumar D, Moyo S, Mryka W, Niedźwiecki S, Parzych S, Del Río EP, Raczyński L, Sharma S, Choudhary S, Shopa RY, Silarski M, Skurzok M, Stępień EŁ, Tanty P, Ardebili FT, Ardebili KT, Eliyan KV, Wiślicki W. Discrete symmetries tested at 10 -4 precision using linear polarization of photons from positronium annihilations. Nat Commun 2024; 15:78. [PMID: 38167270 PMCID: PMC10761870 DOI: 10.1038/s41467-023-44340-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Discrete symmetries play an important role in particle physics with violation of CP connected to the matter-antimatter imbalance in the Universe. We report the most precise test of P, T and CP invariance in decays of ortho-positronium, performed with methodology involving polarization of photons from these decays. Positronium, the simplest bound state of an electron and positron, is of recent interest with discrepancies reported between measured hyperfine energy structure and theory at the level of 10-4 signaling a need for better understanding of the positronium system at this level. We test discrete symmetries using photon polarizations determined via Compton scattering in the dedicated J-PET tomograph on an event-by-event basis and without the need to control the spin of the positronium with an external magnetic field, in contrast to previous experiments. Our result is consistent with QED expectations at the level of 0.0007 and one standard deviation.
Collapse
Affiliation(s)
- Paweł Moskal
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Eryk Czerwiński
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland.
- Centre for Theranostics, Jagiellonian University, Kraków, Poland.
| | - Juhi Raj
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Steven D Bass
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
- Kitzbühel Centre for Physics, Kitzbühel, Austria
| | - Ermias Y Beyene
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Neha Chug
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Aurélien Coussat
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | | | - Meysam Dadgar
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Manish Das
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Kamil Dulski
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Aleksander Gajos
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Marek Gorgol
- Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | | | - Bożena Jasińska
- Institute of Physics, Maria Curie-Skłodowska University, Lublin, Poland
| | - Krzysztof Kacprzak
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Tevfik Kaplanoglu
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Łukasz Kapłon
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Konrad Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Paweł Konieczka
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Grzegorz Korcyl
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
- Institute of Applied Computer Science, Jagiellonian University, Kraków, Poland
| | - Tomasz Kozik
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Wojciech Krzemień
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Deepak Kumar
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Simbarashe Moyo
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Wiktor Mryka
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Szymon Niedźwiecki
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Szymon Parzych
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Elena Pérez Del Río
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Lech Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Sushil Sharma
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Shivani Choudhary
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Roman Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - Michał Silarski
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Magdalena Skurzok
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Ewa Ł Stępień
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Pooja Tanty
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Faranak Tayefi Ardebili
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Keyvan Tayefi Ardebili
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Kavya Valsan Eliyan
- Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland
- Centre for Theranostics, Jagiellonian University, Kraków, Poland
| | - Wojciech Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| |
Collapse
|
8
|
Sanaat A, Amini M, Arabi H, Zaidi H. The quest for multifunctional and dedicated PET instrumentation with irregular geometries. Ann Nucl Med 2024; 38:31-70. [PMID: 37952197 PMCID: PMC10766666 DOI: 10.1007/s12149-023-01881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
We focus on reviewing state-of-the-art developments of dedicated PET scanners with irregular geometries and the potential of different aspects of multifunctional PET imaging. First, we discuss advances in non-conventional PET detector geometries. Then, we present innovative designs of organ-specific dedicated PET scanners for breast, brain, prostate, and cardiac imaging. We will also review challenges and possible artifacts by image reconstruction algorithms for PET scanners with irregular geometries, such as non-cylindrical and partial angular coverage geometries and how they can be addressed. Then, we attempt to address some open issues about cost/benefits analysis of dedicated PET scanners, how far are the theoretical conceptual designs from the market/clinic, and strategies to reduce fabrication cost without compromising performance.
Collapse
Affiliation(s)
- Amirhossein Sanaat
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Mehdi Amini
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, 500, Odense, Denmark.
- University Research and Innovation Center, Óbuda University, Budapest, Hungary.
| |
Collapse
|
9
|
Singh MK. A review of digital PET-CT technology: Comparing performance parameters in SiPM integrated digital PET-CT systems. Radiography (Lond) 2024; 30:13-20. [PMID: 37864986 DOI: 10.1016/j.radi.2023.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVE The objective of this study was to perform a narrative review of digital Positron emission tomography-computed tomography (PET-CT) scanners, focussing on the current development in the technology of optimized crystal size and design, the time of flight (ToF) resolution, sensitivity, and axial field of view (AFOV). KEY FINDINGS It was observed that significant developments were carried out on the optimization of scintillation crystal size which results in the improvement of spatial resolution. such developments include the upgrade in the AFOV after the integration of SiPM technology, which results in dynamic parametric imaging acquisition in PET and sensitivity boost. The improvement in ToF resolution and the better ToF resolution values, which result in a boost in adequate sensitivity and signal-to-noise ratio (SNR). Other upgrades include the use of the smallest crystal size of 2.76 × 2.76 mm, and the use of the lowest ToF resolution of 214 ps. The use of the largest AFOV of 194 cm with the highest observed NEMA sensitivity of 225 cps/kBq for the total body PET-CT system. CONCLUSION Digital PET-CT systems offer various advantages such as a reduction in radiation dose from injected radiopharmaceuticals doses and the overall PET acquisition time with an improved diagnostic certainty. This is because of the better performance of the SiPM detector. Digital PET-CT also has added benefits of the dynamic acquisition and Patlak modeling capabilities into routine clinical practice with the advancement in higher AFOV PET systems. IMPLICATION This will help the users choose the best system during the evaluation of the PET-CT for purchase in clinical and research applications. This review will further help in teaching the latest technology and developments in PET-CT systems.
