1
|
Liu J, Marquez M, Lai Y, Ibrahim H, Légaré K, Lassonde P, Liu X, Hehn M, Mangin S, Malinowski G, Li Z, Légaré F, Liang J. Swept coded aperture real-time femtophotography. Nat Commun 2024; 15:1589. [PMID: 38383494 PMCID: PMC10882056 DOI: 10.1038/s41467-024-45820-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Single-shot real-time femtophotography is indispensable for imaging ultrafast dynamics during their times of occurrence. Despite their advantages over conventional multi-shot approaches, existing techniques confront restricted imaging speed or degraded data quality by the deployed optoelectronic devices and face challenges in the application scope and acquisition accuracy. They are also hindered by the limitations in the acquirable information imposed by the sensing models. Here, we overcome these challenges by developing swept coded aperture real-time femtophotography (SCARF). This computational imaging modality enables all-optical ultrafast sweeping of a static coded aperture during the recording of an ultrafast event, bringing full-sequence encoding of up to 156.3 THz to every pixel on a CCD camera. We demonstrate SCARF's single-shot ultrafast imaging ability at tunable frame rates and spatial scales in both reflection and transmission modes. Using SCARF, we image ultrafast absorption in a semiconductor and ultrafast demagnetization of a metal alloy.
Collapse
Affiliation(s)
- Jingdan Liu
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1P7, Canada
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Miguel Marquez
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1P7, Canada
| | - Yingming Lai
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1P7, Canada
| | - Heide Ibrahim
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1P7, Canada
| | - Katherine Légaré
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1P7, Canada
| | - Philippe Lassonde
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1P7, Canada
| | - Xianglei Liu
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1P7, Canada
| | - Michel Hehn
- Institut Jean Lamour, Université de Lorraine, Parc de Saurupt CS 50840, Nancy, 54011, France
| | - Stéphane Mangin
- Institut Jean Lamour, Université de Lorraine, Parc de Saurupt CS 50840, Nancy, 54011, France
| | - Grégory Malinowski
- Institut Jean Lamour, Université de Lorraine, Parc de Saurupt CS 50840, Nancy, 54011, France
| | - Zhengyan Li
- School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, Hubei, China
| | - François Légaré
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1P7, Canada
| | - Jinyang Liang
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Université du Québec, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1P7, Canada.
| |
Collapse
|
2
|
Compressed ultrahigh-speed single-pixel imaging by swept aggregate patterns. Nat Commun 2022; 13:7879. [PMID: 36550152 PMCID: PMC9780349 DOI: 10.1038/s41467-022-35585-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Single-pixel imaging (SPI) has emerged as a powerful technique that uses coded wide-field illumination with sampling by a single-point detector. Most SPI systems are limited by the refresh rates of digital micromirror devices (DMDs) and time-consuming iterations in compressed-sensing (CS)-based reconstruction. Recent efforts in overcoming the speed limit in SPI, such as the use of fast-moving mechanical masks, suffer from low reconfigurability and/or reduced accuracy. To address these challenges, we develop SPI accelerated via swept aggregate patterns (SPI-ASAP) that combines a DMD with laser scanning hardware to achieve pattern projection rates of up to 14.1 MHz and tunable frame sizes of up to 101×103 pixels. Meanwhile, leveraging the structural properties of S-cyclic matrices, a lightweight CS reconstruction algorithm, fully compatible with parallel computing, is developed for real-time video streaming at 100 frames per second (fps). SPI-ASAP allows reconfigurable imaging in both transmission and reflection modes, dynamic imaging under strong ambient light, and offline ultrahigh-speed imaging at speeds of up to 12,000 fps.
