1
|
Schwiete C, Roth C, Skutschik C, Möck S, Rettenmaier L, Happ K, Broich H, Behringer M. Effects of muscle fatigue on exercise-induced hamstring muscle damage: a three-armed randomized controlled trial. Eur J Appl Physiol 2023; 123:2545-2561. [PMID: 37330434 PMCID: PMC10616225 DOI: 10.1007/s00421-023-05234-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 05/21/2023] [Indexed: 06/19/2023]
Abstract
PURPOSE Hamstring injuries in soccer reportedly increase towards the end of the matches' halves as well as with increased match frequency in combination with short rest periods, possibly due to acute or residual fatigue. Therefore, this study aimed to investigate the effects of acute and residual muscle fatigue on exercise-induced hamstring muscle damage. METHODS A three-armed randomized-controlled trial, including 24 resistance-trained males, was performed allocating subjects to either a training group with acute muscle fatigue + eccentric exercise (AF/ECC); residual muscle fatigue + eccentric exercise (RF/ECC) or a control group with only eccentric exercise (ECC). Muscle stiffness, thickness, contractility, peak torque, range of motion, pain perception, and creatine kinase were assessed as muscle damage markers pre, post, 1 h post, and on the consecutive three days. RESULTS Significant group × time interactions were revealed for muscle thickness (p = 0.02) and muscle contractility parameters radial displacement (Dm) and contraction velocity (Vc) (both p = 0.01), with larger changes in the ECC group (partial η2 = 0.4). Peak torque dropped by an average of 22% in all groups; stiffness only changed in the RF/ECC group (p = 0.04). Muscle work during the damage protocol was lower for AF/ECC than for ECC and RF/ECC (p = 0.005). CONCLUSION Hamstring muscle damage was comparable between the three groups. However, the AF/ECC group resulted in the same amount of muscle damage while accumulating significantly less muscle work during the protocol of the damage exercise. TRIAL REGISTRATION This study was preregistered in the international trial registration platform (WHO; registration number: DRKS00025243).
Collapse
Affiliation(s)
- Carsten Schwiete
- Department of Sports Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany.
| | - Christian Roth
- Department of Sports Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Christoph Skutschik
- Department of Sports Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sebastian Möck
- Department of Exercise Science, Olympic Training and Testing Center of Hessen, Frankfurt am Main, Germany
| | - Lukas Rettenmaier
- Department of Sports Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Kevin Happ
- Department of Sports Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Holger Broich
- Department of Science, Performance and Fitness, FC Bayern München AG, Munich, Germany
- Department of Performance, Neuroscience, Therapy, and Health, Medical School Hamburg, Hamburg, Germany
| | - Michael Behringer
- Department of Sports Sciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
2
|
Sensor location affects skeletal muscle contractility parameters measured by tensiomyography. PLoS One 2023; 18:e0281651. [PMID: 36758055 PMCID: PMC9910630 DOI: 10.1371/journal.pone.0281651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Tensiomyography (TMG) is a non-invasive method for measuring contractile properties of skeletal muscle that is increasingly being used in research and practice. However, the lack of standardization in measurement protocols mitigates the systematic use in sports medical settings. Therefore, this study aimed to investigate the effects of lower leg fixation and sensor location on TMG-derived parameters. Twenty-two male participants underwent TMG measurements on the m. biceps femoris (BF) in randomized order with and without lower leg fixation (fixed vs. non-fixed). Measurements were conducted at 50% of the muscle's length (BF-mid) and 10 cm distal to this (BF-distal). The sensor location affected the contractile properties significantly, both with and without fixation. Delay time (Td) was greater at BF-mid compared to BF-distal (fixed: 23.2 ± 3.2 ms vs. 21.2 ± 2.7 ms, p = 0.002; non-fixed: 24.03 ± 4.2 ms vs. 21.8 ± 2.7 ms, p = 0.008), as were maximum displacement (Dm) (fixed: 5.3 ± 2.7 mm vs. 3.5 ± 1.7 mm, p = 0.005; non-fixed: 5.4 ± 2.5 mm vs. 4.0 ± 2.0 mm, p = 0.03), and contraction velocity (Vc) (fixed: 76.7 ± 25.1 mm/s vs. 57.2 ± 24.3 mm/s, p = 0.02). No significant differences were revealed for lower leg fixation (all p > 0.05). In summary, sensor location affects the TMG-derived parameters on the BF. Our findings help researchers to create tailored measurement procedures in compliance with the individual goals of the TMG measurements and allow adequate interpretation of TMG parameters.