Collapse
Affiliation(s)
- M K Singh
- AECC University College, Parkwood Road, Bournemouth, UK.
| |
Collapse
|
10
|
Dadgar M, Maebe J, Abi Akl M, Vervenne B, Vandenberghe S. A simulation study of the system characteristics for a long axial FOV PET design based on monolithic BGO flat panels compared with a pixelated LSO cylindrical design. EJNMMI Phys 2023; 10:75. [PMID: 38036794 PMCID: PMC10689648 DOI: 10.1186/s40658-023-00593-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 11/07/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Although a new generation of tomographs with a longer axial field-of-view called total-body PET have been developed, they are not widely utilized due to their high cost compared to conventional scanners. The newly designed walk-through total-body PET scanner is introduced as a high-throughput and cost-efficient alternative to total-body PET scanners, by making use of a flat panel geometry and lower cost, depth-of-interaction capable, monolithic BGO detectors. The main aim of the presented study is to evaluate through Monte Carlo simulation the system characteristics of the walk-through total-body PET scanner by comparing it with a Quadra-like total-body PET of similar attributes to the Siemens Biograph Vision Quadra. METHODS The walk-through total-body PET is comprised of two flat detector panels, spaced 50 cm apart. Each panel, 70 [Formula: see text] 106 cm[Formula: see text] in size, consists of 280 BGO-based monolithic detectors. The Quadra-like TB-PET has been simulated based on the characteristics of the Biograph Vision Quadra, one of the most common total-body PET scanners with 106 cm of axial field-of-view, which is constructed with pixelated LSO scintillation crystals. The spatial resolution, sensitivity, count rate performance, scatter fractions, and image quality of both scanners are simulated in the GATE simulation toolkit for comparison. RESULTS Due to the DOI-capable detectors used in the walk-through total-body PET, the values of the spatial resolution of this scanner were all below 2 mm along directions parallel to the panels, and reached a maximum of 3.36 mm in the direction perpendicular to the panels. This resolution is a large improvement compared to the values of the Quadra-like TB-PET. The walk-through total-body PET uses its maximum sensitivity (154 cps/kBq) for data acquisition and image reconstruction. CONCLUSION Based on the combination of very good spatial resolution and high sensitivity of the walk-through total-body PET, along with a 2.2 times lower scintillation crystal volume and 1.8 times lower SiPM surface, this scanner can be a very cost-efficient alternative for total-body PET scanners in cases where concomitant CT is not required.
Collapse
Affiliation(s)
- Meysam Dadgar
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, C. Heymanslaan 10, Ghent, Belgium.
| | - Jens Maebe
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, C. Heymanslaan 10, Ghent, Belgium
| | - Maya Abi Akl
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, C. Heymanslaan 10, Ghent, Belgium
- Division of Arts and Sciences, Texas A&M University at Qatar, Doha, Qatar
| | - Boris Vervenne
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, C. Heymanslaan 10, Ghent, Belgium
| | - Stefaan Vandenberghe
- Department of Electronics and Information Systems, Medical Image and Signal Processing, Ghent University, C. Heymanslaan 10, Ghent, Belgium
| |
Collapse
|
11
|
Dadgar M, Parzych S, Baran J, Chug N, Curceanu C, Czerwiński E, Dulski K, Elyan K, Gajos A, Hiesmayr BC, Kapłon Ł, Klimaszewski K, Konieczka P, Korcyl G, Kozik T, Krzemien W, Kumar D, Niedzwiecki S, Panek D, Perez Del Rio E, Raczyński L, Sharma S, Shivani S, Shopa RY, Skurzok M, Stepień EŁ, Tayefi Ardebili F, Tayefi Ardebili K, Vandenberghe S, Wiślicki W, Moskal P. Comparative studies of the sensitivities of sparse and full geometries of Total-Body PET scanners built from crystals and plastic scintillators. EJNMMI Phys 2023; 10:62. [PMID: 37819578 PMCID: PMC10567620 DOI: 10.1186/s40658-023-00572-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/08/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Alongside the benefits of Total-Body imaging modalities, such as higher sensitivity, single-bed position, low dose imaging, etc., their final construction cost prevents worldwide utilization. The main aim of this study is to present a simulation-based comparison of the sensitivities of existing and currently developed tomographs to introduce a cost-efficient solution for constructing a Total-Body PET scanner based on plastic scintillators. METHODS For the case of this study, eight tomographs based on the uEXPLORER configuration with different scintillator materials (BGO, LYSO), axial field-of-view (97.4 cm and 194.8 cm), and detector configurations (full and sparse) were simulated. In addition, 8 J-PET scanners with different configurations, such as various axial field-of-view (200 cm and 250 cm), different cross sections of plastic scintillator, and multiple numbers of plastic scintillator layers (2, 3, and 4), based on J-PET technology have been simulated by GATE software. Furthermore, Siemens' Biograph Vision has been simulated to compare the results with standard PET scans. Two types of simulations have been performed. The first one with a centrally located source with a diameter of 1 mm and a length of 250 cm, and the second one with the same source inside a water-filled cylindrical phantom with a diameter of 20 cm and a length of 183 cm. RESULTS With regards to sensitivity, among all the proposed scanners, the ones constructed with BGO crystals give the best performance ([Formula: see text] 350 cps/kBq at the center). The utilization of sparse geometry or LYSO crystals significantly lowers the achievable sensitivity of such systems. The J-PET design gives a similar sensitivity to the sparse LYSO crystal-based detectors while having full detector coverage over the body. Moreover, it provides uniform sensitivity over the body with additional gain on its sides and provides the possibility for high-quality brain imaging. CONCLUSION Taking into account not only the sensitivity but also the price of Total-Body PET tomographs, which till now was one of the main obstacles in their widespread clinical availability, the J-PET tomography system based on plastic scintillators could be a cost-efficient alternative for Total-Body PET scanners.
