1
|
Feraru A, Tóth ZR, Magyari K, Baia M, Gyulavári T, Páll E, Licarete E, Costinas C, Cadar O, Papuc I, Baia L. The effect of nanoceria on the alginate-gum arabic crosslinking mechanism and in vitro behavior as a wound dressing. Int J Biol Macromol 2024; 288:138569. [PMID: 39653230 DOI: 10.1016/j.ijbiomac.2024.138569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/16/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Medical practice has proven that chronic wounds can be treated successfully if the dressing is chosen according to the healing phase of the wound. Correct intervention from the hemostasis and inflammatory phase can prevent oxidative stress and ensure optimal conditions for healing. It is important to design a new wound dressing that does not cause additional injury, has an antioxidant effect, removes dead cells, and promotes wound healing. Considering that the traditional dressings are not moisture-retentive, we proposed an alginate-gum arabic polymeric matrix enhanced with cerium oxide nanoparticles. The cryogels were prepared by cross-linking polysaccharides and cerium oxide nanoparticles via calcium cations to form a sponge-like structure. The blend of micro- and macro-pores provides a suitable environment for nutrient distribution and keeps an adequate moisture level, mimicking the functions of the native cellular matrix. The release of cerium oxide nanoparticles occurs gradually, at the same time as the degradation of the biopolymer, promoting the attachment and viability of keratinocytes and fibroblast cells. It was found that stimulating epithelial regeneration is improved through the antioxidant effect and the adsorption capacity of hemoglobin. The results also indicate good in vitro biocompatibility and recommend them as promising dressings for skin wound treatments.
Collapse
Affiliation(s)
- Alexandra Feraru
- Doctoral School of Physics, Babes-Bolyai University, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania
| | - Zsejke-Réka Tóth
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania
| | - Klára Magyari
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania; INSPIRE Research Platform, Babes Bolyai University, 400084 Cluj-Napoca, Romania.
| | - Monica Baia
- Faculty of Physics, Babes-Bolyai University, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; Institute for Research-Development-Innovation in Applied Natural Sciences, Babes-Bolyai University, Fântânele 30, 400294 Cluj-Napoca, Romania
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. sqr. 1, Szeged 6720, Hungary
| | - Emőke Páll
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Emilia Licarete
- Faculty of Biology and Geology, Babes-Bolyai University, 400015 Cluj-Napoca, Romania
| | - Codrut Costinas
- Doctoral School of Physics, Babes-Bolyai University, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; Institute for Research-Development-Innovation in Applied Natural Sciences, Babes-Bolyai University, Fântânele 30, 400294 Cluj-Napoca, Romania
| | - Oana Cadar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, 67 Donath Street, 400293 Cluj-Napoca, Romania
| | - Ionel Papuc
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Lucian Baia
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania; Faculty of Physics, Babes-Bolyai University, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania; Institute for Research-Development-Innovation in Applied Natural Sciences, Babes-Bolyai University, Fântânele 30, 400294 Cluj-Napoca, Romania.
| |
Collapse
|
2
|
Koushik TM, Miller CM, Antunes E. Bone Tissue Engineering Scaffolds: Function of Multi-Material Hierarchically Structured Scaffolds. Adv Healthc Mater 2023; 12:e2202766. [PMID: 36512599 PMCID: PMC11468595 DOI: 10.1002/adhm.202202766] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Bone tissue engineering (BTE) is a topic of interest for the last decade, and advances in materials, processing techniques, and the understanding of bone healing pathways have opened new avenues of research. The dual responsibility of BTE scaffolds in providing load-bearing capability and interaction with the local extracellular matrix to promote bone healing is a challenge in synthetic scaffolds. This article describes the usage and processing of multi-materials and hierarchical structures to mimic the structure of natural bone tissues to function as bioactive and load-bearing synthetic scaffolds. The first part of this literature review describes the physiology of bone healing responses and the interactions at different stages of bone repair. The following section reviews the available literature on biomaterials used for BTE scaffolds followed by some multi-material approaches. The next section discusses the impact of the scaffold's structural features on bone healing and the necessity of a hierarchical distribution in the scaffold structure. Finally, the last section of this review highlights the emerging trends in BTE scaffold developments that can inspire new tissue engineering strategies and truly develop the next generation of synthetic scaffolds.