Collapse
|
3
|
Langen G, Sandau I, Ueberschär O, Nosaka K, Behringer M. Methodical approaches to determine the rate of radial muscle displacement using tensiomyography: A scoping review and new reporting guideline. J Electromyogr Kinesiol 2022; 67:102702. [PMID: 36183503 DOI: 10.1016/j.jelekin.2022.102702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/30/2022] [Accepted: 08/31/2022] [Indexed: 12/14/2022] Open
Abstract
Tensiomyography is a non-invasive method to assess skeletal muscle contractile properties from the stimulated radial displacement. Many studies have used the rate of displacement (Vc) as an indirect measure of muscle contraction velocity. However, no standardised methodical approach exists to measure displacement and determine Vc. This review aimed to provide an overview of concepts to determine Vc and measurement protocols to foster the development of a standardised methodical approach. This review followed the Preferred Reporting Items for Systematic Reviews and meta-Analyses extension for Scoping Reviews (PRISMA-ScR) guideline. Systematic searches were performed within five electronic databases and additional sources. The included 62 studies reported 10 different concepts to determine Vc, which we summarised in three groups. The determination concepts differed mainly regarding time intervals during the contraction phase considered and criteria used to define these intervals. Essential information on the equipment and raters, measurement setup, electrical stimulation procedure, and data analysis were frequently not reported. In conclusion, no consensus on how to determine Vc existed. Incomplete reporting of measurement protocols hindered study comparison, which obstructs developing a standardised approach. Therefore, we propose a new guideline for reporting measurement protocols, which covers the 1) equipment and rater, 2) measurement setup, including positioning of the subject, sensor and electrodes, 3) electrical stimulation, including initial stimulation amplitude, increment, and endpoint, and 4) data analysis, including selection criteria and number of analysed signals and a definition of derived parameters.
Collapse
Affiliation(s)
- G Langen
- Department of Sports Medicine and Performance Physiology, Goethe University Frankfurt, Frankfurt, Germany; Department of Strength Power and Technical Sports, Institute for Applied Training Science, Leipzig, Germany.
| | - I Sandau
- Department of Strength Power and Technical Sports, Institute for Applied Training Science, Leipzig, Germany
| | - O Ueberschär
- Department of Engineering and Industrial Design, Magdeburg-Stendal University of Applied Sciences, Magdeburg, Germany; Department of Biomechanics, Institute for Applied Training Science, Leipzig, Germany
| | - K Nosaka
- Centre for Human Performance, School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - M Behringer
- Department of Sports Medicine and Performance Physiology, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
4
|
Muscle Contractile Properties Measured at Submaximal Electrical Amplitudes and Not at Supramaximal Amplitudes Are Associated with Repeated Sprint Performance and Fatigue Markers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111689. [PMID: 34770202 PMCID: PMC8582878 DOI: 10.3390/ijerph182111689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022]
Abstract
Background: The present study analyzes the associations between the muscle contractile properties (MCP) measured at different neuromuscular electrical stimulation amplitudes (NMESa) and the performance or transient fatigue after a bout of repeated sprints. Methods: Seventeen physically active male subjects performed six repeated sprints of 30 m with 30 s of passive recovery. Capillary blood creatine kinase (CK) concentration, knee extension or flexion isometric peak torque, tensiomyography, and repeated sprint performance were assessed. Results: Muscle displacement and contraction time were different in relation to the NMESa used in the rectus femoris and biceps femoris muscles. At rest, significant (p < 0.05) associations were found between muscle displacement and the loss of time in the repeated sprints (sprint performance) at 20 or 40 mA in the rectus femoris. At post +24 h or +48 h, the highest significant associations were found between the muscle displacement or the contraction time and CK or peak torques also at submaximal amplitudes (20 mA). The NMESa which elicits the peak muscle displacement showed lack of practical significance. Conclusion: Although MCP are typically assessed in tensiomyography using the NMESa that elicit peak muscle displacement, a submaximal NMESa may have a higher potential practical application to assess neuromuscular fatigue in response to repeated sprints.