Collapse
Affiliation(s)
- M Dadgar
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland.
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland.
| | - S Parzych
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - J Baran
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - N Chug
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - C Curceanu
- INFN, Laboratori Nazionali di Frascati, Frascati, Italy
| | - E Czerwiński
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - K Dulski
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - K Elyan
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - A Gajos
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - B C Hiesmayr
- Faculty of Physics, University of Vienna, Vienna, Austria
| | - Ł Kapłon
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - K Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - P Konieczka
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - G Korcyl
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - T Kozik
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
| | - W Krzemien
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - D Kumar
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - S Niedzwiecki
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - D Panek
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - E Perez Del Rio
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - L Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - S Sharma
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - S Shivani
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - R Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - M Skurzok
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - E Ł Stepień
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
- Theranostics Center, Jagiellonian University, Kraków, Poland
| | - F Tayefi Ardebili
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - K Tayefi Ardebili
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland
| | - S Vandenberghe
- Department of Electronics and Information Systems, MEDISIP, MEDISIP, Ghent University-IBiTech, Ghent, Belgium
| | - W Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, Otwock-Świerk, Poland
| | - P Moskal
- Department of Experimental Particle Physics and Applications, Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland.
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University, Kraków, Poland.
- Theranostics Center, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
12
|
Vandenberghe S, Muller FM, Withofs N, Dadgar M, Maebe J, Vervenne B, Akl MA, Xue S, Shi K, Sportelli G, Belcari N, Hustinx R, Vanhove C, Karp JS. Walk-through flat panel total-body PET: a patient-centered design for high throughput imaging at lower cost using DOI-capable high-resolution monolithic detectors. Eur J Nucl Med Mol Imaging 2023; 50:3558-3571. [PMID: 37466650 PMCID: PMC10547652 DOI: 10.1007/s00259-023-06341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023]
Abstract
PURPOSE Long axial field-of-view (LAFOV) systems have a much higher sensitivity than standard axial field-of-view (SAFOV) PET systems for imaging the torso or full body, which allows faster and/or lower dose imaging. Despite its very high sensitivity, current total-body PET (TB-PET) throughput is limited by patient handling (positioning on the bed) and often a shortage of available personnel. This factor, combined with high system costs, makes it hard to justify the implementation of these systems for many academic and nearly all routine nuclear medicine departments. We, therefore, propose a novel, cost-effective, dual flat panel TB-PET system for patients in upright standing positions to avoid the time-consuming positioning on a PET-CT table; the walk-through (WT) TB-PET. We describe a patient-centered, flat panel PET design that offers very efficient patient throughput and uses monolithic detectors (with BGO or LYSO) with depth-of-interaction (DOI) capabilities and high intrinsic spatial resolution. We compare system sensitivity, component costs, and patient throughput of the proposed WT-TB-PET to a SAFOV (= 26 cm) and a LAFOV (= 106 cm) LSO PET systems. METHODS Patient width, height (= top head to start of thighs) and depth (= distance from the bed to front of patient) were derived from 40 randomly selected PET-CT scans to define the design dimensions of the WT-TB-PET. We compare this new PET system to the commercially available Siemens Biograph Vision 600 (SAFOV) and Siemens Quadra (LAFOV) PET-CT in terms of component costs, system sensitivity, and patient throughput. System cost comparison was based on estimating the cost of the two main components in the PET system (Silicon Photomultipliers (SiPMs) and scintillators). Sensitivity values were determined using Gate Monte Carlo simulations. Patient throughput times (including CT and scout scan, patient positioning on bed and transfer) were recorded for 1 day on a Siemens Vision 600 PET. These timing values were then used to estimate the expected patient throughput (assuming an equal patient radiotracer injected activity to patients and considering differences in system sensitivity and time-of-flight information) for WT-TB-PET, SAFOV and LAFOV PET. RESULTS The WT-TB-PET is composed of two flat panels; each is 70 cm wide and 106 cm high, with a 50-cm gap between both panels. These design dimensions were justified by the patient sizes measured from the 40 random PET-CT scans. Each panel consists of 14 × 20 monolithic BGO detector blocks that are 50 × 50 × 16 mm in size and are coupled to a readout with 6 × 6 mm SiPMs arrays. For the WT-TB-PET, the detector surface is reduced by a factor of 1.9 and the scintillator volume by a factor of 2.2 compared to LAFOV PET systems, while demonstrating comparable sensitivity and much better uniform spatial resolution (< 2 mm in all directions over the FOV). The estimated component cost for the WT-TB-PET is 3.3 × lower than that of a 106 cm LAFOV system and only 20% higher than the PET component costs of a SAFOV. The estimated maximum number of patients scanned on a standard 8-h working day increases from 28 (for SAFOV) to 53-60 (for LAFOV in limited/full acceptance) to 87 (for the WT-TB-PET). By scanning faster (more patients), the amount of ordered activity per patient can be reduced drastically: the WT-TB-PET requires 66% less ordered activity per patient than a SAFOV. CONCLUSIONS We propose a monolithic BGO or LYSO-based WT-TB-PET system with DOI measurements that departs from the classical patient positioning on a table and allows patients to stand upright between two flat panels. The WT-TB-PET system provides a solution to achieve a much lower cost TB-PET approaching the cost of a SAFOV system. High patient throughput is increased by fast patient positioning between two vertical flat panel detectors of high sensitivity. High spatial resolution (< 2 mm) uniform over the FOV is obtained by using DOI-capable monolithic scintillators.