Collapse
|
3
|
Zhu X, Wang X, Zhang H, Zhang F. Luminescence Lifetime Imaging Based on Lanthanide Nanoparticles. Angew Chem Int Ed Engl 2022; 61:e202209378. [DOI: 10.1002/anie.202209378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xinyan Zhu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Xiaohan Wang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Hongxin Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| | - Fan Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Fudan University Shanghai 200433 China
| |
Collapse
|
4
|
Zhu X, Wang X, Zhang H, Zhang F. Luminescence Lifetime Imaging Based on Lanthanide Nanoparticles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xinyan Zhu
- Fudan University chemistry department Room 631, Advanced materials lab,2205 songhu road, yangpu district,Shanghai 200438 Shanghai CHINA
| | | | | | - Fan Zhang
- Fudan University Chemistry 2205 Songhu Road 200438 Shanghai CHINA
| |
Collapse
|
5
|
Jiang C, Kilcullen P, Lai Y, Wang S, Ozaki T, Liang J. Multi-scale band-limited illumination profilometry for robust three-dimensional surface imaging at video rate. OPTICS EXPRESS 2022; 30:19824-19838. [PMID: 36221749 DOI: 10.1364/oe.457502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/09/2022] [Indexed: 06/16/2023]
Abstract
Dynamic three-dimensional (3D) surface imaging by phase-shifting fringe projection profilometry has been widely implemented in diverse applications. However, existing techniques fall short in simultaneously providing the robustness in solving spatially isolated 3D objects, the tolerance of large variation in surface reflectance, and the flexibility of tunable working distances with meter-square-level fields of view (FOVs) at video rate. In this work, we overcome these limitations by developing multi-scale band-limited illumination profilometry (MS-BLIP). Supported by the synergy of dual-level intensity projection, multi-frequency fringe projection, and an iterative method for distortion compensation, MS-BLIP can accurately discern spatially separated 3D objects with highly varying reflectance. MS-BLIP is demonstrated by dynamic 3D imaging of a translating engineered box and a rotating vase. With an FOV of up to 1.7 m × 1.1 m and a working distance of up to 2.8 m, MS-BLIP is applied to capturing full human-body movements at video rate.
Collapse
|
6
|
Touil M, Idlahcen S, Becheker R, Lebrun D, Rozé C, Hideur A, Godin T. Acousto-optically driven lensless single-shot ultrafast optical imaging. LIGHT, SCIENCE & APPLICATIONS 2022; 11:66. [PMID: 35318313 PMCID: PMC8940908 DOI: 10.1038/s41377-022-00759-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 05/02/2023]
Abstract
Driven by many applications in a wide span of scientific fields, a myriad of advanced ultrafast imaging techniques have emerged in the last decade, featuring record-high imaging speeds above a trillion-frame-per-second with long sequence depths. Although bringing remarkable insights into various ultrafast phenomena, their application out of a laboratory environment is however limited in most cases, either by the cost, complexity of the operation or by heavy data processing. We then report a versatile single-shot imaging technique combining sequentially timed all-optical mapping photography (STAMP) with acousto-optics programmable dispersive filtering (AOPDF) and digital in-line holography (DIH). On the one hand, a high degree of simplicity is reached through the AOPDF, which enables full control over the acquisition parameters via an electrically driven phase and amplitude spectro-temporal tailoring of the imaging pulses. Here, contrary to most single-shot techniques, the frame rate, exposure time, and frame intensities can be independently adjusted in a wide range of pulse durations and chirp values without resorting to complex shaping stages, making the system remarkably agile and user-friendly. On the other hand, the use of DIH, which does not require any reference beam, allows to achieve an even higher technical simplicity by allowing its lensless operation but also for reconstructing the object on a wide depth of field, contrary to classical techniques that only provide images in a single plane. The imaging speed of the system as well as its flexibility are demonstrated by visualizing ultrashort events on both the picosecond and nanosecond timescales. The virtues and limitations as well as the potential improvements of this on-demand ultrafast imaging method are critically discussed.
Collapse
Affiliation(s)
- Mohamed Touil
- CORIA, CNRS UMR6614-Université de Rouen Normandie-INSA Rouen, 76800, Saint Etienne du Rouvray, France
| | - Saïd Idlahcen
- CORIA, CNRS UMR6614-Université de Rouen Normandie-INSA Rouen, 76800, Saint Etienne du Rouvray, France
| | - Rezki Becheker
- CORIA, CNRS UMR6614-Université de Rouen Normandie-INSA Rouen, 76800, Saint Etienne du Rouvray, France
| | - Denis Lebrun
- CORIA, CNRS UMR6614-Université de Rouen Normandie-INSA Rouen, 76800, Saint Etienne du Rouvray, France
| | - Claude Rozé
- CORIA, CNRS UMR6614-Université de Rouen Normandie-INSA Rouen, 76800, Saint Etienne du Rouvray, France
| | - Ammar Hideur
- CORIA, CNRS UMR6614-Université de Rouen Normandie-INSA Rouen, 76800, Saint Etienne du Rouvray, France
| | - Thomas Godin
- CORIA, CNRS UMR6614-Université de Rouen Normandie-INSA Rouen, 76800, Saint Etienne du Rouvray, France.