Collapse
|
5
|
Abián P, Martínez F, Jiménez F, Abián-Vicén J. Morphology of the Patellar Tendon and the Contractility Response of the Quadriceps: Symmetry and Gender Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18105309. [PMID: 34067639 PMCID: PMC8156345 DOI: 10.3390/ijerph18105309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 01/24/2023]
Abstract
The purpose of the study was to describe the differences between the dominant and non-dominant leg regarding contractility response and quadriceps strength and the morphology and stiffness of the patellar tendon (PT) in a group of physically active men and women. Fifty physically active subjects (36 men and 14 women) were evaluated for morphology and stiffness of the PT, contractility response of the rectus femoris of the quadriceps, isometric strength of the quadriceps and hamstrings, and isokinetic strength (concentric and eccentric) at 60°/s of the knee extensors. The measurements were made on the subject's dominant and non-dominant leg. The men showed a greater thickness of the PT in both legs compared to the women. Regarding the contractility response, the women recorded a 10.1 ± 16.2% (p = 0.038) greater contraction time (ct) in the dominant versus the non-dominant leg and the men recorded 11.9% (p = 0.040) higher values in the dominant leg compared to the women. In all the absolute strength measurements the men recorded higher values (p < 0.05) than the women, however, when the values were normalised with respect to the muscle mass of the leg these differences disappeared. The dominant leg showed values of isometric strength and eccentric strength at 60°/s (p < 0.05) greater than the non-dominant leg. The reference values provided in this study of the knee extensors and PT may be useful for detecting possible muscular or tendinous anomalies.
Collapse
Affiliation(s)
- Pablo Abián
- Faculty of Humanities and Social Sciences, Comillas Pontifical University, 28049 Madrid, Spain;
| | - Fernando Martínez
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain; (F.M.); (F.J.)
| | - Fernando Jiménez
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain; (F.M.); (F.J.)
| | - Javier Abián-Vicén
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain; (F.M.); (F.J.)
- Correspondence: ; Tel.: +34-925268800 (ext. 5522)
| |
Collapse
|
6
|
Bravo-Sánchez A, Abián P, Sánchez-Infante J, Esteban-Gacía P, Jiménez F, Abián-Vicén J. Objective Assessment of Regional Stiffness in Vastus Lateralis with Different Measurement Methods: A Reliability Study. SENSORS 2021; 21:s21093213. [PMID: 34066343 PMCID: PMC8125613 DOI: 10.3390/s21093213] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022]
Abstract
The objective of this study was to evaluate the reliability of four methods of assessing vastus lateralis (VL) stiffness, and to describe the influence of structural characteristics on them. The stiffness of the dominant lower-limb’s VL was evaluated in 53 healthy participants (28.4 ± 9.1 years) with shear wave elastography (SWE), strain elastography (SE), myotonometry and tensiomyography (TMG). The SWE, SE and myotonometry were performed at 50%, and TMG was assessed at 30%, of the length from the upper pole of the patella to the greater trochanter. The thickness of the VL, adipose tissue and superficial connective tissue was also measured with ultrasound. Three repeated measurements were acquired to assess reliability, using intraclass correlation coefficients (ICC). Pearson’s correlation coefficients were calculated to determine the relationships between methodologic assessments and between structural characteristics and stiffness assessments of the VL. Myotonometry (ICC = 0.93; 95%-CI = 0.89,0.96) and TMG (ICC = 0.89; 95%-CI = 0.82,0.94) showed excellent inter-day reliability whereas with SWE (ICC = 0.62; 95%-CI = 0.41,0.77) and SE (ICC = 0.71; 95%-CI = 0.57,0.81) reliability was moderate. Significant correlations were found between myotonometry and VL thickness (r = 0.361; p = 0.008), adipose tissue thickness (r = −0.459; p = 0.001) and superficial connective tissue thickness (r = 0.340; p = 0.013). Myotonometry and TMG showed the best reliability values, although myotonometry stiffness values were influenced by the structural variables of the supra-adjacent tissue.