Collapse
Affiliation(s)
- Stefaan Vandenberghe
- Medical Image and Signal Processing, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium.
| | - Florence M Muller
- Medical Image and Signal Processing, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Nadia Withofs
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, CHU of Liege, Quartier Hôpital, Avenue de Hôpital, 1, 4000, Liège 1, Belgium
| | - Meysam Dadgar
- Medical Image and Signal Processing, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Jens Maebe
- Medical Image and Signal Processing, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Boris Vervenne
- Medical Image and Signal Processing, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Maya Abi Akl
- Medical Image and Signal Processing, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Song Xue
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Kuangyu Shi
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, CHU of Liege, Quartier Hôpital, Avenue de Hôpital, 1, 4000, Liège 1, Belgium
| | - Giancarlo Sportelli
- Dipartimento Di Fisica "E. Fermi", Università Di Pisa, Italy and with the Instituto Nazionale Di Fisica Nucleare, Sezione Di Pisa, 56127, Pisa, Italy
| | - Nicola Belcari
- Dipartimento Di Fisica "E. Fermi", Università Di Pisa, Italy and with the Instituto Nazionale Di Fisica Nucleare, Sezione Di Pisa, 56127, Pisa, Italy
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, CHU of Liege, Quartier Hôpital, Avenue de Hôpital, 1, 4000, Liège 1, Belgium
| | - Christian Vanhove
- Medical Image and Signal Processing, Department of Electronics and Information Systems, Faculty of Engineering and Architecture, Ghent University, Corneel Heymanslaan 10, 9000, Ghent, Belgium
| | - Joel S Karp
- Physics and Instrumentation, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
13
|
Konieczka P, Raczyński L, Wiślicki W, Fedoruk O, Klimaszewski K, Kopka P, Krzemień W, Shopa RY, Baran J, Coussat A, Chug N, Curceanu C, Czerwiński E, Dadgar M, Dulski K, Gajos A, Hiesmayr BC, Kacprzak K, Kapłon Ł, Korcyl G, Kozik T, Kumar D, Niedźwiecki S, Parzych S, Río EPD, Sharma S, Shivani S, Skurzok M, Stępień EŁ, Tayefi F, Moskal P. Transformation of PET raw data into images for event classification using convolutional neural networks. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:14938-14958. [PMID: 37679166 DOI: 10.3934/mbe.2023669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
In positron emission tomography (PET) studies, convolutional neural networks (CNNs) may be applied directly to the reconstructed distribution of radioactive tracers injected into the patient's body, as a pattern recognition tool. Nonetheless, unprocessed PET coincidence data exist in tabular format. This paper develops the transformation of tabular data into n-dimensional matrices, as a preparation stage for classification based on CNNs. This method explicitly introduces a nonlinear transformation at the feature engineering stage and then uses principal component analysis to create the images. We apply the proposed methodology to the classification of simulated PET coincidence events originating from NEMA IEC and anthropomorphic XCAT phantom. Comparative studies of neural network architectures, including multilayer perceptron and convolutional networks, were conducted. The developed method increased the initial number of features from 6 to 209 and gave the best precision results (79.8) for all tested neural network architectures; it also showed the smallest decrease when changing the test data to another phantom.
Collapse
Affiliation(s)
- Paweł Konieczka
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Świerk, Poland
| | - Lech Raczyński
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Świerk, Poland
| | - Wojciech Wiślicki
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Świerk, Poland
| | - Oleksandr Fedoruk
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Świerk, Poland
| | - Konrad Klimaszewski
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Świerk, Poland
| | - Przemysław Kopka
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Świerk, Poland
| | - Wojciech Krzemień
- High Energy Physics Division, National Centre for Nuclear Research, 05-400 Świerk, Poland
| | - Roman Y Shopa
- Department of Complex Systems, National Centre for Nuclear Research, 05-400 Świerk, Poland
| | - Jakub Baran
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Aurélien Coussat
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Neha Chug
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | | | - Eryk Czerwiński
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Meysam Dadgar
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Kamil Dulski
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Aleksander Gajos
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | | | - Krzysztof Kacprzak
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Łukasz Kapłon
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Grzegorz Korcyl
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Tomasz Kozik
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Deepak Kumar
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Szymon Niedźwiecki
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Szymon Parzych
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Elena Pérez Del Río
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Sushil Sharma
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Shivani Shivani
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Magdalena Skurzok
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
- INFN, National Laboratory of Frascati, 00044 Frascati, Italy
| | - Ewa Łucja Stępień
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Faranak Tayefi
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| | - Paweł Moskal
- Marian Smoluchowski Institute of Physics, Jagiellonian University, 31-348 Cracow, Poland
- Center for Theranostics, Jagiellonian University, 31-348 Cracow, Poland
| |
Collapse
|
14
|
Parodi K, Yamaya T, Moskal P. Experience and new prospects of PET imaging for ion beam therapy monitoring. Z Med Phys 2023; 33:22-34. [PMID: 36446691 PMCID: PMC10068545 DOI: 10.1016/j.zemedi.2022.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/11/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022]
Abstract
Pioneering investigations on the usage of positron-emission-tomography (PET) for the monitoring of ion beam therapy with light (protons, helium) and heavier (stable and radioactive neon, carbon and oxygen) ions started shortly after the first realization of planar and tomographic imaging systems, which were able to visualize the annihilation of positrons resulting from irradiation induced or implanted positron emitting nuclei. And while the first clinical experience was challenged by the utilization of instrumentation directly adapted from nuclear medicine applications, new detectors optimized for this unconventional application of PET imaging are currently entering the phase of (pre)clinical testing for more reliable monitoring of treatment delivery during irradiation. Moreover, recent advances in detector technologies and beam production open several new exciting opportunities which will not only improve the performance of PET imaging under the challenging conditions of in-beam applications in ion beam therapy, but will also likely expand its field of application. In particular, the combination of PET and Compton imaging can enable the most efficient utilization of all possible radiative emissions for both stable and radioactive ion beams, while positronium lifetime imaging may enable probing new features of the underlying tumour and normal tissue environment. Thereby, PET imaging will not only provide means for volumetric reconstruction of the delivered treatment and in-vivo verification of the beam range, but can also shed new insights for biological optimization of the treatment or treatment response assessment.