| |
Collapse
|
7
|
Byard K. Contiguous perfect coded aperture patterns with high throughput. APPLIED OPTICS 2022; 61:1112-1124. [PMID: 35201162 DOI: 10.1364/ao.439798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
A method is described that mosaics linear uniformly redundant arrays and modified uniformly redundant arrays onto a square lattice to create coded aperture patterns of approximately 50% throughput that are contiguous, whereby every opaque element in the aperture is joined to at least one other opaque element. Parameters required to create these perfect high-throughput contiguous apertures for all coded aperture unit pattern orders of up to 300 elements are presented. The apertures presented increase significantly the number of known contiguous apertures in dimensions forbidden to the known patterns and that have the same imaging quality as uniformly redundant arrays and modified uniformly redundant arrays while having imaging quality superior to other known self-supporting apertures. The effect of supporting the weaker areas of these contiguous apertures is investigated. Contiguous apertures are of interest for coded aperture systems that require extra rigidity or use active collimation.
Collapse
|
8
|
Lensless Multispectral Camera Based on a Coded Aperture Array. SENSORS 2021; 21:s21227757. [PMID: 34833833 PMCID: PMC8620651 DOI: 10.3390/s21227757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022]
Abstract
Multispectral imaging can be applied to water quality monitoring, medical diagnosis, and other applications, but the principle of multispectral imaging is different from the principle of hyper-spectral imaging. Multispectral imaging is generally achieved through filters, so multiple photos are required to obtain spectral information. Using multiple detectors to take pictures at the same time increases the complexity and cost of the system. This paper proposes a simple multispectral camera based on lensless imaging, which does not require multiple lenses. The core of the system is the multispectral coding aperture. The coding aperture is divided into different regions and each region transmits the light of one wavelength, such that the spectral information of the target can be coded. By solving the inverse problem of sparse constraints, the multispectral information of the target is inverted. Herein, we analyzed the characteristics of this multispectral camera and developed a principle prototype to obtain experimental results.
Collapse
|
9
|
Liu X, Skripka A, Lai Y, Jiang C, Liu J, Vetrone F, Liang J. Fast wide-field upconversion luminescence lifetime thermometry enabled by single-shot compressed ultrahigh-speed imaging. Nat Commun 2021; 12:6401. [PMID: 34737314 PMCID: PMC8568918 DOI: 10.1038/s41467-021-26701-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Photoluminescence lifetime imaging of upconverting nanoparticles is increasingly featured in recent progress in optical thermometry. Despite remarkable advances in photoluminescent temperature indicators, existing optical instruments lack the ability of wide-field photoluminescence lifetime imaging in real time, thus falling short in dynamic temperature mapping. Here, we report video-rate upconversion temperature sensing in wide field using single-shot photoluminescence lifetime imaging thermometry (SPLIT). Developed from a compressed-sensing ultrahigh-speed imaging paradigm, SPLIT first records wide-field luminescence intensity decay compressively in two views in a single exposure. Then, an algorithm, built upon the plug-and-play alternating direction method of multipliers, is used to reconstruct the video, from which the extracted lifetime distribution is converted to a temperature map. Using the core/shell NaGdF4:Er3+,Yb3+/NaGdF4 upconverting nanoparticles as the lifetime-based temperature indicators, we apply SPLIT in longitudinal wide-field temperature monitoring beneath a thin scattering medium. SPLIT also enables video-rate temperature mapping of a moving biological sample at single-cell resolution.
