1
|
Chong WK, Ng BJ, Tan LL, Chai SP. A compendium of all-in-one solar-driven water splitting using ZnIn 2S 4-based photocatalysts: guiding the path from the past to the limitless future. Chem Soc Rev 2024; 53:10080-10146. [PMID: 39222069 DOI: 10.1039/d3cs01040f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Photocatalytic water splitting represents a leading approach to harness the abundant solar energy, producing hydrogen as a clean and sustainable energy carrier. Zinc indium sulfide (ZIS) emerges as one of the most captivating candidates attributed to its unique physicochemical and photophysical properties, attracting much interest and holding significant promise in this domain. To develop a highly efficient ZIS-based photocatalytic system for green energy production, it is paramount to comprehensively understand the strengths and limitations of ZIS, particularly within the framework of solar-driven water splitting. This review elucidates the three sequential steps that govern the overall efficiency of ZIS with a sharp focus on the mechanisms and inherent drawbacks associated with each phase, including commonly overlooked aspects such as the jeopardising photocorrosion issue, the neglected oxidative counter surface reaction kinetics in overall water splitting, the sluggish photocarrier dynamics and the undesired side redox reactions. Multifarious material design strategies are discussed to specifically mitigate the formidable limitations and bottleneck issues. This review concludes with the current state of ZIS-based photocatalytic water splitting systems, followed by personal perspectives aimed at elevating the field to practical consideration for future endeavours towards sustainable hydrogen production through solar-driven water splitting.
Collapse
Affiliation(s)
- Wei-Kean Chong
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, 47500, Malaysia.
| | - Boon-Junn Ng
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang, Selangor, 43900, Malaysia
| | - Lling-Lling Tan
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, 47500, Malaysia.
| | - Siang-Piao Chai
- Multidisciplinary Platform of Advanced Engineering, Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor, 47500, Malaysia.
| |
Collapse
|
2
|
Gordon MN, Junkers LS, Googasian JS, Mathiesen JK, Zhan X, Morgan DG, Jensen KMØ, Skrabalak SE. Insights into the nucleation and growth of BiOCl nanoparticles by in situ X-ray pair distribution function analysis and in situ liquid cell TEM. NANOSCALE 2024; 16:15544-15557. [PMID: 39028007 DOI: 10.1039/d4nr01749h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The synthesis of bismuth oxyhalides as defined nanostructures is hindered by their fast nucleation and growth in aqueous solutions. Using our recently developed single-source precursor, the formation of bismuth oxychloride in such solutions can be slowed significantly. As reported herein, this advance enables BiOCl formation to be investigated by in situ X-ray total scattering and in situ liquid cell transmission electron microscopy. In situ pair distribution function analysis of X-ray total scattering data reveals the local order of atomic structures throughout the synthesis, while in situ liquid cell transmission electron microscopy allows for tracking the growth of individual nanoparticles. Through this work, the precursor complex is shown to give rise to BiOCl upon heating in solution without the observation of structurally distinct intermediates. The emerging nanoparticles have a widened interlayer spacing, which moderately decreases as the particles grow. Mechanistic insights into the formation of bismuth oxyhalide nanoparticles, including the absence of distinct intermediates within the available time resolution, will help facilitate future design of controlled BiOX nanostructures.
Collapse
Affiliation(s)
- Matthew N Gordon
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Laura S Junkers
- Department of Chemistry and Nanoscience Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Jack S Googasian
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| | - Jette K Mathiesen
- Department of Chemistry and Nanoscience Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Xun Zhan
- Electron Microscopy Center, Indiana University, Bloomington, Indiana 47405, USA
| | - David Gene Morgan
- Electron Microscopy Center, Indiana University, Bloomington, Indiana 47405, USA
| | - Kirsten M Ø Jensen
- Department of Chemistry and Nanoscience Center, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Sara E Skrabalak
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
3
|
Gabov A, Kato D, Ubukata H, Aso R, Kakudou N, Fujita K, Suzuki H, Tomita O, Saeki A, Abe R, Karazhanov SZ, Kageyama H. Internal strain-driven bond manipulation and band engineering in Bi 2-x Sb x YO 4Cl photocatalysts with triple fluorite layers. Chem Sci 2024; 15:11856-11864. [PMID: 39092095 PMCID: PMC11290426 DOI: 10.1039/d4sc02092h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/07/2024] [Indexed: 08/04/2024] Open
Abstract
In extended solid-state materials, the manipulation of chemical bonds through redox reactions often leads to the emergence of interesting properties, such as unconventional superconductivity, which can be achieved by adjusting the Fermi level through, e.g., intercalation and pressure. Here, we demonstrate that the internal 'biaxial strain' in tri-layered fluorite oxychloride photocatalysts can regulate bond formation and cleavage without redox processes. We achieve this by synthesizing the isovalent solid solution Bi2-x Sb x YO4Cl, which undergoes a structural phase transition from the ideal Bi2YO4Cl structure to the Sb2YO4Cl structure with (Bi,Sb)4O8 rings. Initially, substitution of smaller Sb induces expected lattice contraction, but further substitution beyond x > 0.6 triggers an unusual lattice expansion before the phase transition at x = 1.5. Detailed analysis reveals structural instability at high x values, characterized by Sb-O underbonding, which is attributed to tensile strain exerted from the inner Y sublayer to the outer (Bi,Sb)O sublayer within the triple fluorite block - a concept well-recognized in thin film studies. This concept also explains the formation of zigzag Bi-O chains in Bi2MO4Cl (M = Bi, La). The Sb substitution in Bi2-x Sb x YO4Cl elevates the valence band maximum, resulting in a minimized bandgap of 2.1 eV around x = 0.6, which is significantly smaller than those typically observed in oxychlorides, allowing the absorption of a wider range of light wavelengths. Given the predominance of materials with a double fluorite layer in previous studies, our findings highlight the potential of compounds endowed with triple or thicker fluorite layers as a novel platform for band engineering that utilizes biaxial strain from the inner layer(s) to finely control their electronic structures.
Collapse
Affiliation(s)
- Artem Gabov
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) 31 Kashirskoye Shosse Moscow 115409 Russia
| | - Daichi Kato
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
| | - Hiroki Ubukata
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
| | - Ryotaro Aso
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University Fukuoka 819-0395 Japan
| | - Naoji Kakudou
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
| | - Koji Fujita
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
| | - Hajime Suzuki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
| | - Osamu Tomita
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Osaka 565-0871 Japan
| | - Ryu Abe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
| | - Smagul Zh Karazhanov
- Department for Solar Energy Materials and Technologies, Institute for Energy Technology Kjeller NO 2027 Norway
| | - Hiroshi Kageyama
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
| |
Collapse
|
4
|
Kato D, Suzuki H, Abe R, Kageyama H. Band engineering of layered oxyhalide photocatalysts for visible-light water splitting. Chem Sci 2024; 15:11719-11736. [PMID: 39092126 PMCID: PMC11290441 DOI: 10.1039/d4sc02093f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
The band structure offers fundamental information on electronic properties of solid state materials, and hence it is crucial for solid state chemists to understand and predict the relationship between the band structure and electronic structure to design chemical and physical properties. Here, we review layered oxyhalide photocatalysts for water splitting with a particular emphasis on band structure control. The unique feature of these materials including Sillén and Sillén-Aurivillius oxyhalides lies in their band structure including a remarkably high oxygen band, allowing them to exhibit both visible light responsiveness and photocatalytic stability unlike conventional mixed anion compounds, which show good light absorption, but frequently encounter stability issues. For band structure control, simple strategies effective in mixed-anion compounds, such as anion substitution forming high energy p orbitals in accordance with its electronegativity, is not effective for oxyhalides with high oxygen bands. We overview key concepts for band structure control of oxyhalide photocatalysts such as lone-pair interactions and electrostatic interactions. The control of the band structure of inorganic solid materials is a crucial challenge across a wide range of materials chemistry fields, and the insights obtained by the development of oxyhalide photocatalysts are expected to provide knowledge for diverse materials chemistry.
Collapse
Affiliation(s)
- Daichi Kato
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Hajime Suzuki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Ryu Abe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| | - Hiroshi Kageyama
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
5
|
Sun X, Yang J. A Mini Review on Borate Photocatalysts for Water Decomposition: Synthesis, Structure, and Further Challenges. Molecules 2024; 29:1549. [PMID: 38611829 PMCID: PMC11013113 DOI: 10.3390/molecules29071549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The development of novel photocatalysts, both visible and UV-responsive, for water decomposition reactions is of great importance. Here we focused on the application of the borates as photocatalysts in water decomposition reactions, including water splitting reaction, hydrogen evolution half-reaction, and oxygen evolution half-reaction. In addition, the rates of photocatalytic hydrogen evolution and oxygen evolution by these borate photocatalysts in different water decomposition reactions were summarized. Further, the review summarized the synthetic chemistry and structural features of existing borate photocatalysts for water decomposition reactions. Synthetic chemistry mainly includes high-temperature solid-state method, sol-gel method, precipitation method, hydrothermal method, boric acid flux method, and high-pressure method. Next, we summarized the crystal structures of the borate photocatalysts, with a particular focus on the form of the B-O unit and metal-oxygen polyhedral in the borates, and used this to classify borate photocatalysts, which are rarely mentioned in the current photocatalysis literature. Finally, we analyzed the relationship between the structural features of the borate photocatalysts and photocatalytic performance to discuss the further challenges faced by the borate photocatalysts for water decomposition reactions.