Collapse
Affiliation(s)
- Katia Parodi
- Ludwig-Maximilians-Universität München, Lehrstuhl für Experimental Physik - Medizinische Physik, Garching b. München, Germany.
| | - Taiga Yamaya
- National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Pawel Moskal
- M. Smoluchowski Institute of Physics, Jagiellonian University, Krakow, Poland; Center for Theranostics, Jagiellonian University, Krakow, Poland
| |
Collapse
|
15
|
A new brain dedicated PET scanner with 4D detector information. BIO-ALGORITHMS AND MED-SYSTEMS 2022. [DOI: 10.2478/bioal-2022-0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
In this article, we present the geometrical design and preliminary results of a high sensitivity organ-specific Positron Emission Tomography (PET) system dedicated to the study of the human brain. The system, called 4D-PET, will allow accurate imaging of brain studies due to its expected high sensitivity, high 3D spatial resolution and, by including precise photon time of flight (TOF) information, a boosted signal-to-noise ratio (SNR).
The 4D-PET system incorporates an innovative detector design based on crystal slabs (semi-monolithic) that enables accurate 3D photon impact positioning (including photon Depth of Interaction (DOI) measurement), while providing a precise determination of the photon arrival time to the detector. The detector includes a novel readout system that reduces the number of detector signals in a ratio of 4:1 thus, alleviating complexity and cost. The analog output signals are fed to the TOFPET2 ASIC (PETsys) for scalability purposes.
The present manuscript reports the evaluation of the 4D-PET detector, achieving best values 3D resolution values of <1.6 mm (pixelated axis), 2.7±0.5 mm (monolithic axis) and 3.4±1.1 (DOI axis) mm; 359 ± 7 ps coincidence time resolution (CTR); 10.2±1.5 % energy resolution; and sensitivity of 16.2% at the center of the scanner (simulated). Moreover, a comprehensive description of the 4D-PET architecture (that includes 320 detectors), some pictures of its mechanical assembly, and simulations on the expected image quality are provided.
Collapse
|
16
|
Daube-Witherspoon ME, Pantel AR, Pryma DA, Karp JS. Total-body PET: a new paradigm for molecular imaging. Br J Radiol 2022; 95:20220357. [PMID: 35993615 PMCID: PMC9733603 DOI: 10.1259/bjr.20220357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/25/2022] [Accepted: 08/12/2022] [Indexed: 11/05/2022] Open
Abstract
Total body (TB) positron emission tomography (PET) instruments have dramatically changed the paradigm of PET clinical and research studies due to their very high sensitivity and capability to image dynamic radiopharmaceutical distributions in the major organs of the body simultaneously. In this manuscript, we review the design of these systems and discuss general challenges and trade-offs to maximize the performance gains of current TB-PET systems. We then describe new concepts and technology that may impact future TB-PET systems. The manuscript summarizes what has been learned from the initial sites with TB-PET and explores potential research and clinical applications of TB-PET. The current generation of TB-PET systems range in axial field-of-view (AFOV) from 1 to 2 m and serve to illustrate the benefits and opportunities of a longer AFOV for various applications in PET. In only a few years of use these new TB-PET systems have shown that they will play an important role in expanding the field of molecular imaging and benefiting clinical practice.
Collapse
Affiliation(s)
| | - Austin R Pantel
- Department of Radiology, University of Pennsylvania, Philadelphia, United States
| | - Daniel A Pryma
- Department of Radiology, University of Pennsylvania, Philadelphia, United States
| | - Joel S Karp
- Department of Radiology, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
17
|
Investigation of the light output of 3D-printed plastic scintillators for dosimetry applications. RADIAT MEAS 2022. [DOI: 10.1016/j.radmeas.2022.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Borys D, Baran J, Brzezinski KW, Gajewski J, Chug N, Coussat A, Czerwiński E, Dadgar M, Dulski K, Eliyan KV, Gajos A, Kacprzak K, Kapłon Ł, Klimaszewski K, Konieczka P, Kopec R, Korcyl G, Kozik T, Krzemień W, Kumar D, Lomax AJ, McNamara K, Niedźwiecki S, Olko P, Panek D, Parzych S, Del Río EP, Raczyński L, Sharma S, Shivani S, Shopa RY, Skóra T, Skurzok M, Stasica P, Stępień E, Tayefi Ardebili K, Tayefi F, Weber DC, Winterhalter C, Wiślicki W, Moskal P, Rucinski A. ProTheRaMon - a GATE simulation framework for proton therapy range monitoring using PET imaging. Phys Med Biol 2022; 67:224002. [PMID: 36137551 DOI: 10.1088/1361-6560/ac944c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This paper reports on the implementation and shows examples of the use of the ProTheRaMon framework for simulating the delivery of proton therapy treatment plans and range monitoring using positron emission tomography (PET). ProTheRaMon offers complete processing of proton therapy treatment plans, patient CT geometries, and intra-treatment PET imaging, taking into account therapy and imaging coordinate systems and activity decay during the PET imaging protocol specific to a given proton therapy facility. We present the ProTheRaMon framework and illustrate its potential use case and data processing steps for a patient treated at the Cyclotron Centre Bronowice (CCB) proton therapy center in Krakow, Poland. APPROACH The ProTheRaMon framework is based on GATE Monte Carlo software, the CASToR reconstruction package and in-house developed Python and bash scripts. The framework consists of five separated simulation and data processing steps, that can be further optimized according to the user's needs and specific settings of a given proton therapy facility and PET scanner design. MAIN RESULTS ProTheRaMon is presented using example data from a patient treated at CCB and the J-PET scanner to demonstrate the application of the framework for proton therapy range monitoring. The output of each simulation and data processing stage is described and visualized. SIGNIFICANCE We demonstrate that the ProTheRaMon simulation platform is a high-performance tool, capable of running on a computational cluster and suitable for multi-parameter studies, with databases consisting of large number of patients, as well as different PET scanner geometries and settings for range monitoring in a clinical environment. Due to its modular structure, the ProTheRaMon framework can be adjusted for different proton therapy centers and/or different PET detector geometries. It is available to the community via github.