Collapse
Affiliation(s)
- Tejas M. Koushik
- College of Science and EngineeringJames Cook UniversityTownsvilleQueensland4811Australia
| | - Catherine M. Miller
- College of Medicine and DentistryJames Cook UniversitySmithfieldQueensland4878Australia
| | - Elsa Antunes
- College of Science and EngineeringJames Cook UniversityTownsvilleQueensland4811Australia
| |
Collapse
|
3
|
Liu Z, Liu Y, Yushan M, Yusufu A. Enhanced Nerve Regeneration by Bionic Conductive Nerve Scaffold Under Electrical Stimulation. Front Neurosci 2022; 16:810676. [PMID: 35573307 PMCID: PMC9091912 DOI: 10.3389/fnins.2022.810676] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/14/2022] [Indexed: 11/15/2022] Open
Abstract
Repair of peripheral nerve defect (PND) with a poor prognosis is hard to deal with. Neural conduit applied to nerve defect at present could not achieve the effect of autologous nerve transplantation. We prepared bionic conductive neural scaffolds to provide a new strategy for the treatment of PNDs. The highly aligned poly (L-lactic acid) (PLLA) fiber mats and the multi-microchannel conductive scaffolds were combined into bionic conductive nerve scaffolds, which were implanted into rats with sciatic nerve defects. The experimental animals were divided into the scaffold group (S), scaffold with electrical stimulation (ES) group (S&E), and autologous nerve transplantation group (AT). The regenerative effect of bionic conductive nerve scaffolds was analyzed. Compared with aligned PLLA fiber mats (APFMs), highly aligned fiber mats had a higher fiber orientation and did not change the tensile strength, Young’s modulus, degradation rate, elongation at break of the fiber membrane, and biocompatibility. The bionic conductive nerve scaffolds were well matched with the rat sciatic nerve. The evaluations of the sciatic nerve in Group S&E were close to those in Group AT and better than those in Group S. Immunohistochemical results showed that the expression levels of neurofilament heavy polypeptide (NF-H) and protein S100-B (S100-β) in Group S&E were higher than those in Group S, and the expression levels of low-density lipoprotein receptor-related protein 4 (LRP4), mitogen-activated protein kinase (MAPK) p38, extracellular signal-regulated kinase (ERK), and mitogen-activated protein kinase kinase (MEK) in Group AT were higher than those in Group S. Bionic conductive nerve scaffolds combined with ES could enhance peripheral nerve regeneration and achieve satisfactory nerve regeneration close to autologous nerve grafts. ERK, p38 MAPK, MEK, and LRP4 may be involved in peripheral nerve regeneration under ES.
Collapse
Affiliation(s)
- Zhenhui Liu
- Department of Orthopedics, Henan Provincial People’s Hospital, Zhengzhou, China
- People’s Hospital of Zhengzhou University, Zhengzhou, China
- People’s Hospital of Henan University, Zhengzhou, China
- Department of Trauma and Micro Reconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yanshi Liu
- Department of Trauma and Micro Reconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Maimaiaili Yushan
- Department of Trauma and Micro Reconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Aihemaitijiang Yusufu
- Department of Trauma and Micro Reconstructive Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- *Correspondence: Aihemaitijiang Yusufu,
| |
Collapse
|
4
|
Dasan A, Kraxner J, Grigolato L, Savio G, Elsayed H, Galusek D, Bernardo E. 3D Printing of Hierarchically Porous Lattice Structures Based on Åkermanite Glass Microspheres and Reactive Silicone Binder. J Funct Biomater 2022; 13:8. [PMID: 35076529 PMCID: PMC8788511 DOI: 10.3390/jfb13010008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
The present study illustrates the manufacturing method of hierarchically porous 3D scaffolds based on åkermanite as a promising bioceramic for stereolithography. The macroporosity was designed by implementing 3D models corresponding to different lattice structures (cubic, diamond, Kelvin, and Kagome). To obtain micro-scale porosity, flame synthesized glass microbeads with 10 wt% of silicone resins were utilized to fabricate green scaffolds, later converted into targeted bioceramic phase by firing at 1100 °C in air. No chemical reaction between the glass microspheres, crystallizing into åkermanite, and silica deriving from silicone oxidation was observed upon heat treatment. Silica acted as a binder between the adjacent microspheres, enhancing the creation of microporosity, as documented by XRD, and SEM coupled with EDX analysis. The formation of 'spongy' struts was confirmed by infiltration with Rhodamine B solution. The compressive strength of the sintered porous scaffolds was up to 0.7 MPa with the porosity of 68-84%.
Collapse
Affiliation(s)
- Arish Dasan
- Centre for Functional and Surface-Functionalized Glass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; (J.K.); (D.G.)
- Department of Industrial Engineering, Università degli Studi di Padova, 35131 Padova, Italy; (L.G.); (H.E.)