Collapse
Affiliation(s)
- Xiaorui Sun
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China;
| | - Jia Yang
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China;
- MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
- Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Universities Key Laboratory of Nonferrous Metal Oxide Electronic Functional Materials and Devices, Guilin 541004, China
| |
Collapse
|
6
|
Zhang Q, Wang Y, Jia Y, Yan W, Li Q, Zhou J, Wu K. Engineering the Electronic Structure towards Visible Lights Photocatalysis of CaTiO 3 Perovskites by Cation (La/Ce)-Anion (N/S) Co-Doping: A First-Principles Study. Molecules 2023; 28:7134. [PMID: 37894613 PMCID: PMC10608951 DOI: 10.3390/molecules28207134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Cation-anion co-doping has proven to be an effective method of improving the photocatalytic performances of CaTiO3 perovskites. In this regard, (La/Ce-N/S) co-doped CaTiO3 models were investigated for the first time using first-principles calculations based on a supercell of 2 × 2 × 2 with La/Ce concentrations of 0.125, 0.25, and 0.375. The energy band structure, density of states, charge differential density, electron-hole effective masses, optical properties, and the water redox potential were calculated for various models. According to our results, (La-S)-doped CaTiO3 with a doping ratio of 0.25 (LCOS1-0.25) has superior photocatalytic hydrolysis properties due to the synergistic performances of its narrow band gap, fast carrier mobility, and superb ability to absorb visible light. Apart from the reduction of the band gap, the introduction of intermediate energy levels by La and Ce within the band gap also facilitates the transition of excited electrons from valence to the conduction band. Our calculations and findings provide theoretical insights and solid predictions for discovering CaTiO3 perovskites with excellent photocatalysis performances.
Collapse
Affiliation(s)
- Qiankai Zhang
- School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710048, China
- Xi’an Key Laboratory of Interconnected Sensing and Intelligent Diagnosis for Electrical Equipment, Xi’an Polytechnic University, Xi’an 710048, China
| | - Yang Wang
- School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710048, China
- Xi’an Key Laboratory of Interconnected Sensing and Intelligent Diagnosis for Electrical Equipment, Xi’an Polytechnic University, Xi’an 710048, China
| | - Yonggang Jia
- School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710048, China
- Xi’an Key Laboratory of Interconnected Sensing and Intelligent Diagnosis for Electrical Equipment, Xi’an Polytechnic University, Xi’an 710048, China
| | - Wenchao Yan
- School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710048, China
- Xi’an Key Laboratory of Interconnected Sensing and Intelligent Diagnosis for Electrical Equipment, Xi’an Polytechnic University, Xi’an 710048, China
| | - Qinghao Li
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jun Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China
| | - Kai Wu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
7
|
Chen K, Xiao J, Hisatomi T, Domen K. Transition-metal (oxy)nitride photocatalysts for water splitting. Chem Sci 2023; 14:9248-9257. [PMID: 37712021 PMCID: PMC10498681 DOI: 10.1039/d3sc03198e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/27/2023] [Indexed: 09/16/2023] Open
Abstract
Solar-driven water splitting based on particulate semiconductor materials is studied as a technology for green hydrogen production. Transition-metal (oxy)nitride photocatalysts are promising materials for overall water splitting (OWS) via a one- or two-step excitation process because their band structure is suitable for water splitting under visible light. Yet, these materials suffer from low solar-to-hydrogen energy conversion efficiency (STH), mainly because of their high defect density, low charge separation and migration efficiency, sluggish surface redox reactions, and/or side reactions. Their poor thermal stability in air and under the harsh nitridation conditions required to synthesize these materials makes further material improvements difficult. Here, we review key challenges in the two different OWS systems and highlight some strategies recently identified as promising for improving photocatalytic activity. Finally, we discuss opportunities and challenges facing the future development of transition-metal (oxy)nitride-based OWS systems.
Collapse
Affiliation(s)
- Kaihong Chen
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University Nagano-shi Nagano 380-8553 Japan
| | - Jiadong Xiao
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University Nagano-shi Nagano 380-8553 Japan
| | - Takashi Hisatomi
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University Nagano-shi Nagano 380-8553 Japan
- PRESTO, JST 4-17-1 Wakasato, Nagano-shi Nagano 380-8553 Japan
| | - Kazunari Domen
- Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University Nagano-shi Nagano 380-8553 Japan
- Office of University Professors, The University of Tokyo 2-11-16 Yayoi, Bunkyo-ku Tokyo 113-8656 Japan
- Department of Chemistry, Kyung Hee University Seoul 130-701 Republic of Korea
| |
Collapse
|
8
|
Akrami S, Ishihara T, Fuji M, Edalati K. Advanced Photocatalysts for CO 2 Conversion by Severe Plastic Deformation (SPD). MATERIALS (BASEL, SWITZERLAND) 2023; 16:1081. [PMID: 36770088 PMCID: PMC9919025 DOI: 10.3390/ma16031081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Excessive CO2 emission from fossil fuel usage has resulted in global warming and environmental crises. To solve this problem, the photocatalytic conversion of CO2 to CO or useful components is a new strategy that has received significant attention. The main challenge in this regard is exploring photocatalysts with high efficiency for CO2 photoreduction. Severe plastic deformation (SPD) through the high-pressure torsion (HPT) process has been effectively used in recent years to develop novel active catalysts for CO2 conversion. These active photocatalysts have been designed based on four main strategies: (i) oxygen vacancy and strain engineering, (ii) stabilization of high-pressure phases, (iii) synthesis of defective high-entropy oxides, and (iv) synthesis of low-bandgap high-entropy oxynitrides. These strategies can enhance the photocatalytic efficiency compared with conventional and benchmark photocatalysts by improving CO2 adsorption, increasing light absorbance, aligning the band structure, narrowing the bandgap, accelerating the charge carrier migration, suppressing the recombination rate of electrons and holes, and providing active sites for photocatalytic reactions. This article reviews recent progress in the application of SPD to develop functional ceramics for photocatalytic CO2 conversion.
Collapse
Affiliation(s)
- Saeid Akrami
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Tajimi 507-0071, Japan
| | - Tatsumi Ishihara
- WPI International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
- Mitsui Chemicals, Inc.—Carbon Neutral Research Center (MCI-CNRC), Kyushu University, Fukuoka 819-0395, Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, Fukuoka 819-0395, Japan
| | - Masayoshi Fuji
- Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Tajimi 507-0071, Japan
- Advanced Ceramics Research Center, Nagoya Institute of Technology, Tajimi 507-0071, Japan
| | - Kaveh Edalati
- WPI International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka 819-0395, Japan
- Mitsui Chemicals, Inc.—Carbon Neutral Research Center (MCI-CNRC), Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
9
|
Riaz A, Tahir MB, ur Rehman J, Sagir M, Yousef ES, Alrobei H, Alzaid M. Tailoring 2D carbides and nitrides based photo-catalytic nanomaterials for energy production and storage: a review. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2021-3158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
2D carbides and nitrides-based nanomaterials because of their unusual physical and chemical properties and a vast range of energy-storage applications have attracted tremendous attention. However, 2D carbides and nitrides-based nanomaterials and their corresponding composites have many intrinsic constraints in terms of energy-storage applications. The nano-engineering of these 2D materials is widely investigated, to improve their performance for practical application. In this Review article, the current progress and research on 2D carbides and nitrides-based nanostructures are presented and debated, concentrating on their methods of preparation, and energy conservation applications for example Lithium-ion-battery, supercapacitors, and Sodium-ion-battery. In conclusion, the problems, and recommendations essential to be discussed for the progress of these 2D nanomaterials for energy-storage applications based on carbides and nitrides are displayed.