Collapse
Affiliation(s)
- Alfredo Bravo-Sánchez
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain; (A.B.-S.); (J.S.-I.); (P.E.-G.); (F.J.)
| | - Pablo Abián
- Faculty of Humanities and Social Sciences, Comillas Pontifical University, 28049 Madrid, Spain;
| | - Jorge Sánchez-Infante
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain; (A.B.-S.); (J.S.-I.); (P.E.-G.); (F.J.)
| | - Paula Esteban-Gacía
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain; (A.B.-S.); (J.S.-I.); (P.E.-G.); (F.J.)
| | - Fernando Jiménez
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain; (A.B.-S.); (J.S.-I.); (P.E.-G.); (F.J.)
| | - Javier Abián-Vicén
- Performance and Sport Rehabilitation Laboratory, Faculty of Sport Sciences, University of Castilla-La Mancha, 45071 Toledo, Spain; (A.B.-S.); (J.S.-I.); (P.E.-G.); (F.J.)
- Correspondence: ; Tel.: +34-925268800 (ext. 5522)
| |
Collapse
|
7
|
Labata-Lezaun N, López-de-Celis C, Llurda-Almuzara L, González-Rueda V, Cadellans-Arróniz A, Pérez-Bellmunt A. Correlation between maximal radial muscle displacement and stiffness in gastrocnemius muscle. Physiol Meas 2020; 41:125013. [PMID: 33238250 DOI: 10.1088/1361-6579/abcdf4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Tensiomyography (TMG) and myotonometry (MMT) are two novel technologies that measure neuromuscular properties. These two devices measure the stiffness of the soft tissue as well as other variables. The aim of this study is to analyze if there is any correlation between maximal radial displacement (Dm) and Stiffness in the medial and lateral gastrocnemius muscles. APPROACH An observational study was carried out in both of the limbs of 154 young adults (n = 154). The TMG and MMT neuromuscular response was measured in gastrocnemius medial and lateral muscles. Correlation coefficients were calculated to observe if there were any relationships between Dm and Stiffness. Differences between the dominant and the non-dominant sides and gender were assessed. MAIN RESULTS Negative correlations between Dm versus Stiffness were found for the lateral (r = -0.278 and rho = -0.248) and medial gastrocnemius (r = -0.207 and rho = -0.163) in both dominant and non-dominant limbs respectively. SIGNIFICANCE A weak correlation between Dm and Stiffness may indicate that they assess different aspects of neuromuscular function. The MMT and TMG are independent tools, and their values cannot be extrapolated when assessing muscular stiffness. There might be some other factors that influence in this relationship; therefore, more studies are needed in order to better understand the correlation.
Collapse
Affiliation(s)
- Noé Labata-Lezaun
- Anatomy Unit. Basic Sciences department. Universitat Internacional de Catalunya, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Park S. Theory and usage of tensiomyography and the analysis method for the patient with low back pain. J Exerc Rehabil 2020; 16:325-331. [PMID: 32913837 PMCID: PMC7463063 DOI: 10.12965/jer.2040420.210] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/04/2020] [Indexed: 11/22/2022] Open
Abstract
Tensiomyography (TMG) is an injury detecting tool for muscle group imbalances and/or side-to-side asymmetries. It is liable to detect to measure contractile properties and mechanical responses based on muscle belly displacement. Although other previous papers have well suggested the methods for examining the several muscle groups using TMG, a detecting method for the imbalances in low back muscles has not been investigated, and no review papers have been compiled. Therefore, this study aimed to synthesize the theories of the previous studies observed using TMG and to briefly summarize its usefulness by performing simple experiments on the left and right regions of the erector spinae muscles, which may be a problem using TMG for patients with low back pain.