- Department of Civil, Environmental and Architectural Engineering (ICEA), University of Padova, 35131 Padova, Italy;
| | - Jozef Kraxner
- Centre for Functional and Surface-Functionalized Glass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; (J.K.); (D.G.)
| | - Luca Grigolato
- Department of Industrial Engineering, Università degli Studi di Padova, 35131 Padova, Italy; (L.G.); (H.E.)
- Department of Civil, Environmental and Architectural Engineering (ICEA), University of Padova, 35131 Padova, Italy;
| | - Gianpaolo Savio
- Department of Civil, Environmental and Architectural Engineering (ICEA), University of Padova, 35131 Padova, Italy;
| | - Hamada Elsayed
- Department of Industrial Engineering, Università degli Studi di Padova, 35131 Padova, Italy; (L.G.); (H.E.)
- Refractories, Ceramics and Building Materials Department, National Research Centre, El Buhouth Str., Cairo 12622, Egypt
| | - Dušan Galusek
- Centre for Functional and Surface-Functionalized Glass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia; (J.K.); (D.G.)
- Joint Glass Centre of the IIC SAS, TnUAD, and FChFT STU, FunGlass, Alexander Dubček University of Trenčín, 911 50 Trenčín, Slovakia
| | - Enrico Bernardo
- Department of Industrial Engineering, Università degli Studi di Padova, 35131 Padova, Italy; (L.G.); (H.E.)
| |
Collapse
|
5
|
Preparation of a PLGA-coated porous bioactive glass scaffold with improved mechanical properties for bone tissue engineering approaches. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Zhu Y, Joralmon D, Shan W, Chen Y, Rong J, Zhao H, Xiao S, Li X. 3D printing biomimetic materials and structures for biomedical applications. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00117-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Jahromi HK, Farzin A, Hasanzadeh E, Barough SE, Mahmoodi N, Najafabadi MRH, Farahani MS, Mansoori K, Shirian S, Ai J. Enhanced sciatic nerve regeneration by poly-L-lactic acid/multi-wall carbon nanotube neural guidance conduit containing Schwann cells and curcumin encapsulated chitosan nanoparticles in rat. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110564. [PMID: 32228906 DOI: 10.1016/j.msec.2019.110564] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 11/30/2019] [Accepted: 12/14/2019] [Indexed: 01/10/2023]
Abstract
The main aim of this study was to improve the efficacy of peripheral nerve regeneration by an artificial neural guidance conduit (NGC) as a carrier to transplant allogeneic Schwann cells (SCs) and curcumin encapsulated chitosan nanoparticles (nanocurcumin). The conduit was prepared by poly-L-lactic acid (PLLA) and surface-modified multi-wall carbon nanotubes (mMWCNT) and filled with SCs and nanocurcumin. SCs play an important role in the regeneration of injured peripheral nerve and controlled curcumin release can decrease SCs apoptosis, and enhance the regeneration and functional recovery of injured peripheral nerves. The mechanical properties, contact angle, and cell biocompatibility experiments showed that the optimized concentration of mMWCNT inside PLLA wall of conduits was 0.15 wt%. The drug release experiments showed slower release of curcumin from nanocurcumin samples compared to nanocurcumin encapsulated inside NGC wrapped fibrin gel sample. It was found that simultaneous using of both SCs and curcumin inside NGC had a significant role in sciatic nerve regeneration in vivo. Histological examination revealed a significant increase in the number of axons in injured sciatic nerve following treatment by SCs and nanocurcumin compared to negative control group. Histological evaluation also revealed a significant decrease in the number of vessels in fibrin groups compared to positive control group. The results showed that there was no significant difference between the reaction time and sciatic functional index (SFI) values of rats with injured sciatic nerve treated by NGC/SCs/nanocurcumin sample and autograft sample. In conclusion, our results strongly showed that PLLA/mMWCNT nanofibrous conduit filled with fibrin gel containing SCs and nanocurcumin is a proper strategy for improving nerve regeneration after a nerve transaction in the rat.