Collapse
Affiliation(s)
- Asma Riaz
- Institute of Physics, Khawaja Fareed University of Engineering and Information Technology Rahim Yar Khan , Rahim Yar Khan 64200 , Pakistan
| | - Muhammad Bilal Tahir
- Institute of Physics, Khawaja Fareed University of Engineering and Information Technology Rahim Yar Khan , Rahim Yar Khan 64200 , Pakistan
- Center for Innovative Material Research , Khawaja Fareed University of Engineering and Information Technology Rahim Yar Khan , Rahim Yar Khan 64200 , Pakistan
| | - Jalil ur Rehman
- Institute of Physics, Khawaja Fareed University of Engineering and Information Technology Rahim Yar Khan , Rahim Yar Khan 64200 , Pakistan
| | - Muhammad Sagir
- Institute of Chemical Engineering, Khawaja Fareed University of Engineering and Information Technology Rahim Yar Khan , Rahim Yar Khan 64200 , Pakistan
| | - El Sayed Yousef
- Research Center for Advanced Materials Science (RCAMS) , King Khalid University , Abha 61413, P. O. Box 9004 , Saudi Arabia
- Physics Dep., Faculty of Science , King Khalid University , P. O. Box 9004 , Abha , Saudi Arabia
| | - Hussein Alrobei
- Department of Mechanical Engineering, College of Engineering , Prince Sattam Bin Abdulaziz University , Al Kharj , Saudi Arabia
| | - Meshal Alzaid
- Physics Department, College of Science , Jouf University , P.O. Box: 2014 , Sakaka , Saudi Arabia
| |
Collapse
|
10
|
Recent Advances in Ternary Metal Oxides Modified by N Atom for Photocatalysis. Catalysts 2022. [DOI: 10.3390/catal12121568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ternary metal oxides (TMOs) with flexible band structures are of significant potential in the field of photocatalysis. The efficient utilization of renewable and green solar energy is of great importance to developing photocatalysts. To date, a wide range of TMOs systems has been developed as photocatalysts for water and air purification, but their practical applications in visible light-assisted chemical reactions are hindered mainly by its poor visible light absorption capacity. Introduction of N atoms into TMOs can narrow the band-gap energy to a lower value, enhance the absorption of visible light and suppress the recombination rate of photogenerated electrons and holes, thus improving the photocatalytic performance. This review summarizes the recent research on N-modified TMOs, including the influence of N doping amounts, N doping sites, and N-induced phase transformation. The introduced N greatly tuned the optical properties, electronic structure, and photocatalytic activity of the TMOs. The optimal N concentration and the influence of N doping sites are investigated. The substitutional N and interstitial N contributed differently to the band gap and electron transport. The introduced N can tune the vacancies in TMOs due to the charge compensation, which is vital for inducing different activity and selectivity. The topochemical ammonolysis process can convert TMOs to oxynitride with visible light absorption. By altering the band structures, these oxynitride materials showed enhanced photocatalytic activity. This review provides an overview of recent advances in N-doped TMOs and oxynitrides derived from TMOs as photocatalysts for environmental applications, as well as some relevant pointers for future burgeoning research development.
Collapse
|
11
|
Effect of Co-catalyst CdS on the Photocatalytic Performance of ZnMoO4 for Hydrogen Production. CATALYSIS SURVEYS FROM ASIA 2022. [DOI: 10.1007/s10563-022-09357-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Zhang Y, Han W, Ding L, Fang F, Xie Z, Liu X, Chang K. Insight into the regulation between crystallinity and oxygen vacancies of BiVO 4 affecting the photocatalytic oxygen evolution activity. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00574c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The oxygen defects and crystallinity of BiVO4 were matched and regulated by heat treatment, which improved the crystallinity and the photocorrosion resistance, and ensured the existence of certain oxygen defects as reactive sites to improve the oxygen evolution activity.
Collapse
Affiliation(s)
- Yaqian Zhang
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Wenjun Han
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Lingling Ding
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Fan Fang
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Zhengzheng Xie
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Xianglei Liu
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Kun Chang
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| |
Collapse
|
13
|
Zhou K, Fo Y, Zhou X. First-principles calculations of the structural, energetic, electronic, optical, and photocatalytic properties of BaTaO 2N low-index surfaces. NEW J CHEM 2022. [DOI: 10.1039/d2nj01191c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present here the influence of different surface terminations on the electronic, optical, and photocatalytic properties of trans and cis BaTaO2N using density functional theory calculations.
Collapse
Affiliation(s)
- Keyu Zhou
- College of Environment and Chemical Engineering, Dalian University, Dalian 116622, Liaoning, China
| | - Yumeng Fo
- College of Environment and Chemical Engineering, Dalian University, Dalian 116622, Liaoning, China
| | - Xin Zhou
- College of Environment and Chemical Engineering, Dalian University, Dalian 116622, Liaoning, China
| |
Collapse
|
14
|
Lwin HM, Zhan W, Jia F, Song S. Microwave-assisted hydrothermal synthesis of MoS 2-Ag 3PO 4 nanocomposites as visible light photocatalyst for the degradation of tetracycline hydrochloride. ENVIRONMENTAL TECHNOLOGY 2022; 43:149-162. [PMID: 32663123 DOI: 10.1080/21622515.2020.1782478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
In the modern era, industrialization has facilitated the human life but produced several severe pollutants as well that are hazardous in nature. Thus the degradation of these hazardous material has drawn considerable attention. This study deals with the synthesis of MoS2/Ag3PO4 heterojunction nanocomposite with 1-50% wt. using a microwave-assisted hydrothermal process as well as photocatalytic activity of tetracycline hydrochloride (TCH) degradation has been analysed. The compositional properties of nanocomposite catalysts have been studied through X-ray diffraction, Fourier transform infrared, X-ray photoelectron spectroscopy as well as structural and morphological studies were conducted through scanning electron microscopy, transmission electron microscopy, Brunauer-Emmet-Teller, photoluminescence, N2 physical adsorption, UV-vis diffuse reflectance spectroscopy. This provides an excellent and efficient mechanism for the remediation of residual organic contaminants under visible light that could be used to decontaminate the atmosphere.
Collapse
Affiliation(s)
- Hnin May Lwin
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan, People's Republic of China
- Department of Industrial Chemistry, West Yangon University, Yangon, Myanmar
| | - Weiquan Zhan
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan, People's Republic of China
| | - Feifei Jia
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan, People's Republic of China
| | - Shaoxian Song
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan, People's Republic of China
| |
Collapse
|
15
|
Sulfide-Based Photocatalysts Using Visible Light, with Special Focus on In2S3, SnS2 and ZnIn2S4. Catalysts 2021. [DOI: 10.3390/catal12010040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sulfides are frequently used as photocatalysts, since they absorb visible light better than many oxides. They have the disadvantage of being more easily photocorroded. This occurs mostly in oxidizing conditions; therefore, they are commonly used instead in reduction processes, such as CO2 reduction to fuels or H2 production. Here a summary will be presented of a number of sulfides used in several photocatalytic processes; where appropriate, some recent reviews will be presented of their behaviour. Results obtained in recent years by our group using some octahedral sulfides will be shown, showing how to determine their wavelength-dependent photocatalytic activities, checking their mechanisms in some cases, and verifying how they can be modified to extend their wavelength range of activity. It will be shown here as well how using photocatalytic or photoelectrochemical setups, by combining some enzymes with these sulfides, allows achieving the photo-splitting of water into H2 and O2, thus constituting a scheme of artificial photosynthesis.
Collapse
|
16
|
Zhong C, Kato D, Ogawa K, Tassel C, Izumi F, Suzuki H, Kawaguchi S, Saito T, Saeki A, Abe R, Kageyama H. Bi 4AO 6Cl 2 ( A = Ba, Sr, Ca) with Double and Triple Fluorite Layers for Visible-Light Water Splitting. Inorg Chem 2021; 60:15667-15674. [PMID: 34596398 DOI: 10.1021/acs.inorgchem.1c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Layered oxyhalides containing double or triple fluorite layers are promising visible-light-responsive water-splitting photocatalysts with unique band structures. Herein, we report on the synthesis, structure, and photocatalytic property of Bi4BaO6Cl2 (I4/mmm) with alternating double (Bi2O2) and triple (Bi2BaO4) fluorite layers, which was extracted from the crystallographic database on the basis of Madelung potential calculations. Rietveld refinements from powder X-ray and neutron diffraction data revealed the presence of cationic disorder between Bi2O2 and Bi2BaO4 layers, leading to electrostatic stabilization. DFT calculations suggested that photogenerated electrons and holes flow through the double and triple layers, respectively, which may suppress electron-hole recombination. We expanded this double-triple system to include Bi4CaO6Cl2 and Bi4SrO6Cl2 with orthorhombic distortions and different degrees of cationic disorder, which allow band gap tuning. All the double-triple compounds Bi4AO6Cl2 showed stable water-splitting photocatalysis in the presence of a sacrificial reagent.
Collapse
Affiliation(s)
- Chengchao Zhong
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Daichi Kato
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kanta Ogawa
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Cédric Tassel
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Fujio Izumi
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hajime Suzuki
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shogo Kawaguchi
- SPring-8, Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
| | - Takashi Saito
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tokai, Ibaraki 319-1106, Japan.,Materials and Life Science Division, J-PARC Center, Tokai, Naka, Ibaraki 319-1195, Japan.,SOKENDAI (School of High Energy Accelerator Science, the Graduate University for Advanced Studies), Tokai, Ibaraki 319-1195, Japan
| | - Akinori Saeki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ryu Abe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroshi Kageyama
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
17
|
Pan Y, Xiong B, Li Z, Wu Y, Yan C, Song H. In situ constructed oxygen-vacancy-rich MoO 3-x /porous g-C 3N 4 heterojunction for synergistically enhanced photocatalytic H 2 evolution. RSC Adv 2021; 11:31219-31225. [PMID: 35496869 PMCID: PMC9041325 DOI: 10.1039/d1ra05620d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022] Open
Abstract
A simple method was developed for enhanced synergistic photocatalytic hydrogen evolution by in situ constructing of oxygen-vacancy-rich MoO3-x /porous g-C3N4 heterojunctions. Introduction of a MoO3-x precursor (Mo(OH)6) solution into g-C3N4 nanosheets helped to form a porous structure, and nano-sized oxygen-vacancy-rich MoO3-x in situ grew and formed a heterojunction with g-C3N4, favorable for charge separation and photocatalytic hydrogen evolution (HER). Optimizing the content of the MoO3-x precursor in the composite leads to a maximum photocatalytic H2 evolution rate of 4694.3 μmol g-1 h-1, which is approximately 4 times higher of that of pure g-C3N4 (1220.1 μmol g-1 h-1). The presence of oxygen vacancies (OVs) could give rise to electron-rich metal sites. High porosity induced more active sites on the pores' edges. Both synergistically enhanced the photocatalytic HER performance. Our study not only presented a facile method to form nano-sized heterojunctions, but also to introduce more active sites by high porosity and efficient charge separation from OVs.