Collapse
Affiliation(s)
- Xianglei Liu
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1S2, Canada
| | - Artiom Skripka
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1S2, Canada
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain and The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yingming Lai
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1S2, Canada
| | - Cheng Jiang
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1S2, Canada
| | - Jingdan Liu
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1S2, Canada
| | - Fiorenzo Vetrone
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1S2, Canada.
| | - Jinyang Liang
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec, J3X1S2, Canada.
| |
Collapse
|
10
|
Lai Y, Shang R, Côté CY, Liu X, Laramée A, Légaré F, Luke GP, Liang J. Compressed ultrafast tomographic imaging by passive spatiotemporal projections. OPTICS LETTERS 2021; 46:1788-1791. [PMID: 33793544 PMCID: PMC8050836 DOI: 10.1364/ol.420737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Existing streak-camera-based two-dimensional (2D) ultrafast imaging techniques are limited by long acquisition time, the trade-off between spatial and temporal resolutions, and a reduced field of view. They also require additional components, customization, or active illumination. Here we develop compressed ultrafast tomographic imaging (CUTI), which passively records 2D transient events with a standard streak camera. By grafting the concept of computed tomography to the spatiotemporal domain, the operations of temporal shearing and spatiotemporal integration in a streak camera's data acquisition can be equivalently expressed as the spatiotemporal projection of an (x,y,t) datacube from a certain angle. Aided by a new, to the best of our knowledge, compressed-sensing reconstruction algorithm, the 2D transient event can be accurately recovered in a few measurements. CUTI is exhibited as a new imaging mode universally adaptable to most streak cameras. Implemented in an image-converter streak camera, CUTI captures the sequential arrival of two spatially modulated ultrashort ultraviolet laser pulses at 0.5 trillion frames per second. Applied to a rotating-mirror streak camera, CUTI records an amination of fast-bouncing balls at 5,000 frames per second.
Collapse
Affiliation(s)
- Yingming Lai
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec J3X1S2, CANADA
| | - Ruibo Shang
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive Hanover, NH 03755, USA
| | - Christian-Yves Côté
- Axis Photonique Inc., 1650 boulevard Lionel-Boulet, Varennes, Québec J3X1S2, CANADA
| | - Xianglei Liu
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec J3X1S2, CANADA
| | - Antoine Laramée
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec J3X1S2, CANADA
| | - François Légaré
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec J3X1S2, CANADA
| | - Geoffrey P. Luke
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive Hanover, NH 03755, USA
| | - Jinyang Liang
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec J3X1S2, CANADA
- Corresponding author:
| |
Collapse
|
11
|
Wan Y, Liu C, Ma T, Qin Y, Lv S. Incoherent coded aperture correlation holographic imaging with fast adaptive and noise-suppressed reconstruction. OPTICS EXPRESS 2021; 29:8064-8075. [PMID: 33820259 DOI: 10.1364/oe.418918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Fast and noise-suppressed incoherent coded aperture correlation holographic imaging is proposed, which is utilized by employing an annular sparse coded phase mask together with adaptive phase-filter cross-correlation reconstruction method. Thus the proposed technique here is coined as adaptive interferenceless coded aperture correlation holography (AI-COACH). In AI-COACH, an annular sparse coded phase mask is first designed and generated by the Gerchberg-Saxton algorithm for suppressing background noise during reconstruction. In order to demonstrate the three-dimensional and sectional imaging capabilities of the AI-COACH system, the imaging experiments of 3D objects are designed and implemented by dual-channel optical configuration. One resolution target is placed in the focal plane of the system as input plane and ensured Fourier transform configuration, which is employed as reference imaging plane, and moved the other resolution target to simulate different planes of a three-dimensional object. One point spread hologram (PSH) and multiple object-holograms without phase-shift at different axial positions are captured by single-exposure sequentially with the annular sparse CPMs. A complex-reconstruction method is developed to obtain adaptively high-quality reconstructed images by employing the cross-correlation of PSH and OH with optimized phase filter. The imaging performance of AI-COACH is investigated by imaging various type of objects. The research results show that AI-COACH is adaptive to different experimental conditions in the sense of autonomously finding optimal parameters during reconstruction procedure and possesses the advantages of fast and adaptive imaging with high-quality reconstructions.
Collapse
|