Collapse
Affiliation(s)
- Sihwa Park
- Department of Sports and Leisure Studies, Korea University, Sejong, Korea.,Research Institute of Sports and Industry Science, Hanseo University, Seosan, Korea
| |
Collapse
|
9
|
AlMohimeed I, Ono Y. Ultrasound Measurement of Skeletal Muscle Contractile Parameters Using Flexible and Wearable Single-Element Ultrasonic Sensor. SENSORS 2020; 20:s20133616. [PMID: 32605006 PMCID: PMC7374409 DOI: 10.3390/s20133616] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 12/25/2022]
Abstract
Skeletal muscle is considered as a near-constant volume system, and the contractions of the muscle are related to the changes in tissue thickness. Assessment of the skeletal muscle contractile parameters such as maximum contraction thickness (Th), contraction time (Tc), contraction velocity (Vc), sustain time (Ts), and half-relaxation (Tr) provides valuable information for various medical applications. This paper presents a single-element wearable ultrasonic sensor (WUS) and a method to measure the skeletal muscle contractile parameters in A-mode ultrasonic data acquisition. The developed WUS was made of double-layer polyvinylidene fluoride (PVDF) piezoelectric polymer films with a simple and low-cost fabrication process. A flexible, lightweight, thin, and small size WUS would provide a secure attachment to the skin surface without affecting the muscle contraction dynamics of interest. The developed WUS was employed to monitor the contractions of gastrocnemius (GC) muscle of a human subject. The GC muscle contractions were evoked by the electrical muscle stimulation (EMS) at varying EMS frequencies from 2 Hz up to 30 Hz. The tissue thickness changes due to the muscle contractions were measured by utilizing a time-of-flight method in the ultrasonic through-transmission mode. The developed WUS demonstrated the capability to monitor the tissue thickness changes during the unfused and fused tetanic contractions. The tetanic progression level was quantitatively assessed using the parameter of the fusion index (FI) obtained. In addition, the contractile parameters (Th, Tc, Vc, Ts, and Tr) were successfully extracted from the measured tissue thickness changes. In addition, the unfused and fused tetanus frequencies were estimated from the obtained FI-EMS frequency curve. The WUS and ultrasonic method proposed in this study could be a valuable tool for inexpensive, non-invasive, and continuous monitoring of the skeletal muscle contractile properties.
Collapse
Affiliation(s)
- Ibrahim AlMohimeed
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Department of Medical Equipment Technology, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Yuu Ono
- Department of Systems and Computer Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Correspondence:
| |
Collapse
|
10
|
Piqueras-Sanchiz F, Martín-Rodríguez S, Pareja-Blanco F, Baraja-Vegas L, Blázquez-Fernández J, Bautista IJ, García-García Ó. Mechanomyographic Measures of Muscle Contractile Properties are Influenced by Electrode Size and Stimulation Pulse Duration. Sci Rep 2020; 10:8192. [PMID: 32424300 PMCID: PMC7235246 DOI: 10.1038/s41598-020-65111-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 04/27/2020] [Indexed: 11/22/2022] Open
Abstract
The aim was to determine the effects of changing pulse duration and electrode size on muscle contractile properties. Thirty-six healthy young male participated in the study (age 24.8 ± 5.8 years; height 178.2 ± 0.6 cm; body mass 71.8 ± 7.3 kg; self-reported weekly moderate intensity activity 3.5 ± 1.2 h·week−1). Tensiomyography was used to assess rectus femoris (RF) and vastus medialis (VM) muscles neuromuscular properties of the dominant leg according to the electrode size (3.2–5 cm) and the stimulus length (0.2, 0.5, and 1 ms). Maximal radial displacement (Dm); Contraction time (Tc); Delay time (Td); Sustained time (Ts) and Half relaxation time (Tr) were measured. Relative and absolute reliability was quantified. To analyze the effects of the electrode and the stimulus length, a repeated-measures analysis of variance was used. Dm and Tc parameters showed for both muscles an excellent relative (0.95–0.99) and absolute reliability (1.6–4.2%). However, Ts and Tr showed low values of absolute reliability (4.4–40.9%). The duration of the stimulus length applied to the RF and VM and electrode size significantly influences muscle’s contractile properties (p < 0.05; η2p = 0.09–0.60). The Dm increases substantially as the duration of the stimulus increases and with the use of the larger electrode in both muscles. However, Tc and Td are less affected by both conditions and not entirely clear. Practically, our study suggests that a stimulus pulse duration of 1 ms together with a 5 × 5 cm electrode is necessary to reach a reliable and reproducible assessment of both RF and VM muscles contractile properties.