Collapse
Affiliation(s)
- Yufeng Pan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Bin Xiong
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Zha Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Yan Wu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Chunjie Yan
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Huaibin Song
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| |
Collapse
|
18
|
Abstract
High-pressure torsion (HPT) is widely used not only as a severe plastic deformation (SPD) method to produce ultrafine-grained metals but also as a mechanical alloying technique to synthesize different alloys. In recent years, there have been several attempts to synthesize functional high-entropy alloys using the HPT method. In this paper, the application of HPT to synthesize high-entropy materials including metallic alloys, hydrides, oxides and oxynitrides for enhanced mechanical and hydrogen storage properties, photocatalytic hydrogen production and high light absorbance is reviewed.
Collapse
|
19
|
Dong B, Cui J, Qi Y, Zhang F. Nanostructure Engineering and Modulation of (Oxy)Nitrides for Application in Visible-Light-Driven Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004697. [PMID: 34085732 DOI: 10.1002/adma.202004697] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/22/2021] [Indexed: 06/12/2023]
Abstract
(Oxy)nitride-based nanophotocatalysts have been extensively investigated for solar-to-chemical conversion, and not only allow wide spectral utilization to achieve high theoretical energy conversion efficiency but also exhibit suitable conduction and valence band positions for robust reduction and oxidation of water. During the past decades, a few reviews on the research progress in designing and synthesizing new visible-light-responsive semiconductors for various applications in solar-to-chemical conversion have been published. However, those on the effects of their bulk and composite (surface/interface) nanostructures on basic processes as well as solar water splitting performances to produce hydrogen are still limited. In this review, a brief introduction on the relationship between the nanostructure photocatalytic properties is included. Three main processes of solar water splitting are involved, allowing the elucidation of the correlation with the nanostructural properties of the photocatalyst such as surface/interface, size, morphology, and bulk structure. Subsequently, the development of methodologies and strategies for modulating the bulk and composite structures to improve the efficiencies of the basic processes, particularly charge separation, is summarized in detail. Finally, the prospects of (oxy)nitride-based photocatalysts such as controlled synthesis, modulation of 1D/2D morphology, exposed facet regulation, heterostructure formation, theoretical simulation, and time- and space-resolved spectroscopy are discussed.
Collapse
Affiliation(s)
- Beibei Dong
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Junyan Cui
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yu Qi
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Fuxiang Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
20
|
Dong X, Cui Z, Sun Y, Dong F. Humidity-Independent Photocatalytic Toluene Mineralization Benefits from the Utilization of Edge Hydroxyls in Layered Double Hydroxides (LDHs): A Combined Operando and Theoretical Investigation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01599] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xing’an Dong
- Research Center for Environmental & Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China
| | - Zhihao Cui
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yanjuan Sun
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China
| | - Fan Dong
- Research Center for Environmental & Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou 313000, China
- State Centre for International Cooperation on Designer Low-Carbon and Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
21
|
g-C3N4 Sensitized by an Indoline Dye for Photocatalytic H2 Evolution. Processes (Basel) 2021. [DOI: 10.3390/pr9061055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Protonated g-C3N4 (pCN) formed by treating bulk g-C3N4 with an aqueous HCl solution was modified with D149 dye, i.e., 5-[[4[4-(2,2-diphenylethenyl) phenyl]-1,2,3,3a,4,8b-hexahydrocyclopent[b]indol-7-yl] methylene]-2-(3-ethyl-4-oxo-2-thioxo-5-thiazolidinylidene)-4-oxo-thiazolidin-2-ylidenerhodanine, for photocatalytic water splitting (using Pt as a co-catalyst). The D149/pCN-Pt composite showed a much higher rate (2138.2 µmol·h−1·g−1) of H2 production than pCN-Pt (657.0 µmol·h−1·g−1). Through relevant characterization, the significantly high activity of D149/pCN-Pt was linked to improved absorption of visible light, accelerated electron transfer, and more efficient separation of charge carriers. The presence of both D149 and Pt was found to be important for these factors. A mechanism was proposed.
Collapse
|
22
|
Kageshima Y, Tateyama S, Kishimoto F, Teshima K, Domen K, Nishikiori H. Photocatalytic oxygen evolution triggered by photon upconverted emission based on triplet-triplet annihilation. Phys Chem Chem Phys 2021; 23:5673-5679. [PMID: 33657196 DOI: 10.1039/d0cp06139e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible light responsive photocatalyst, Mo-doped BiVO4 (Mo:BVO), was shown to promote oxygen evolution from water in response to photon upconverted emission based on triplet-triplet annihilation (TTA) in the same aqueous dispersion. Composites comprising a triplet sensitizer (Pt(ii) octaethylporphyrin; PtOEP) and a singlet emitter (9,10-diphenylanthracene; DPA) intercalated in a layered clay compound (montmorillonite or saponite) were prepared using a facile but versatile solvothermal method. These composites were capable of converting green incident light (λ = 535 nm) to blue light (λ = 430 nm) even in air. The host layered clay as well as the co-intercalated surfactant evidently functioned as barriers against water and oxygen to prevent the quenching of the active compounds. The TTA upconversion driven photocatalytic oxygen evolution using the aqueous mixture of the dyes-clay composite and particulate photocatalysts can be a potential approach to eliminate the undesired optical losses and thus be a breakthrough for future industrial and large-scale installation in an inexpensive manner.
Collapse
Affiliation(s)
- Yosuke Kageshima
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan. and Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan.
| | - Shutaro Tateyama
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan.
| | - Fuminao Kishimoto
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Katsuya Teshima
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan. and Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan.
| | - Kazunari Domen
- Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan. and Office of University Professors, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiromasa Nishikiori
- Department of Materials Chemistry, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan. and Research Initiative for Supra-Materials (RISM), Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan.
| |
Collapse
|
23
|
Recent Developments in the Use of Heterogeneous Semiconductor Photocatalyst Based Materials for a Visible-Light-Induced Water-Splitting System—A Brief Review. Catalysts 2021. [DOI: 10.3390/catal11020160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Visible-light-driven photoelectrochemical (PEC) and photocatalytic water splitting systems featuring heterogeneous semiconductor photocatalysts (oxynitrides, oxysulfides, organophotocatalysts) signify an environmentally friendly and promising approach for the manufacturing of renewable hydrogen fuel. Semiconducting electrode materials as the main constituents in the PEC water splitting system have substantial effects on the device’s solar-to-hydrogen (STH) conversion efficiency. Given the complication of the photocatalysis and photoelectrolysis methods, it is indispensable to include the different electrocatalytic materials for advancing visible-light-driven water splitting, considered a difficult challenge. Heterogeneous semiconductor-based materials with narrower bandgaps (2.5 to 1.9 eV), equivalent to the theoretical STH efficiencies ranging from 9.3% to 20.9%, are recognized as new types of photoabsorbents to engage as photoelectrodes for PEC water oxidation and have fascinated much consideration. Herein, we spotlight mainly on heterogenous semiconductor-based photoanode materials for PEC water splitting. Different heterogeneous photocatalysts based materials are emphasized in different groups, such as oxynitrides, oxysulfides, and organic solids. Lastly, the design approach and future developments regarding heterogeneous photocatalysts oxide electrodes for PEC applications and photocatalytic applications are also discussed.