Collapse
Affiliation(s)
- Damian Borys
- Department of Systems Biology and Engineering, Silesian University of Technology, ul. Akademicka 16, Gliwice, 44-100, POLAND
| | - Jakub Baran
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Karol W Brzezinski
- Institute of Nuclear Physics Polish Academy of Science, Radzikowskiego 152, Krakow, Krakow, Malopolska, 31-342, POLAND
| | - Jan Gajewski
- Institute of Nuclear Physics Polish Academy of Science, Radzikowskiego 152, Krakow, Krakow, Malopolska, 31-342, POLAND
| | - Neha Chug
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, 30-348, POLAND
| | - Aurelien Coussat
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Eryk Czerwiński
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Meysam Dadgar
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Kamil Dulski
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Kavya Valsan Eliyan
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Aleksander Gajos
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Krzysztof Kacprzak
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Łukasz Kapłon
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University in Krakow, Lojasiewicza 11, Krakow, Malopolskie, 31-007, POLAND
| | - Konrad Klimaszewski
- National Centre for Nuclear Research, 7 Andrzeja Sołtana str., Otwock, 05-400, POLAND
| | - Paweł Konieczka
- Department of Complex Systems, National Centre for Nuclear Research, 7 Andrzeja Sołtana str., Otwock, 05-400, POLAND
| | - Renata Kopec
- Institute of Nuclear Physics Polish Academy of Science, Radzikowskiego 152, Krakow, 31-342, POLAND
| | - Grzegorz Korcyl
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Tomasz Kozik
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Wojciech Krzemień
- National Centre for Nuclear Research, 7 Andrzeja Sołtana str., Otwock, 05-400, POLAND
| | - Deepak Kumar
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Antony John Lomax
- Department of Radiation Medicine, Paul Scherrer Institute, CH-5232 Villigen PSI, Villigen, 5232, SWITZERLAND
| | - Keegan McNamara
- Center for Proton Therapy, Paul Scherrer Institute PSI, Forschungsstrasse 111, Villigen, Aargau, 5232, SWITZERLAND
| | - Szymon Niedźwiecki
- Institute of Physics, Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Pawel Olko
- PAN, Institute of Nuclear Physics Polish Academy of Science, ul Radzikowskiego 152, Krakow, Kraków, 31-342, POLAND
| | - Dominik Panek
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Szymon Parzych
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Elena Pérez Del Río
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Lech Raczyński
- National Centre for Nuclear Research, 7 Andrzeja Sołtana str., Otwock, 05-400, POLAND
| | - Sushil Sharma
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Shivani Shivani
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Roman Y Shopa
- National Centre for Nuclear Research, 7 Andrzeja Sołtana str., Otwock, 05-400, POLAND
| | - Tomasz Skóra
- Radiotherapy, Maria Sklodowska-Curie National Research Institute of Oncology in Warsaw, Krakow Branch, Walerego Eljasza, Radzikowskiego 152, Kraków, 31-342, POLAND
| | - Magdalena Skurzok
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Paulina Stasica
- Institute of Nuclear Physics Polish Academy of Science, Radzikowskiego 152, Krakow, PL 31-342, POLAND
| | - Ewa Stępień
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Keyvan Tayefi Ardebili
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Faranak Tayefi
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Damien Charles Weber
- Center for Proton Therapy, Paul Scherrer Institute, Forschungsstrasse 111, Villigen, 5232, SWITZERLAND
| | - Carla Winterhalter
- Paul Scherrer Institute PSI, Forschungsstrasse 111, Villigen, Aargau, 5232, SWITZERLAND
| | - Wojciech Wiślicki
- National Centre for Nuclear Research, 7 Andrzeja Sołtana str., Otwock, 05-400, POLAND
| | - Pawel Moskal
- Jagiellonian University in Krakow Faculty of Physics Astronomy and Applied Computer Science, Łojasiewicza 11, Krakow, Małopolskie, 30-348, POLAND
| | - Antoni Rucinski
- Institute of Nuclear Physics PAS, Radzikowskiego 152, Krakow, 31-342, POLAND
| |
Collapse
|
19
|
Sarrut D, Arbor N, Baudier T, Borys D, Etxebeste A, Fuchs H, Gajewski J, Grevillot L, Jan S, Kagadis GC, Kang HG, Kirov A, Kochebina O, Krzemien W, Lomax A, Papadimitroulas P, Pommranz C, Roncali E, Rucinski A, Winterhalter C, Maigne L. The OpenGATE ecosystem for Monte Carlo simulation in medical physics. Phys Med Biol 2022; 67:10.1088/1361-6560/ac8c83. [PMID: 36001985 PMCID: PMC11149651 DOI: 10.1088/1361-6560/ac8c83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/24/2022] [Indexed: 11/12/2022]
Abstract
This paper reviews the ecosystem of GATE, an open-source Monte Carlo toolkit for medical physics. Based on the shoulders of Geant4, the principal modules (geometry, physics, scorers) are described with brief descriptions of some key concepts (Volume, Actors, Digitizer). The main source code repositories are detailed together with the automated compilation and tests processes (Continuous Integration). We then described how the OpenGATE collaboration managed the collaborative development of about one hundred developers during almost 20 years. The impact of GATE on medical physics and cancer research is then summarized, and examples of a few key applications are given. Finally, future development perspectives are indicated.