Collapse
Affiliation(s)
- Hossein Kargar Jahromi
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran; Research Center for Noncommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Ali Farzin
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Hasanzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Tehran, Iran
| | - Somayeh Ebrahimi Barough
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Mazandaran University of Medical Sciences, Tehran, Iran
| | - Narges Mahmoodi
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza H Najafabadi
- Department of Medical Nanotechnology, School of Advanced Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Sagharjoghi Farahani
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Korosh Mansoori
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Sharekord University, Shahrekord, Iran
| | - Jafar Ai
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Zheng K, Wu J, Li W, Dippold D, Wan Y, Boccaccini AR. Incorporation of Cu-Containing Bioactive Glass Nanoparticles in Gelatin-Coated Scaffolds Enhances Bioactivity and Osteogenic Activity. ACS Biomater Sci Eng 2018; 4:1546-1557. [PMID: 33445312 DOI: 10.1021/acsbiomaterials.8b00051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bioactive glass scaffolds (BGS) of 45S5 composition exhibit desired bioactivity, osteogenesis, and angiogenesis potential, being promising biomaterials for bone repair/regeneration. Natural polymer-based coatings, e.g., gelatin coating, are effective to enhance the mechanical properties of BGS. However, the presence of a coating may reduce the bioactivity and osteogenesis activity of the scaffolds. To address the issue of reduced osteogenic properties induced by polymer coatings, in this study, we incorporated Cu-containing bioactive glass nanoparticles (Cu-BGN: 95SiO2-2.5CaO-2.5CuO, in mol %), as bioactive fillers, into the gelatin coating. The bioactivity (apatite-forming ability) of the gelatin coated BGS was improved after the incorporation of Cu-BGN in the coating. Hydroxyapatite could form on the Cu-BGN/gelatin nanocomposite coated BGS within 1 day of immersion in simulated body fluid. The osteogenic activity as indicated by the ALP activity of MC3T3-E1 cells on the coated BGS was also significantly enhanced after the incorporation of Cu-BGN. In addition, the incorporation of Cu-BGN in the coating did not affect the highly porous and interconnected pore structure of BGS while the mechanical improvement induced by the gelatin coating remained after the addition of Cu-BGN. The attachment of MC3T3-E1 cells on the scaffolds was not influenced by the presence of Cu-BGN in the gelatin coating, while the cell proliferation was enhanced. In conclusion, the incorporation of bioactive nanoparticles into polymer coating is presented as a solution to the reduced bioactivity and osteogenic activity of polymer coated 45S5 BGS. The Cu-BGN/gelatin nanocomposite coated BGS exhibiting high bioactivity, appropriate mechanical properties, and osteogenic potential are candidate biomaterials for bone tissue engineering/regeneration.
Collapse
Affiliation(s)
- Kai Zheng
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany
| | - Jingjing Wu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Wei Li
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland
| | - Dirk Dippold
- Institute of Polymer Materials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, Erlangen 91058, Germany
| | - Ying Wan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen 91058, Germany
| |
Collapse
|
9
|
Gao C, Peng S, Feng P, Shuai C. Bone biomaterials and interactions with stem cells. Bone Res 2017; 5:17059. [PMID: 29285402 PMCID: PMC5738879 DOI: 10.1038/boneres.2017.59] [Citation(s) in RCA: 353] [Impact Index Per Article: 44.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 10/15/2017] [Accepted: 10/23/2017] [Indexed: 12/31/2022] Open
Abstract
Bone biomaterials play a vital role in bone repair by providing the necessary substrate for cell adhesion, proliferation, and differentiation and by modulating cell activity and function. In past decades, extensive efforts have been devoted to developing bone biomaterials with a focus on the following issues: (1) developing ideal biomaterials with a combination of suitable biological and mechanical properties; (2) constructing a cell microenvironment with pores ranging in size from nanoscale to submicro- and microscale; and (3) inducing the oriented differentiation of stem cells for artificial-to-biological transformation. Here we present a comprehensive review of the state of the art of bone biomaterials and their interactions with stem cells. Typical bone biomaterials that have been developed, including bioactive ceramics, biodegradable polymers, and biodegradable metals, are reviewed, with an emphasis on their characteristics and applications. The necessary porous structure of bone biomaterials for the cell microenvironment is discussed, along with the corresponding fabrication methods. Additionally, the promising seed stem cells for bone repair are summarized, and their interaction mechanisms with bone biomaterials are discussed in detail. Special attention has been paid to the signaling pathways involved in the focal adhesion and osteogenic differentiation of stem cells on bone biomaterials. Finally, achievements regarding bone biomaterials are summarized, and future research directions are proposed.