Collapse
|
24
|
Kumar M, Basera P, Saini S, Bhattacharya S. Theoretical insights of codoping to modulate electronic structure of
TiO
2
and
SrTiO
3
for enhanced photocatalytic efficiency. Sci Rep 2020; 10:15372. [PMID: 32958786 PMCID: PMC7505848 DOI: 10.1038/s41598-020-72195-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/14/2020] [Indexed: 11/09/2022] Open
Abstract
TiO 2 andSrTiO 3 are well known materials in the field of photocatalysis due to their exceptional electronic structure, high chemical stability, non-toxicity and low cost. However, owing to the wide band gap, these can be utilized only in the UV region. Thus, it's necessary to expand their optical response in visible region by reducing their band gap through doping with metals, nonmetals or the combination of different elements, while retaining intact the photocatalytic efficiency. We report here, the codoping of a metal and a nonmetal in anataseTiO 2 andSrTiO 3 for efficient photocatalytic water splitting using hybrid density functional theory and ab initio atomistic thermodynamics. The latter ensures to capture the environmental effect to understand thermodynamic stability of the charged defects at a realistic condition. We have observed that the charged defects are stable in addition to neutral defects in anataseTiO 2 and the codopants act as donor as well as acceptor depending on the nature of doping (p-type or n-type). However, the most stable codopants inSrTiO 3 mostly act as donor. Our results reveal that despite the response in visible light region, the codoping inTiO 2 andSrTiO 3 cannot always enhance the photocatalytic activity due to either the formation of recombination centers or the large shift in the conduction band minimum or valence band maximum. Amongst various metal-nonmetal combinations,Mn Ti S O (i.e. Mn is substituted at Ti site and S is substituted at O site),S O in anataseTiO 2 andMn Ti S O ,Mn Sr N O inSrTiO 3 are the most potent candidates to enhance the photocatalytic efficiency of anataseTiO 2 andSrTiO 3 under visible light irradiation.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016 India
| | - Pooja Basera
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016 India
| | - Shikha Saini
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016 India
| | - Saswata Bhattacharya
- Department of Physics, Indian Institute of Technology Delhi, New Delhi, 110016 India
| |
Collapse
|
25
|
Rahman M, Tian H, Edvinsson T. Revisiting the Limiting Factors for Overall Water-Splitting on Organic Photocatalysts. Angew Chem Int Ed Engl 2020; 59:16278-16293. [PMID: 32329950 PMCID: PMC7540687 DOI: 10.1002/anie.202002561] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Indexed: 12/02/2022]
Abstract
In pursuit of inexpensive and earth abundant photocatalysts for solar hydrogen production from water, conjugated polymers have shown potential to be a viable alternative to widely used inorganic counterparts. The photocatalytic performance of polymeric photocatalysts, however, is very poor in comparison to that of inorganic photocatalysts. Most of the organic photocatalysts are active in hydrogen production only when a sacrificial electron donor (SED) is added into the solution, and their high performances often rely on presence of noble metal co-catalyst (e.g. Pt). For pursuing a carbon neutral and cost-effective green hydrogen production, unassisted hydrogen production solely from water is one of the critical requirements to translate a mere bench-top research interest into the real world applications. Although this is a generic problem for both inorganic and organic types of photocatalysts, organic photocatalysts are mostly investigated in the half-reaction, and have so far shown limited success in hydrogen production from overall water-splitting. To make progress, this article exclusively discusses critical factors that are limiting the overall water-splitting in organic photocatalysts. Additionally, we also have extended the discussion to issues related to stability, accurate reporting of the hydrogen production as well as challenges to be resolved to reach 10 % STH (solar-to-hydrogen) conversion efficiency.
Collapse
Affiliation(s)
- Mohammad Rahman
- Department of Materials Sciences and EngineeringDivision of Solid State PhysicsAngstrom LaboratoryUppsala UniversitySweden
| | - Haining Tian
- Department of ChemistryDivision of Physical chemistryAngstrom LaboratoryUppsala UniversitySweden
| | - Tomas Edvinsson
- Department of Materials Sciences and EngineeringDivision of Solid State PhysicsAngstrom LaboratoryUppsala UniversitySweden
| |
Collapse
|
26
|
Wang J, Asakura Y, Yin S. Synthesis of zinc germanium oxynitride nanotube as a visible-light driven photocatalyst for NO x decomposition through ordered morphological transformation from Zn 2GeO 4 nanorod obtained by hydrothermal reaction. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122709. [PMID: 32353731 DOI: 10.1016/j.jhazmat.2020.122709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/02/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Oxynitrides with narrow band gap are promising materials as visible-light sensitive photocatalysts, because introduction of nitrogen ions can negatively shift the position of valence band maximum of the corresponding oxides to negative side. (Zn1+xGe)(N2Ox) with wurtzite structure is one of the oxynitride materials. (Zn1+xGe)(N2Ox) with nanotube morphology was synthesized by nitridation of Zn2GeO4 nanorods at 800 °C for 6 h. During the nitridation process, the nanorod with smooth surface was transformed into nanotube with rough surface in spite of no template for formation of tube structure. The nanotube formation can be caused by ordered morphological transformation from Zn2GeO4 nanorod during the nitridation. (Zn1+xGe)(N2Ox) nanotube exhibited a large specific surface area due to its nanotube morphology and the ability to be responsive to visible light because of the narrow band gap of 2.76 eV. Compared to (Zn1+xGe)(N2Ox) synthesized by conventional solid state reaction, the optimized (Zn1+xGe)(N2Ox) nanotube possessed enhanced photocatalytic NOx decomposition activity under both ultraviolet and visible light irradiation.
Collapse
Affiliation(s)
- Jingwen Wang
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| | - Yusuke Asakura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan.
| | - Shu Yin
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai, Japan
| |
Collapse
|
27
|
Effects of annealing conditions on the oxygen evolution activity of a BaTaO2N photocatalyst loaded with cobalt species. Catal Today 2020. [DOI: 10.1016/j.cattod.2018.12.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Tang Y, Kato K, Oshima T, Mogi H, Miyoshi A, Fujii K, Yanagisawa KI, Kimoto K, Yamakata A, Yashima M, Maeda K. Synthesis of Three-Layer Perovskite Oxynitride K 2Ca 2Ta 3O 9N·2H 2O and Photocatalytic Activity for H 2 Evolution under Visible Light. Inorg Chem 2020; 59:11122-11128. [PMID: 32683860 DOI: 10.1021/acs.inorgchem.0c01607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Substitution of oxide anions (O2-) in a metal oxide for nitrogen (N3-) results in reduction of the band gap, which is attractive in heterogeneous photocatalysis; however, only a handful of two-dimensional layered perovskite oxynitrides have been reported, and thus, the structural effects of layered oxynitrides on photocatalytic activity have not been sufficiently examined. This study reports the synthesis of a Ruddlesden-Popper phase three-layer oxynitride perovskite of K2Ca2Ta3O9N·2H2O, and the photocatalytic activity is compared with an analogous two-layer perovskite, K2LaTa2O6N·1.6H2O. Topochemical ammonolysis reaction of a Dion-Jacobson phase oxide KCa2Ta3O10 at 1173 K in the presence of K2CO3 resulted in a single-phase layered perovskite, K2Ca2Ta3O9N·2H2O, which belongs to the tetragonal P4/mmm space group, as demonstrated by synchrotron X-ray diffraction, scanning transmission electron microscopy measurements, and elemental analysis. The synthesized K2Ca2Ta3O9N·2H2O has an absorption edge at around 460 nm, with an estimated band gap of ca. 2.7 eV. K2Ca2Ta3O9N·2H2O modified with a Pt cocatalyst generated H2 from an aqueous solution containing a dissolved NaI as a reversible electron donor under visible light (λ > 400 nm) with no noticeable change in the crystal structure and light absorption properties. However, the H2 evolution activity of K2Ca2Ta3O9N·2H2O was an order of magnitude lower than that of K2LaTa2O6N·1.6H2O. Femtosecond transient absorption spectroscopy revealed that the lifetime of photogenerated mobile electrons in K2Ca2Ta3O9N·2H2O was shorter than that in K2LaTa2O6N·1.6H2O, which could explain the low photocatalytic activity of K2Ca2Ta3O9N·2H2O.
Collapse
Affiliation(s)
- Ya Tang
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kosaku Kato
- Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511, Japan
| | - Takayoshi Oshima
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Hiroto Mogi
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Akinobu Miyoshi
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.,Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo 102-0083, Japan
| | - Kotaro Fujii
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kei-Ichi Yanagisawa
- Electronic Functional Materials Group, Polymer Materials Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Koji Kimoto
- Electronic Functional Materials Group, Polymer Materials Unit, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Akira Yamakata
- Graduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511, Japan
| | - Masatomo Yashima
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Kazuhiko Maeda
- Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
29
|
Rahman M, Tian H, Edvinsson T. Revisiting the Limiting Factors for Overall Water‐Splitting on Organic Photocatalysts. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mohammad Rahman
- Department of Materials Sciences and EngineeringDivision of Solid State PhysicsAngstrom LaboratoryUppsala University Sweden
| | - Haining Tian
- Department of ChemistryDivision of Physical chemistryAngstrom LaboratoryUppsala University Sweden
| | - Tomas Edvinsson
- Department of Materials Sciences and EngineeringDivision of Solid State PhysicsAngstrom LaboratoryUppsala University Sweden
| |
Collapse
|
30
|
Wakasugi T, Hirose Y, Nakao S, Sugisawa Y, Sekiba D, Hasegawa T. High-Quality Heteroepitaxial Growth of Thin Films of the Perovskite Oxynitride CaTaO 2N: Importance of Interfacial Symmetry Matching between Films and Substrates. ACS OMEGA 2020; 5:13396-13402. [PMID: 32548526 PMCID: PMC7288696 DOI: 10.1021/acsomega.0c01601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Perovskite oxynitrides have been studied with regard to their visible light-driven photocatalytic activity and novel electronic functionalities. The assessment of the intrinsic physical and/or electrochemical properties of oxynitrides requires the epitaxial growth of single-crystalline films. However, the heteroepitaxy of perovskite oxynitrides has not yet matured compared to the progress realized in work with perovskite oxides. Herein, we report the heteroepitaxial growth of CaTaO2N thin films with (100)pc, (110)pc, and (111)pc crystallographic surface orientations (where the subscript pc denotes a pseudocubic cell) on SrTiO3 substrates using reactive radio frequency magnetron sputtering, along with investigations of crystallinity and surface morphology. Irrespective of surface orientation, stoichiometric CaTaO2N epitaxial thin films were grown coherently on SrTiO3 substrates and showed clear step and terrace surfaces in the case of low values of film thickness of approximately 20 nm. A (110)pc-oriented film was also more highly crystalline than (100)pc- and (111)pc-oriented specimens. This relationship between crystallinity and surface orientation is ascribed to the number of inequivalent in-plane rotational domains, which stems from the symmetry mismatch between the orthorhombic CaTaO2N and cubic SrTiO3. A CaTaO2N thin film grown on a lattice- and symmetry-matched orthorhombic DyScO3 substrate exhibited a significant crystallinity and a clear step and terrace surface even though the film was thick (∼190 nm). These results are expected to assist in developing the heteroepitaxial growth of high-quality perovskite oxynitride thin films.