Collapse
Affiliation(s)
- David Sarrut
- Université de Lyon; CREATIS; CNRS UMR5220; Inserm U1294; INSA-Lyon; Université Lyon 1, Léon Bérard cancer center, Lyon, France
| | - Nicolas Arbor
- Université de Strasbourg, IPHC, CNRS, UMR7178, F-67037 Strasbourg, France
| | - Thomas Baudier
- Université de Lyon; CREATIS; CNRS UMR5220; Inserm U1294; INSA-Lyon; Université Lyon 1, Léon Bérard cancer center, Lyon, France
| | - Damian Borys
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Ane Etxebeste
- Université de Lyon; CREATIS; CNRS UMR5220; Inserm U1294; INSA-Lyon; Université Lyon 1, Léon Bérard cancer center, Lyon, France
| | - Hermann Fuchs
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Medical University of Vienna, Department of Radiation Oncology, Vienna, Vienna, Währinger Gürtel 18-20, A-1090 Wien, Austria
| | - Jan Gajewski
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | | | - Sébastien Jan
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), F-91401 Orsay, France
| | - George C Kagadis
- 3DMI Research Group, Department of Medical Physics, School of Medicine, University of Patras, Patras, Greece
| | - Han Gyu Kang
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Assen Kirov
- Memorial Sloan Kettering Cancer, New York, NY 10021, United States of America
| | - Olga Kochebina
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), F-91401 Orsay, France
| | - Wojciech Krzemien
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Lojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40 St, 31 501 Krakow, Poland
| | - Antony Lomax
- Center for Proton Therapy, PSI, Switzerland
- Department of Physics, ETH Zurich, Switzerland
| | | | - Christian Pommranz
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, D-72076 Tuebingen, Germany
- Institute for Astronomy and Astrophysics, Eberhard Karls University Tuebingen, Sand 1, D-72076 Tuebingen, Germany
| | - Emilie Roncali
- University of California Davis, Departments of Biomedical Engineering and Radiology, Davis, CA 95616, United States of America
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Carla Winterhalter
- Center for Proton Therapy, PSI, Switzerland
- Department of Physics, ETH Zurich, Switzerland
| | - Lydia Maigne
- Université Clermont Auvergne, Laboratoire de Physique de Clermont, CNRS, UMR 6533, F-63178 Aubière, France
| |
Collapse
|
20
|
Total-body pediatric PET is ready for prime time. Eur J Nucl Med Mol Imaging 2022; 49:3624-3626. [PMID: 35723695 DOI: 10.1007/s00259-022-05873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/09/2022] [Indexed: 11/04/2022]
|
21
|
Czerwiński E, Raj J. Recent results on the positronium decay studies with the J-PET detector. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202226201009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Positronium, as a bound state of electron and positron and the lightest matter-antimatter system and at the same time an eigenstate of the C and P operators is a unique probe to search for possible violation of combined charge, parity, and time-reversal symmetries (CPT). The test is performed by a measurement of angular correlations in the annihilations of the lightest leptonic bound system. The J-PET detector is the only device which enables the determination of the polarization of photons from positronium annihilation together with the positronium spin axis on an event-by-event basis. This allows to explore a new class of discrete symmetry odd operators that were not investigated before. The first test of CPT symmetry at J-PET is presented together with preliminary results of CP, P and T symmetry test.
Collapse
|
22
|
Abstract
Abstract
In this review article, we present arguments demonstrating that the advent of high sensitivity total-body PET systems and the invention of the method of positronium imaging, open realistic perspectives for the application of positronium as a biomarker for in-vivo assessment of the degree of hypoxia. Hypoxia is a state or condition, in which the availability of oxygen is not sufficient to support physiological processes in tissue and organs. Positronium is a metastable atom formed from electron and positron which is copiously produced in the intramolecular spaces in the living organisms undergoing positron emission tomography (PET). Properties of positronium, such as e.g., lifetime, depend on the size of intramolecular spaces and the concentration in them of oxygen molecules. Therefore, information on the partial pressure of oxygen (pO2) in the tissue may be derived from the positronium lifetime measurement. The partial pressure of oxygen differs between healthy and cancer tissues in the range from 10 to 50 mmHg. Such differences of pO2 result in the change of ortho-positronium lifetime e.g., in water by about 2–7 ps. Thus, the application of positronium as a biomarker of hypoxia requires the determination of the mean positronium lifetime with the resolution in the order of 2 ps. We argue that such resolution is in principle achievable for organ-wise positronium imaging with the total-body PET systems.