Collapse
Affiliation(s)
- Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha, China
- Jiangxi University of Science and Technology, Ganzhou, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Liu Y, Ma Y, Zhang J, Xie Q, Wang Z, Yu S, Yuan Y, Liu C. MBG-Modified β-TCP Scaffold Promotes Mesenchymal Stem Cells Adhesion and Osteogenic Differentiation via a FAK/MAPK Signaling Pathway. ACS APPLIED MATERIALS & INTERFACES 2017; 9:30283-30296. [PMID: 28820575 DOI: 10.1021/acsami.7b02466] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The β-TCP scaffold has been widely used as a bone graft substitute, but the traditional PMMA molding method-induced undesirable mechanical strength and poor interconnectivity still have not been addressed until now. In this study, a MBG-based PU foam templating method was developed to fabricate β-TCP scaffolds with desirable microtopography. The MBG gel, as both binder and modifier, prepared by a modified sol-gel method with controlled viscosity is incorporated with β-TCP powder and thereafter is impregnated into PU foam. The resultant hybrid scaffolds exhibited interconnected macropores (200-500 μm) and distinctive micropores (0.2-1.5 μm), especially for the TCP/25MBG (with 25 wt % content MBG). As expected, the compression strength of β-TCP/MBG composite scaffolds was enhanced with increasing MBG content, and TCP/50MBG (with 50 wt % content MBG) exhibited almost 100-fold enhancement compared to the pure β-TCP. Intriguingly, the cell affinity and osteogenic capacity of rBMSCs were also dramatically improved the best on TCP/25MBG. Further investigation found that the subtle, grainy-like microtopography, not the chemical composition, of the TCP/25MBG favored the adsorption of Fn and expression of integrin α5β1 and further facilitated FA formation and the expression of p-FAK, following activation of the MAPK/ERK signaling pathway and ultimately upregulated expression of osteogenic genes. Further in vivo experiments confirmed the promoted osteogenesis of TCP/25MBG in vivo. The results suggest that such a novel MBG-based PU foam templating method offers new guidance to construct hierarchically porous scaffolds, and the prepared MBG-modified β-TCP scaffold will have great potential for future use in bone tissue regeneration.
Collapse
Affiliation(s)
| | | | | | - Qing Xie
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200011, People's Republic of China
| | - Zi Wang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai 200011, People's Republic of China
| | | | | | | |
Collapse
|
11
|
Gabbai-Armelin PR, Renno ACM, Crovace MC, Magri AMP, Zanotto ED, Peitl O, Leeuwenburgh SCG, Jansen JA, van den Beucken JJJP. Putty-like bone fillers based on CaP ceramics or Biosilicate® combined with carboxymethylcellulose: Characterization, optimization, and evaluation. J Biomater Appl 2017; 32:276-288. [DOI: 10.1177/0885328217713354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Paulo R Gabbai-Armelin
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of São Paulo, Santos, Brazil
- Department of Biomaterials (309), Radboudumc, Nijmegen, The Netherlands
- Department of Physiotherapy, Biotechnology Post-graduate Program, Federal University of São Carlos, São Carlos, Brazil
| | - Ana CM Renno
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of São Paulo, Santos, Brazil
| | - Murilo C Crovace
- Vitreous Materials Laboratory (LaMaV), Department of Material Engineering, Federal University of São Carlos, Sao Carlos, Brazil
| | - Angela MP Magri
- Laboratory of Biomaterials and Tissue Engineering, Department of Biosciences, Federal University of São Paulo, Santos, Brazil
- Department of Biomaterials (309), Radboudumc, Nijmegen, The Netherlands
| | - Edgar D Zanotto
- Vitreous Materials Laboratory (LaMaV), Department of Material Engineering, Federal University of São Carlos, Sao Carlos, Brazil
| | - Oscar Peitl
- Vitreous Materials Laboratory (LaMaV), Department of Material Engineering, Federal University of São Carlos, Sao Carlos, Brazil
| | | | - John A Jansen
- Department of Biomaterials (309), Radboudumc, Nijmegen, The Netherlands
| | | |
Collapse
|
12
|
Özarslan AC, Yücel S. Fabrication and characterization of strontium incorporated 3-D bioactive glass scaffolds for bone tissue from biosilica. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:350-357. [DOI: 10.1016/j.msec.2016.06.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/07/2016] [Accepted: 06/01/2016] [Indexed: 10/21/2022]
|
13
|
Tang W, Lin D, Yu Y, Niu H, Guo H, Yuan Y, Liu C. Bioinspired trimodal macro/micro/nano-porous scaffolds loading rhBMP-2 for complete regeneration of critical size bone defect. Acta Biomater 2016; 32:309-323. [PMID: 26689464 DOI: 10.1016/j.actbio.2015.12.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 12/17/2022]
Abstract