Collapse
Affiliation(s)
- Takuto Wakasugi
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasushi Hirose
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shoichiro Nakao
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Sugisawa
- Graduate
School of Pure and Applied Sciences, University
of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
- Tandem
Accelerator Complex, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Daiichiro Sekiba
- Graduate
School of Pure and Applied Sciences, University
of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
- Tandem
Accelerator Complex, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577, Japan
| | - Tetsuya Hasegawa
- Department
of Chemistry, School of Science, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
31
|
Yang L, Gao P, Lu J, Guo W, Zhuang Z, Wang Q, Li W, Feng Z. Mechanism analysis of Au, Ru noble metal clusters modified on TiO 2 (101) to intensify overall photocatalytic water splitting. RSC Adv 2020; 10:20654-20664. [PMID: 35517768 PMCID: PMC9054279 DOI: 10.1039/d0ra01996h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/13/2020] [Indexed: 11/21/2022] Open
Abstract
Accelerating the separation and migration of photo-carriers (electron-hole pairs) to improve the photo-quantum utilization efficiency in photocatalytic overall water splitting is highly desirable. Herein, the photo-deposition of Ru or Au noble metal clusters with superior electronic properties as a co-catalyst on the (101) facet of anatase TiO2 and the mechanism of intensifying the photocatalysis have been investigated by calculation based density functional theory (DFT). As a result, the as-synthesized Ru/TiO2 and Au/TiO2 exhibit high hydrogen evolution reaction (HER) activity. Such a greatly enhanced HER is attributed to the interfacial interactivity of the catalysts due to the existence of robust chemical bonds (Ru-O-Ti, Au-O-Ti) as electron-traps that provide the photogenerated electrons. In addition, the formation of new degenerate energy levels due to the existence of Ru-4d and Au-5d electronic impurity states leads to the narrowing of the band gap of the catalysts. In addition, the as-synthesized Au/TiO2 exhibits more faster HER rate than Ru/TiO2, which is attributed to the effects of surface plasmon resonance (SPR) as a synergistic effect of plasmon-induced 'hot' electrons that enhance the harvesting of the final built-in electric field and promote the migration and separation of the photo-carriers, which efficiently facilitates hydrogen evolution from the photocatalytic overall water splitting reaction.
Collapse
Affiliation(s)
- Libin Yang
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science and Technology Tianjin 300457 China
| | - Peng Gao
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science and Technology Tianjin 300457 China
| | - Jinghao Lu
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science and Technology Tianjin 300457 China
| | - Wei Guo
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science and Technology Tianjin 300457 China
| | - Zhuang Zhuang
- Institute of Coal Chemical Industry Technology, CHN Energy Ningxia Coal Industry Group Co. Ltd. Yinchuan Ningxia 750411 China
| | - Qingqing Wang
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science and Technology Tianjin 300457 China
| | - Wenjing Li
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science and Technology Tianjin 300457 China
| | - Zhiying Feng
- College of Chemical Engineering and Materials Science, Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science and Technology Tianjin 300457 China
| |
Collapse
|
32
|
Kim YI, Avdeev M. Synthesis, crystal structure, and magnetic properties of oxynitride perovskites SrMn 0.2M 0.8O 2.6N 0.4 (M = Nb, Ta). Dalton Trans 2020; 49:6471-6477. [PMID: 32356852 DOI: 10.1039/d0dt00907e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Complex perovskites SrMn0.2Nb0.8O2.6N0.4 and SrMn0.2Ta0.8O2.6N0.4 were synthesized; these are rare examples of octahedral Mn2+ in oxynitride perovskites. Joint Rietveld refinement of neutron and X-ray data revealed that SrMn0.2Nb0.8O2.6N0.4 and SrMn0.2Ta0.8O2.6N0.4 had orthorhombic symmetries, in contrast with those of analogous perovskites SrM'0.2M0.8O3-xNx (M' = Li, Na, Mg; M = Nb, Ta), which are all tetragonal. Both SrMn0.2Nb0.8O2.6N0.4 and SrMn0.2Ta0.8O2.6N0.4 exhibited paramagnetic behavior with effective magnetic moments of 5.60μB and 5.94μB, respectively, consistent with a high-spin Mn2+ (d5, S = 5/2) state. The Weiss constants were -24.7 K for SrMn0.2Nb0.8O2.6N0.4 and -15.4 K for SrMn0.2Ta0.8O2.6N0.4, indicating the presence of weak antiferromagnetic spin-spin interactions. The band gaps of SrMn0.2Nb0.8O2.6N0.4 and SrMn0.2Ta0.8O2.6N0.4 were determined to be 1.75 eV and 2.2 eV, respectively, suggesting that the Mn 3d electrons were essentially localized.
Collapse
Affiliation(s)
- Young-Il Kim
- Department of Chemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Maxim Avdeev
- Australian Nuclear Science and Technology Organisation, New Illawarra Rd, Lucas Heights, NSW 2234, Australia and School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
33
|
Lawley C, Nachtegaal M, Stahn J, Roddatis V, Döbeli M, Schmidt TJ, Pergolesi D, Lippert T. Examining the surface evolution of LaTiO xN y an oxynitride solar water splitting photocatalyst. Nat Commun 2020; 11:1728. [PMID: 32265498 PMCID: PMC7138824 DOI: 10.1038/s41467-020-15519-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/06/2020] [Indexed: 11/09/2022] Open
Abstract
LaTiOxNy oxynitride thin films are employed to study the surface modifications at the solid-liquid interface that occur during photoelectrocatalytic water splitting. Neutron reflectometry and grazing incidence x-ray absorption spectroscopy were utilised to distinguish between the surface and bulk signals, with a surface sensitivity of 3 nm. Here we show, contrary to what is typically assumed, that the A cations are active sites that undergo oxidation at the surface as a consequence of the water splitting process. Whereas, the B cations undergo local disordering with the valence state remaining unchanged. This surface modification reduces the overall water splitting efficiency, but is suppressed when the oxynitride thin films are decorated with a co-catalyst. With this example we present the possibilities of surface sensitive studies using techniques capable of operando measurements in water, opening up new opportunities for applications to other materials and for surface sensitive, operando studies of the water splitting process.
Collapse
Affiliation(s)
- Craig Lawley
- Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland.,Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Maarten Nachtegaal
- Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Jochen Stahn
- Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
| | - Vladimir Roddatis
- Institute of Materials Physics, University of Goettingen, Friedrich-Hund-Platz 1, 37077, Goettingen, Germany
| | - Max Döbeli
- Laboratory for Ion Beam Physics, ETH Zürich, 8093, Zürich, Switzerland
| | - Thomas J Schmidt
- Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland.,Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland
| | - Daniele Pergolesi
- Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland.
| | - Thomas Lippert
- Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland. .,Department of Chemistry and Applied Biosciences, ETH Zürich, 8093, Zürich, Switzerland. .,Molecular Photoconversion Devices Division, International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan.
| |
Collapse
|
34
|
Kosem N, Honda Y, Watanabe M, Takagaki A, Tehrani ZP, Haydous F, Lippert T, Ishihara T. Photobiocatalytic H2 evolution of GaN:ZnO and [FeFe]-hydrogenase recombinant Escherichia coli. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00128g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The need for sustainable, renewable and low-cost approaches is a driving force behind the development of solar-to-H2 conversion technologies.
Collapse
Affiliation(s)
- Nuttavut Kosem
- International Institute for Carbon-Neutral Energy Research (I2CNER)
- Kyushu University
- Fukuoka 819-0395
- Japan
- Department of Applied Chemistry
| | - Yuki Honda
- Department of Chemistry, Biology and Environmental Science
- Faculty of Science
- Nara Women's University
- Nara 630-8506
- Japan
| | - Motonori Watanabe
- International Institute for Carbon-Neutral Energy Research (I2CNER)
- Kyushu University
- Fukuoka 819-0395
- Japan
| | - Atsushi Takagaki
- International Institute for Carbon-Neutral Energy Research (I2CNER)
- Kyushu University
- Fukuoka 819-0395
- Japan
- Department of Applied Chemistry
| | - Zahra Pourmand Tehrani
- Laboratory for Multiscale Materials Experiments
- Paul Scherrer Institut
- CH-5232 Villigen PSI
- Switzerland
| | - Fatima Haydous
- Laboratory for Multiscale Materials Experiments
- Paul Scherrer Institut
- CH-5232 Villigen PSI
- Switzerland
- Division of Applied Physical Chemistry
| | - Thomas Lippert
- International Institute for Carbon-Neutral Energy Research (I2CNER)
- Kyushu University
- Fukuoka 819-0395
- Japan
- Laboratory for Multiscale Materials Experiments
| | - Tatsumi Ishihara
- International Institute for Carbon-Neutral Energy Research (I2CNER)
- Kyushu University
- Fukuoka 819-0395
- Japan
- Department of Applied Chemistry
| |
Collapse
|
35
|
Hybrid density functional theory description of non-metal doping in perovskite BaTiO3 for visible-light photocatalysis. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2019.121018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Ye S, Ding C, Liu M, Wang A, Huang Q, Li C. Water Oxidation Catalysts for Artificial Photosynthesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902069. [PMID: 31495962 DOI: 10.1002/adma.201902069] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Water oxidation is the primary reaction of both natural and artificial photosynthesis. Developing active and robust water oxidation catalysts (WOCs) is the key to constructing efficient artificial photosynthesis systems, but it is still facing enormous challenges in both fundamental and applied aspects. Here, the recent developments in molecular catalysts and heterogeneous nanoparticle catalysts are reviewed with special emphasis on biomimetic catalysts and the integration of WOCs into artificial photosystems. The highly efficient artificial photosynthesis depends largely on active WOCs integrated into light harvesting materials via rational interface engineering based on in-depth understanding of charge dynamics and the reaction mechanism.