Collapse
Affiliation(s)
- Paweł Moskal
- M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University , Krakow , Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University , Kraków , Poland
- Theranostics Center, Jagiellonian University , Kraków , Poland
| | - Ewa Ł. Stępień
- M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University , Krakow , Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University , Kraków , Poland
- Theranostics Center, Jagiellonian University , Kraków , Poland
| |
Collapse
|
23
|
Moskal P, Stępień EŁ. New trends in theranostics. BIO-ALGORITHMS AND MED-SYSTEMS 2021. [DOI: 10.1515/bams-2021-0204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Paweł Moskal
- Faculty of Physics, Astronomy and Applied Computer Science , M. Smoluchowski Institute of Physics, Jagiellonian University , Krakow , Poland
- Total-Body Jagiellonian-PET Laboratory , Jagiellonian University , Kraków , Poland
- Theranostics Center , Jagiellonian University , Kraków , Poland
| | - Ewa Ł. Stępień
- Faculty of Physics, Astronomy and Applied Computer Science , M. Smoluchowski Institute of Physics, Jagiellonian University , Krakow , Poland
- Total-Body Jagiellonian-PET Laboratory , Jagiellonian University , Kraków , Poland
- Theranostics Center , Jagiellonian University , Kraków , Poland
| |
Collapse
|
24
|
Abstract
Abstract
In this partial review and partial attempt at vision of what may be the future of dedicated brain PET scanners, the key implementations of the PET technique, we postulate that we are still on a development path and there is still a lot to be done in order to develop optimal brain imagers. Optimized for particular imaging tasks and protocols, and also mobile, that can be used outside the PET center, in addition to the expected improvements in sensitivity and resolution. For this multi-application concept to be more practical, flexible, adaptable designs are preferred. This task is greatly facilitated by the improved TOF performance that allows for more open, adjustable, limited angular coverage geometries without creating image artifacts. As achieving uniform very high resolution in the whole body is not practical due to technological limits and high costs, hybrid systems using a moderate-resolution total body scanner (such as J-PET) combined with a very high performing brain imager could be a very attractive approach. As well, as using magnification inserts in the total body or long-axial length imagers to visualize selected targets with higher resolution. In addition, multigamma imagers combining PET with Compton imaging should be developed to enable multitracer imaging.
Collapse
|
25
|
Vandenberghe S. Progress and perspectives in total body PET systems instrumentation. BIO-ALGORITHMS AND MED-SYSTEMS 2021. [DOI: 10.1515/bams-2021-0187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Abstract
Total body positron emission tomography (PET) systems are being developed by different groups worldwide. These systems have potential to change the number of applications in which molecular imaging is used. The change from a short axial field of view (FOV) to a longer one is however associated with a linear increase in the cost of these systems. This may limit their application to a small number of centers (capable of obtaining sufficient research funding). Therefore it remains interesting to see if lower cost systems can be developed and bring total body PET to the clinic for an acceptable budget. The wider availability of this low cost system can also enable more researchers to further optimize and explore the full potential of total body PET.
Collapse
Affiliation(s)
- Stefaan Vandenberghe
- Department of Electronics and Information Systems , MEDISIP, Ghent University-IBiTech , De Pintelaan 185 Block B , B-9000 Ghent , Belgium
| |
Collapse
|
26
|
Alavi A, Werner TJ, Stępień EŁ, Moskal P. Unparalleled and revolutionary impact of PET imaging on research and day to day practice of medicine. BIO-ALGORITHMS AND MED-SYSTEMS 2021. [DOI: 10.1515/bams-2021-0186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
Positron emission tomography (PET) imaging is the most quantitative modality for assessing disease activity at the molecular and cellular levels, and therefore, it allows monitoring its course and determining the efficacy of various therapeutic interventions. In this scientific communication, we describe the unparalleled and revolutionary impact of PET imaging on research and day to day practice of medicine. We emphasize the critical importance of the development and synthesis of novel radiotracers (starting from the enormous impact of F-Fluorodeouxyglucose (FDG) introduced by investigators at the University of Pennsylvania (PENN)) and PET instrumentation. These innovations have led to the total-body PET systems enabling dynamic and parametric molecular imaging of all organs in the body simultaneously. We also present our perspectives for future development of molecular imaging by multiphoton PET systems that will enable users to extract substantial information (owing to the evolving role of positronium imaging) about the related molecular and biological bases of various disorders, which are unachievable by the current PET imaging techniques.
Collapse
Affiliation(s)
- Abass Alavi
- Department of Radiology , Hospital of the University of Pennsylvania , Philadelphia , PA , USA
| | - Thomas J. Werner
- Department of Radiology , Hospital of the University of Pennsylvania , Philadelphia , PA , USA
| | - Ewa Ł. Stępień
- Faculty of Physics, Astronomy, and Applied Computer Science , Jagiellonian University Kraków , Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University , Kraków , Poland
- Theranostics Center, Jagiellonian University , Kraków , Poland
| | - Pawel Moskal
- Faculty of Physics, Astronomy, and Applied Computer Science , Jagiellonian University Kraków , Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University , Kraków , Poland
- Theranostics Center, Jagiellonian University , Kraków , Poland
| |
Collapse
|
27
|
Silarski M, Dziedzic-Kocurek K, Szczepanek M. Combined BNCT and PET for theranostics. BIO-ALGORITHMS AND MED-SYSTEMS 2021. [DOI: 10.1515/bams-2021-0140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Abstract
This short review summarizes the issue of boron distribution monitoring in boron neutron capture therapy (BNCT), which remains a serious drawback of this powerful oncological treatment. Here we present the monitoring methods that are presently used with particular emphasis on the positron emission tomography (PET) which has the highest potential to be used for the real-time monitoring of boron biodistribution. We discuss the possibility of using present PET scanners to determine the boron uptake in vivo before the BNCT treatment with the use of p-boronphenylalanine (BPA) labeled with 18F isotope. Several examples of preclinical studies and clinical trials performed with the use of [18F]FBPA are shown. We also discuss shortly the perspectives of using other radiotracers and boron carriers which may significantly improve the boron imaging with the use of the state-of-the-art Total-Body PET scanners providing a theranostic approach in the BNCT.
Collapse
Affiliation(s)
- Michał Silarski
- Faculty of Physics , Astronomy and Applied Computer Science, Jagiellonian University , Cracow , Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University , Cracow , Poland
| | | | - Monika Szczepanek
- Faculty of Physics , Astronomy and Applied Computer Science, Jagiellonian University , Cracow , Poland
- Total-Body Jagiellonian-PET Laboratory, Jagiellonian University , Cracow , Poland
| |
Collapse
|