Critical size bone defects raise great demands for efficient bone substitutes. Mimicking the hierarchical porous architecture and specific biological cues of natural bone has been considered as an effective strategy to facilitate bone regeneration. Herein, a trimodal macro/micro/nano-porous scaffold loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) was developed. With mesoporous bioactive glass (MBG) as matrix, a trimodal MBG scaffold (TMS) with enhanced compressive strength (4.28 MPa, porosity of 80%) was prepared by a "viscosity controlling" and "homogeneous particle reinforcing" multi-template process. A 7.5 nm, 3D cubic (Im3m) mesoporous structure was tailored for a "size-matched entrapment" of rhBMP-2 to achieve sustained release and preserved bioactivity. RhBMP-2-loaded TMS (TMS/rhBMP-2) induced excellent cell attachment, ingrowth and osteogenesis in vitro. Further in vivo ectopic bone formation and orthotopic rabbit radius critical size defect results indicated that compared to the rhBMP-2-loaded bimodal macro/micro- and macro/nano-porous scaffolds, TMS/rhBMP-2 exhibited appealing bone regeneration capacity. Particularly, in critical size defect, complete bone reconstruction with rapid medullary cavity reunion and sclerotin maturity was observed on TMS/rhBMP-2. On the basis of these results, TMS/rhBMP-2 developed here represents a promising bone substitute for clinical application and the concepts proposed in this study might provide new thoughts on development of future orthopedic biomaterials. STATEMENT OF SIGNIFICANCE Limited self-regenerating capacity of human body makes the reconstruction of critical size bone defect a significant challenge. Current bone substitutes often exhibit undesirable therapeutic efficacy due to poor osteoconductivity or low osteoinductivity. Herein, TMS/rhBMP-2, an advanced mesoporous bioactive glass (MBG) scaffold with osteoconductive trimodal macro/micro/nano-porosity and osteoinductive rhBMP-2 delivery was developed. The preparative and mechanical problems of hierarchical MBG scaffold were solved without affecting its excellent biocompatibilities, and rhBMP-2 immobilization in sizematched mesopores was first explored. Combining structural and biological cues, TMS/rhBMP-2 achieved a complete regeneration with rapid medullary cavity reunion and sclerotin maturity in rabbit radius critical size defects. The design conceptions proposed in this study might provide new thoughts on development of future orthopedic biomaterials.
Collapse
Affiliation(s)
- Wei Tang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Dan Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yuanman Yu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Haoyi Niu
- Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
| | - Han Guo
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, PR China
| | - Yuan Yuan
- Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Changsheng Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China; Engineering Research Center for Biomaterials of Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
14
|
Theodorou GS, Kontonasaki E, Theocharidou A, Bakopoulou A, Bousnaki M, Hadjichristou C, Papachristou E, Papadopoulou L, Kantiranis NA, Chrissafis K, Paraskevopoulos KM, Koidis PT. Sol-Gel Derived Mg-Based Ceramic Scaffolds Doped with Zinc or Copper Ions: Preliminary Results on Their Synthesis, Characterization, and Biocompatibility. Int J Biomater 2016; 2016:3858301. [PMID: 26981124 PMCID: PMC4769780 DOI: 10.1155/2016/3858301] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/11/2016] [Indexed: 12/22/2022] Open
Abstract
Glass-ceramic scaffolds containing Mg have shown recently the potential to enhance the proliferation, differentiation, and biomineralization of stem cells in vitro, property that makes them promising candidates for dental tissue regeneration. An additional property of a scaffold aimed at dental tissue regeneration is to protect the regeneration process against oral bacteria penetration. In this respect, novel bioactive scaffolds containing Mg(2+) and Cu(2+) or Zn(2+), ions known for their antimicrobial properties, were synthesized by the foam replica technique and tested regarding their bioactive response in SBF, mechanical properties, degradation, and porosity. Finally their ability to support the attachment and long-term proliferation of Dental Pulp Stem Cells (DPSCs) was also evaluated. The results showed that conversely to their bioactive response in SBF solution, Zn-doped scaffolds proved to respond adequately regarding their mechanical strength and to be efficient regarding their biological response, in comparison to Cu-doped scaffolds, which makes them promising candidates for targeted dental stem cell odontogenic differentiation and calcified dental tissue engineering.