Collapse
Affiliation(s)
- Sheng Ye
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Chunmei Ding
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Mingyao Liu
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Aoqi Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Qinge Huang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian, 116023, China
| |
Collapse
|
37
|
Wang J, Asakura Y, Yin S. Preparation of (Zn 1+xGe)(N 2O x) nanoparticles with enhanced NO x decomposition activity under visible light irradiation by nitridation of Zn 2GeO 4 nanoparticles designed precisely. NANOSCALE 2019; 11:20151-20160. [PMID: 31613302 DOI: 10.1039/c9nr05244e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quaternary zinc germanium oxynitride (Zn1+xGe)(N2Ox), a solid solution between ZnGeN2 and ZnO with a wurtzite structure, is one of the attractive photocatalysts under visible-light irradiation. In this study, the synthesis of (Zn1+xGe)(N2Ox) nanoparticles was achieved by the nitridation of Zn2GeO4 nanoparticles designed precisely to enhance their photocatalytic NOx decomposition activity under both UV and visible light irradiation. The obtained (Zn1+xGe)(N2Ox) nanoparticles exhibited a high specific surface area and visible light absorption induced by the narrow band gap of ca. 2.6-2.8 eV, both of which are reasons for the enhancement of photocatalytic activity. The oxide precursors with a nanoparticle morphology were prepared by a facile solvothermal method with various volumes of TEA (triethanolamine) as an additive. The relationships of nitridation time and TEA volume in the solvothermal reaction for the synthesis of the precursor with morphology, specific surface area, and photocatalytic NOx decomposition activity of the nitrided samples were investigated. The increase of active sites by the high surface area and the enhanced visible-light absorption ability as well as the defect amounts and states can be largely related to the excellent NOx decomposition activity of (Zn1+xGe)(N2Ox).
Collapse
Affiliation(s)
- Jingwen Wang
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | - Yusuke Asakura
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | - Shu Yin
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| |
Collapse
|
38
|
Lakhera SK, Pangal RT, Hafeez HY, Neppolian B. Oxygen-Functionalized and Ni +x (x=2, 3)-Coordinated Graphitic Carbon Nitride Nanosheets with Long-Life Deep-Trap States and their Direct Solar-Light-Driven Hydrogen Evolution Activity. CHEMSUSCHEM 2019; 12:4293-4303. [PMID: 31276612 DOI: 10.1002/cssc.201901224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/10/2019] [Indexed: 06/09/2023]
Abstract
Graphitic carbon nitride, a 2 D layered photocatalyst coupled with transition metal oxides often shows promising photocatalytic hydrogen evolution activity. However, low surface area and poor charge separation greatly hinder its photocatalytic efficiency. A Ni+x (x=2, 3)/O-g-C3 N4 photocatalyst with a very high specific surface area (199 m2 g-1 ) has been prepared by thermal condensation and wet-impregnation methods. The oxygen-functionalized and Ni+x (x=2, 3)-coordinated g-C3 N4 produced 1664 μmol g-1 of hydrogen evolution from water under direct solar light irradiation in 4 h, which is 23 times higher than that over O-g-C3 N4 . This significant enhancement results from the combined effects of large surface area, the formation of long-life deep-trap states, effective charge carrier separation, and extended visible light absorption. The separation and transport behavior of the charge carriers are investigated by photoluminescence, time-resolved photoluminescence, photocurrent and Mott-Schottky measurements. Additionally, the interaction between Ni+x (x=2, 3) and O-g-C3 N4 is studied by X-ray photoelectron spectroscopy, X-ray diffraction, and FTIR spectroscopy. The Ni+x (x=2, 3)/O-g-C3 N4 photocatalyst shows remarkable reusability over a period of two months (six cycles). This study may provide a pathway to simultaneously overcome the challenges of low surface area and poor charge separation in g-C3 N4 -based photocatalysts.
Collapse
Affiliation(s)
- Sandeep Kumar Lakhera
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai-, 603203, Tamil Nadu, India
| | - Rugma Thekke Pangal
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai-, 603203, Tamil Nadu, India
| | - Hafeez Yusuf Hafeez
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai-, 603203, Tamil Nadu, India
| | - Bernaurdshaw Neppolian
- SRM Research Institute, SRM Institute of Science and Technology, Kattankulathur, Chennai-, 603203, Tamil Nadu, India
| |
Collapse
|
39
|
Theofylaktos L, Kosmatos KO, Giannakaki E, Kourti H, Deligiannis D, Konstantakou M, Stergiopoulos T. Perovskites with d-block metals for solar energy applications. Dalton Trans 2019; 48:9516-9537. [PMID: 31225556 DOI: 10.1039/c9dt01485c] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pb2+ halide organic-inorganic perovskites are excellent semiconductors for use in solar energy applications, but at the expense of robustness and environmental compatibility. Tin (Sn), which sits just above lead in the periodic table, forms pure (or mixed with lead) perovskites when at the 2+ or 4+ oxidation state. It can act as a promising alternative; however, there are still some serious concerns regarding its suitability. This presents a major challenge; viable metal cations have to be identified. A good number of elements, originating from a large range of d-block metal ions, with adequate oxidation states, moderate toxicity, and relative abundance, seem ideal for this purpose. In this review, we present the most characteristic perovskites (conventional perovskites, layered, or double perovskites) that can be formed with the help of these metals. We focus on d-block metal ions with stable oxidation states, such as Ag+ or Ti4+, which have exhibited satisfactory photovoltaic properties until now. Further, we highlight the results involving compounds other than halide perovskites, such as oxides, chalcogenides, and nitrides (as well as oxyhalides, oxysulfides, and oxynitrides); a few of them are ferroelectric (based on Ti4+, Zr4+, Fe3+, and Cr3+) and can yield a photovoltage that exceeds the bandgap of the material. Finally, we present the critical challenges that currently limit the efficiency of these systems and propose prospects for future directions.
Collapse
Affiliation(s)
- Lazaros Theofylaktos
- Laboratory of Physical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | | | | | | | | | | | | |
Collapse
|
40
|
Cui J, Li C, Zhang F. Development of Mixed-Anion Photocatalysts with Wide Visible-Light Absorption Bands for Solar Water Splitting. CHEMSUSCHEM 2019; 12:1872-1888. [PMID: 30211984 DOI: 10.1002/cssc.201801829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/10/2018] [Indexed: 05/26/2023]
Abstract
Rapid fossil-fuel consumption, severe environmental concerns, and growing energy demands call for the exploitation of environmentally friendly, recyclable, new energy sources. Fuel-producing artificial systems that directly convert solar energy into fuels by mimicking natural photosynthesis are expected to achieve this goal. Among them, the conversion of solar energy into hydrogen energy through the photocatalytic water-splitting process over a particulate semiconductor is one of the most promising routes due to advantages such as simplicity, cheapness, and ease of large-scale production. Abundant metal oxide photocatalysts have been developed in the last century, but most are only active under UV-light irradiation. To harvest a much wider range of the solar spectrum, the development of photocatalysts with wide visible-light absorption bands has become increasingly popular this century. Herein, a brief overview of materials developed for promising solar water splitting, with an emphasis on a mixed-anion structure and wide visible-light absorption bands, is presented, with some basic information on the principles, approaches, and research progress on the photocatalytic water-splitting reaction with particulate semiconductors. Typical progress on research into one- and two-step (Z-scheme) overall water-splitting systems by utilizing mixed-anion photocatalysts is highlighted, together with research strategies and modification methods.