Collapse
Affiliation(s)
| | - Saúl Martín-Rodríguez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Fernando Pareja-Blanco
- Physical Performance & Sports Research Center, Universidad Pablo de Olavide, Seville, Spain
| | - Luis Baraja-Vegas
- Department of Physiotherapy, Catholic University of Valencia, Valencia, Spain
| | | | - Iker J Bautista
- Faculty of Physiotherapy and Podology, Catholic University of Valencia, Valencia, Spain
| | - Óscar García-García
- Laboratory of Sports Performance, Physical Condition and Wellness, Faculty of Education and Sport Sciences, Universidade de Vigo, Pontevedra, Spain.
| |
Collapse
|
11
|
Francis P, Thornley I, Jones A, I. Johnson M. Pain and Function in the Runner a Ten (din) uous Link. ACTA ACUST UNITED AC 2020; 56:medicina56010021. [PMID: 31936119 PMCID: PMC7023329 DOI: 10.3390/medicina56010021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 12/27/2019] [Indexed: 11/30/2022]
Abstract
A male runner (30 years old; 10-km time: 33 min, 46 s) had been running with suspected insertional Achilles tendinopathy (AT) for ~2 years when the pain reached a threshold that prevented running. Diagnostic ultrasound (US), prior to a high-volume stripping injection, confirmed right-sided medial insertional AT. The athlete failed to respond to injection therapy and ceased running for a period of 5 weeks. At the beginning of this period, the runner completed the Victoria institute of sports assessment–Achilles questionnaire (VISA-A), the foot and ankle disability index (FADI), and FADI sport prior to undergoing an assessment of bi-lateral gastrocnemius medialis (GM) muscle architecture (muscle thickness (MT) and pennation angle (PA); US), muscle contractile properties (maximal muscle displacement (Dm) and contraction time (Tc); Tensiomyography (TMG)) and calf endurance (40 raises/min). VISA-A and FADI scores were 59%/100% and 102/136 respectively. Compared to the left leg, the right GM had a lower MT (1.60 cm vs. 1.74 cm), a similar PA (22.0° vs. 21.0°), a lower Dm (1.2 mm vs. 2.0 mm) and Tc (16.5 ms vs. 17.7 ms). Calf endurance was higher in the right leg compared to the left (48 vs. 43 raises). The athlete began a metronome-guided (15 BPM), 12-week progressive eccentric training protocol using a weighted vest (1.5 kg increments per week), while receiving six sessions of shockwave therapy concurrently (within 5 weeks). On returning to running, the athlete kept daily pain (Numeric Rating Scale; NRS) and running scores (miles*rate of perceived exertion (RPE)). Foot and ankle function improved according to scores recorded on the VISA-A (59% vs. 97%) and FADI (102 vs. 127/136). Improvements in MT (1.60 cm vs. 1.76 cm) and PA (22.0° vs. 24.8°) were recorded via US. Improvements in Dm (1.15 mm vs. 1.69 mm) and Tc (16.5 ms vs. 15.4 ms) were recorded via TMG. Calf endurance was lower in both legs and the asymmetry between legs remained (L: 31, R: 34). Pain intensity (mean weekly NRS scores) decreased between week 1 and week 12 (6.6 vs. 2.9), while running scores increased (20 vs. 38) during the same period. The program was maintained up to week 16 at which point mean weekly NRS was 2.2 and running score was 47.
Collapse
Affiliation(s)
- Peter Francis
- Department of Science and Health, Institute of Technology Carlow, Carlow, Ireland
- Musculoskeletal Health Research Group, Leeds Beckett University, Leeds LS13HE, UK; (I.T.); (A.J.); (M.I.J.)
- Correspondence: ; Tel.: +353-59917-5000
| | - Isobel Thornley
- Musculoskeletal Health Research Group, Leeds Beckett University, Leeds LS13HE, UK; (I.T.); (A.J.); (M.I.J.)
| | - Ashley Jones
- Musculoskeletal Health Research Group, Leeds Beckett University, Leeds LS13HE, UK; (I.T.); (A.J.); (M.I.J.)
| | - Mark I. Johnson
- Musculoskeletal Health Research Group, Leeds Beckett University, Leeds LS13HE, UK; (I.T.); (A.J.); (M.I.J.)
- Centre for Pain for Research, Leeds Beckett University, Leeds LS13HE, UK
| |
Collapse
|