Collapse
Affiliation(s)
- Georgios S. Theodorou
- Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleana Kontonasaki
- Dentistry Department, Laboratory of Fixed Prosthesis and Implant Prosthodontics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Anna Theocharidou
- Dentistry Department, Laboratory of Fixed Prosthesis and Implant Prosthodontics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athina Bakopoulou
- Dentistry Department, Laboratory of Fixed Prosthesis and Implant Prosthodontics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Maria Bousnaki
- Dentistry Department, Laboratory of Fixed Prosthesis and Implant Prosthodontics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Christina Hadjichristou
- Dentistry Department, Laboratory of Fixed Prosthesis and Implant Prosthodontics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleni Papachristou
- Dentistry Department, Laboratory of Fixed Prosthesis and Implant Prosthodontics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Lambrini Papadopoulou
- Department of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | | | | | - Petros T. Koidis
- Dentistry Department, Laboratory of Fixed Prosthesis and Implant Prosthodontics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
15
|
Montazerian M, Dutra Zanotto E. History and trends of bioactive glass-ceramics. J Biomed Mater Res A 2016; 104:1231-49. [DOI: 10.1002/jbm.a.35639] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/27/2015] [Accepted: 12/22/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Maziar Montazerian
- Department of Materials Engineering (DEMa); Center for Research, Technology and Education in Vitreous Materials (CeRTEV), Federal University of São Carlos (UFSCar); São Carlos SP 13.565-905 Brazil
| | - Edgar Dutra Zanotto
- Department of Materials Engineering (DEMa); Center for Research, Technology and Education in Vitreous Materials (CeRTEV), Federal University of São Carlos (UFSCar); São Carlos SP 13.565-905 Brazil
| |
Collapse
|
16
|
Li W, Wang H, Ding Y, Scheithauer EC, Goudouri OM, Grünewald A, Detsch R, Agarwal S, Boccaccini AR. Antibacterial 45S5 Bioglass®-based scaffolds reinforced with genipin cross-linked gelatin for bone tissue engineering. J Mater Chem B 2015; 3:3367-3378. [DOI: 10.1039/c5tb00044k] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
45S5 Bioglass® (BG) scaffolds with high porosity (>90%) were coated with genipin cross-linked gelatin (GCG) and further incorporated with poly(p-xylyleneguanidine) hydrochloride (PPXG).
Collapse
Affiliation(s)
- Wei Li
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Hui Wang
- University of Bayreuth
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces
- 95440 Bayreuth
- Germany
| | - Yaping Ding
- Institute of Polymer Materials
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Ellen C. Scheithauer
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Ourania-Menti Goudouri
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Alina Grünewald
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Rainer Detsch
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| | - Seema Agarwal
- University of Bayreuth
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces
- 95440 Bayreuth
- Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen-Nuremberg
- 91058 Erlangen
- Germany
| |
Collapse
|
17
|
Mashhadikhan M, Soleimani M, Parivar K, Yaghmaei P. ADSCs on PLLA/PCL Hybrid Nanoscaffold and Gelatin Modification: Cytocompatibility and Mechanical Properties. Avicenna J Med Biotechnol 2015; 7:32-8. [PMID: 25926950 PMCID: PMC4388888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 05/17/2014] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Development of tissue engineering and regenerative medicine has led to designing scaffolds and their modification to provide a better microenvironment which mimics the natural niche of the cells. Gelatin surface modification was applied to improve scaffold flexibility and cytocompatibility. METHODS PLLA/PCL aligned fibrous scaffold was fabricated using electrospinning method. ADSCs were seeded after O2 plasma treatment and gelatin coating of the scaffolds. The morphological and mechanical properties of blends were assessed by Scanning Electron Microscopy (SEM), tensile test and ATR-FTIR. The cells proliferation was evaluated by MTT assay. RESULTS Based on the results, it is supposed that gelatin coating is a brilliant method of surface modification which significantly increases the mechanical properties of scaffold without any changes on the construction or on the direction of nanofibers which conducts cell's elongation. MTT analysis exhibited that ADSCs attachment, viability and proliferation significantly (p < 0.05) increased after gelatin treatment. CONCLUSION Gelatin surface modification is a highly beneficial method to improve cytocompatibility, flexibility and mechanical features of the scaffolds which doesn't affect the nanofibers construction. Proliferation of Adipose Derived Stem Cells (ADSCs) as a remarkable source of stem cells was investigated for the first time on PLLA/PCL hybrid scaffold.
Collapse
Affiliation(s)
- Maedeh Mashhadikhan
- Department of Biology, Faculty of Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran,Corresponding author: Maedeh Mashhadikhan, Ph.D., Department of Biology, Faculty of Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran. Tel: +98 183 641974, Fax: +98 182 884508. E-mail:,
| | - Masoud Soleimani
- Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Faculty of Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parichehr Yaghmaei
- Department of Biology, Faculty of Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
18
|
Govindan R, Kumar GS, Girija EK. Polymer coated phosphate glass/hydroxyapatite composite scaffolds for bone tissue engineering applications. RSC Adv 2015. [DOI: 10.1039/c5ra09258b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biopolymer coated PG/HA composite scaffolds were prepared with enhanced mechanical properties for bone tissue engineering applications.