Collapse
Affiliation(s)
- Junyan Cui
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, PR China
| | - Can Li
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, PR China
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, PR China
| |
Collapse
|
41
|
Weng B, Qi MY, Han C, Tang ZR, Xu YJ. Photocorrosion Inhibition of Semiconductor-Based Photocatalysts: Basic Principle, Current Development, and Future Perspective. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00313] [Citation(s) in RCA: 291] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Bo Weng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350116, P. R. China
| | - Ming-Yu Qi
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350116, P. R. China
| | - Chuang Han
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350116, P. R. China
| | - Zi-Rong Tang
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yi-Jun Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
- College of Chemistry, New Campus, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
42
|
Dong B, Cui J, Gao Y, Qi Y, Zhang F, Li C. Heterostructure of 1D Ta 3 N 5 Nanorod/BaTaO 2 N Nanoparticle Fabricated by a One-Step Ammonia Thermal Route for Remarkably Promoted Solar Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808185. [PMID: 30785220 DOI: 10.1002/adma.201808185] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Heterostructures are widely fabricated for promotion of photogenerated charge separation and solar cell/fuel production. (Oxy)nitrides are extremely promising for solar energy conversion, but the fabrication of heterostructures based on nitrogen-containing semiconductors is still challenging. Here, a simple ammonia thermal synthesis of a heterostructure (denoted as Ta3 N5 /BTON) composed of 1D Ta3 N5 nanorods and BaTaO2 N (BTON) nanoparticles (0D), which is demonstrated to result in a remarkable increase in photogenerated charge separation and solar hydrogen production from water, is introduced. As analyzed and discussed, the Ta3 N5 /BTON heterostructure is type II and tends to create intimate interfaces between the 1D nanorods and 0D nanoparticles. The 1D Ta3 N5 nanorods are demonstrated to transfer electrons along the rod orientation direction. Furthermore, the intimate interfaces of the heterostructure are believed to originate from the similar Ta-based octahedron units of Ta3 N5 and BTON. All of the above features are expected to integrally endow increased photoinduced charge separation and one order of magnitude higher solar overall water splitting activity with respect to counterpart systems. These results may open a new avenue to fabricate heterostructures on the basis of nitrogen-containing semiconductors that is extremely promising for solar energy conversion.
Collapse
Affiliation(s)
- Beibei Dong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyan Cui
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian, 116023, China
| | - Yuying Gao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Qi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian, 116023, China
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian, 116023, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, The Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian, 116023, China
| |
Collapse
|
43
|
Abstract
Band gap magnitudes and valence band energies of Ta5+ containing simple perovskites (BaTaO2N, SrTaO2N, CaTaO2N, KTaO3, NaTaO3, and TaO2F) were studied by diffuse reflection absorbance measurements, density-functional theoretical calculations, and X-ray photoelectron spectroscopy. As a universal trend, the oxynitrides have wider valence bands and narrower band gaps than isostructural oxides, owing to the N 2p contribution to the electronic structure. Visible light-driven water splitting was achieved by using Pt-loaded CaTaO2N, together with a sacrificial agent CH3OH.
Collapse
|
44
|
Hojamberdiev M, Kawashima K, Hisatomi T, Katayama M, Hasegawa M, Domen K, Teshima K. Distinguishing the effects of altered morphology and size on the visible light-induced water oxidation activity and photoelectrochemical performance of BaTaO2N crystal structures. Faraday Discuss 2019; 215:227-241. [DOI: 10.1039/c8fd00170g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of altered morphology and size on the visible light-induced water oxidation activity and photoelectrochemical performance of BaTaO2N crystal structures were studied.
Collapse
Affiliation(s)
- Mirabbos Hojamberdiev
- Department of Materials Physics
- Nagoya University
- Nagoya 464-8603
- Japan
- Department of Environmental Science and Technology
| | - Kenta Kawashima
- Department of Environmental Science and Technology
- Faculty of Engineering
- Shinshu University
- Nagano 380-8553
- Japan
| | - Takashi Hisatomi
- Department of Chemical System Engineering
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Masao Katayama
- Department of Chemical System Engineering
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Masashi Hasegawa
- Department of Materials Physics
- Nagoya University
- Nagoya 464-8603
- Japan
| | - Kazunari Domen
- Department of Chemical System Engineering
- School of Engineering
- The University of Tokyo
- Tokyo 113-8656
- Japan
| | - Katsuya Teshima
- Department of Environmental Science and Technology
- Faculty of Engineering
- Shinshu University
- Nagano 380-8553
- Japan
| |
Collapse
|
45
|
Rohloff M, Cosgun S, Massué C, Lunkenbein T, Senyshyn A, Lerch M, Fischer A, Behrens M. The role of synthesis conditions for structural defects and lattice strain in β-TaON and their effect on photo- and photoelectrocatalysis. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2018. [DOI: 10.1515/znb-2018-0171] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
The importance of the synthesis conditions on the structural and photocatalytic properties of tantalum oxide nitride was investigated by comparing two variants of phase-pure β-TaON obtained from application of two different synthesis routes, leading to one unstrained and one heavily anisotropically microstrained β-TaON as shown by XRD-based Rietveld refinement. HRTEM images reveal the origin of the strain to be lattice defects such as stacking faults. The strained β-TaON was found to be the clearly less active semiconductor in photochemical and photoelectrochemical water oxidation. The lattice defects are assumed to act as charge carrier traps hindering the photo-generated holes to be displaced to the reaction sites at the surface.
Collapse
Affiliation(s)
- Martin Rohloff
- Freiburger Zentrum für interaktive Werkstoffe und bioinspirierte Technologien (FIT) , Georges-Köhler-Allee 105 , 79110 Freiburg , Germany
- Institut für anorganische und analytische Chemie , Albert-Ludwigs-Universität Freiburg , Albertstraße 21 , 79104 Freiburg , Germany
| | - Sevilay Cosgun
- Institut für Chemie , Technische Universität Berlin , Straße des 17 Juni 135 , 10623 Berlin , Germany
| | - Cyriac Massué
- Fritz-Haber-Institut Berlin, Abteilung Anorganische Chemie , Faradayweg 4 , 14195 Berlin , Germany
| | - Thomas Lunkenbein
- Fritz-Haber-Institut Berlin, Abteilung Anorganische Chemie , Faradayweg 4 , 14195 Berlin , Germany
| | - Anatoliy Senyshyn
- Heinz Maier-Leibnitz Zentrum (MLZ) , Technische Universität München , Lichtenbergstraße 1 , 85748 Garching bei München , Germany
| | - Martin Lerch
- Institut für Chemie , Technische Universität Berlin , Straße des 17 Juni 135 , 10623 Berlin , Germany , Phone: +49 30 314 22603, Fax: +49 30 314 79656
| | - Anna Fischer
- Institut für anorganische und analytische Chemie , Albert-Ludwigs-Universität Freiburg , Albertstraße 21 , 79104 Freiburg , Germany
- Freiburger Zentrum für interaktive Werkstoffe und bioinspirierte Technologien (FIT) , Georges-Köhler-Allee 105 , 79110 Freiburg , Germany , Phone: +49 761 203 8717
| | - Malte Behrens
- Fakultät für Chemie und Center for Nanointegration Duisburg-Essen (CENIDE) , Universität Duisburg-Essen , Carl-Benz-Straße 199 , 47057 Duisburg , Germany , Phone: +49 201 183 3684, Fax: +49 201 183 3664
| |
Collapse
|
46
|
|
47
|
Affiliation(s)
- Aleksandr Savateev
- Max-Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Research Campus Golm, 14424 Potsdam, Germany
| | - Markus Antonietti
- Max-Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Research Campus Golm, 14424 Potsdam, Germany
| |
Collapse
|
48
|
Daio T, Narita I, Nandy S, Hisatomi T, Domen K, Suganuma K. Direct observation of hydrogen bubble generation on photocatalyst particles by in situ electron microscopy. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.05.081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
49
|
Vonrüti N, Aschauer U. Anion Order and Spontaneous Polarization in LaTiO_{2}N Oxynitride Thin Films. PHYSICAL REVIEW LETTERS 2018; 120:046001. [PMID: 29437439 DOI: 10.1103/physrevlett.120.046001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Indexed: 06/08/2023]
Abstract
The perovskite oxynitride LaTiO_{2}N is a promising material for photocatalytic water splitting under visible light. One of the obstacles towards higher efficiencies of this and similar materials stems from charge-carrier recombination, which could be suppressed by the surface charges resulting from the dipolar field in polar materials. In this study, we investigate the spontaneous polarization in epitaxially strained LaTiO_{2}N thin films via density functional theory calculations. The effect of epitaxial strain on the anion order, resulting out-of-plane polarization, energy barriers for polarization reversal, and corresponding coercive fields are studied. We find that for compressive strains larger than 4% the thermodynamically stable anion order is polar along the out-of-plane direction and has a coercive field comparable to other switchable ferroelectrics. Our results show that strained LaTiO_{2}N could indeed suppress carrier recombination and lead to enhanced photocatalytic activities.
Collapse
Affiliation(s)
- Nathalie Vonrüti
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Ulrich Aschauer
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
50
|
Bouri M, Aschauer U. Bulk and surface properties of the Ruddlesden–Popper oxynitride Sr2TaO3N. Phys Chem Chem Phys 2018; 20:2771-2776. [DOI: 10.1039/c7cp06791g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sr2TaO3N(001) surface states lead to spatial electron–hole separation, rationalising the good photocatalytic activity of this Ruddlesden–Popper oxynitride.
Collapse
Affiliation(s)
- Maria Bouri
- University of Bern
- Department of Chemistry and Biochemistry
- Bern
- Switzerland
| | - Ulrich Aschauer
- University of Bern
- Department of Chemistry and Biochemistry
- Bern
- Switzerland
| |
Collapse
|