Collapse
Affiliation(s)
- R. Govindan
- Department of Physics
- Periyar University
- Salem 636 011
- India
| | - G. Suresh Kumar
- Department of Physics
- K. S. Rangasamy College of Arts and Science (Autonomous)
- Tiruchengode 637 215
- India
| | - E. K. Girija
- Department of Physics
- Periyar University
- Salem 636 011
- India
| |
Collapse
|
19
|
Philippart A, Boccaccini AR, Fleck C, Schubert DW, Roether JA. Toughening and functionalization of bioactive ceramic and glass bone scaffolds by biopolymer coatings and infiltration: a review of the last 5 years. Expert Rev Med Devices 2014; 12:93-111. [PMID: 25331196 DOI: 10.1586/17434440.2015.958075] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inorganic scaffolds with high interconnected porosity based on bioactive glasses and ceramics are prime candidates for applications in bone tissue engineering. These materials however exhibit relatively low fracture strength and high brittleness. A simple and effective approach to improve the toughness is to combine the basic scaffold structure with polymer coatings or through the formation of interpenetrating polymer-bioactive ceramic microstructures. The polymeric phase can additionally serve as a carrier for growth factors and therapeutic drugs, thus adding biological functionalities. The present paper reviews the state-of-the art in the field of polymer coated and infiltrated bioactive inorganic scaffolds. Based on the notable combination of bioactivity, improved mechanical properties and drug or growth factor delivery capability, this scaffold type is a candidate for bone and osteochondral regeneration strategies. Remaining challenges for the improvement of the materials are discussed and opportunities to broaden the application potential of this scaffold type are also highlighted.
Collapse
|
20
|
Li JJ, Kaplan DL, Zreiqat H. Scaffold-based regeneration of skeletal tissues to meet clinical challenges. J Mater Chem B 2014; 2:7272-7306. [PMID: 32261954 DOI: 10.1039/c4tb01073f] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The management and reconstruction of damaged or diseased skeletal tissues have remained a significant global healthcare challenge. The limited efficacy of conventional treatment strategies for large bone, cartilage and osteochondral defects has inspired the development of scaffold-based tissue engineering solutions, with the aim of achieving complete biological and functional restoration of the affected tissue in the presence of a supporting matrix. Nevertheless, significant regulatory hurdles have rendered the clinical translation of novel scaffold designs to be an inefficient process, mainly due to the difficulties of arriving at a simple, reproducible and effective solution that does not rely on the incorporation of cells and/or bioactive molecules. In the context of the current clinical situation and recent research advances, this review will discuss scaffold-based strategies for the regeneration of skeletal tissues, with focus on the contribution of bioactive ceramic scaffolds and silk fibroin, and combinations thereof, towards the development of clinically viable solutions.
Collapse
Affiliation(s)
- Jiao Jiao Li
- Biomaterials and Tissue Engineering Research Unit, School of AMME, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
21
|
Gabbai-Armelin PR, Cardoso DA, Zanotto ED, Peitl O, Leeuwenburgh SCG, Jansen JA, Renno ACM, van den Beucken JJJP. Injectable composites based on biosilicate® and alginate: handling and in vitro characterization. RSC Adv 2014. [DOI: 10.1039/c4ra07522f] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Feng P, Deng Y, Duan S, Gao C, Shuai C, Peng S. Liquid phase sintered ceramic bone scaffolds by combined laser and furnace. Int J Mol Sci 2014; 15:14574-90. [PMID: 25196598 PMCID: PMC4159869 DOI: 10.3390/ijms150814574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/29/2014] [Accepted: 08/14/2014] [Indexed: 11/25/2022] Open
Abstract
Fabrication of mechanically competent bioactive scaffolds is a great challenge in bone tissue engineering. In this paper, β-tricalcium phosphate (β-TCP) scaffolds were successfully fabricated by selective laser sintering combined with furnace sintering. Bioglass 45S5 was introduced in the process as liquid phase in order to improve the mechanical and biological properties. The results showed that sintering of β-TCP with the bioglass revealed some features of liquid phase sintering. The optimum amount of 45S5 was 5 wt %. At this point, the scaffolds were densified without defects. The fracture toughness, compressive strength and stiffness were 1.67 MPam1/2, 21.32 MPa and 264.32 MPa, respectively. Bone like apatite layer was formed and the stimulation for apatite formation was increased with increase in 45S5 content after soaking in simulated body fluid, which indicated that 45S5 could improve the bioactivity. Furthermore, MG-63 cells adhered and spread well, and proliferated with increase in the culture time.
Collapse
Affiliation(s)
- Pei Feng
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
| | - Youwen Deng
- Department of Spine Surgery, the Second Xiangya Hospital of Central South University, Changsha 410011, China.
| | - Songlin Duan
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
| | - Chengde Gao
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
| | - Cijun Shuai
- State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha 410083, China.
| | - Shuping Peng
- Cancer Research Institute, Central South University, Changsha 410078, China.
| |
Collapse
|