1
|
Siri S, Burchett A, Datta M. Simulating the impact of tumor mechanical forces on glymphatic networks in the brain parenchyma. Biomech Model Mechanobiol 2024; 23:2229-2241. [PMID: 39298038 PMCID: PMC11554883 DOI: 10.1007/s10237-024-01890-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
The brain glymphatic system is currently being explored in the context of many neurological disorders and diseases, including traumatic brain injury, Alzheimer's disease, and ischemic stroke. However, little is known about the impact of brain tumors on glymphatic function. Mechanical forces generated during tumor development and growth may be responsible for compromised glymphatic transport pathways, reducing waste clearance and cerebrospinal fluid (CSF) transport in the brain parenchyma. One such force is solid stress, i.e., growth-induced forces from cell hyperproliferation and excess matrix deposition. Because there are no prior studies assessing the impact of tumor-derived solid stress on glymphatic system structure and performance in the brain parenchyma, this study serves to fill an important gap in the field. We adapted a previously developed Electrical Analog Model using MATLAB Simulink for glymphatic transport coupled with Finite Element Analysis for tumor mechanical stresses and strains in COMSOL. This allowed simulation of the impact of tumor mechanical force generation on fluid transport within brain parenchymal glymphatic units-which include perivascular spaces, astrocytic networks, interstitial spaces, and capillary basement membranes. We conducted a parametric analysis to compare the contributions of tumor size, tumor proximity, and ratio of glymphatic subunits to the stress and strain experienced by the glymphatic unit and corresponding reduction in flow rate of CSF. Mechanical stresses intensify with proximity to the tumor and increasing tumor size, highlighting the vulnerability of nearby glymphatic units to tumor-derived forces. Our stress and strain profiles reveal compressive deformation of these surrounding glymphatics and demonstrate that varying the relative contributions of astrocytes vs. interstitial spaces impact the resulting glymphatic structure significantly under tumor mechanical forces. Increased tumor size and proximity caused increased stress and strain across all glymphatic subunits, as does decreased astrocyte composition. Indeed, our model reveals an inverse correlation between extent of astrocyte contribution to the composition of the glymphatic unit and the resulting mechanical stress. This increased mechanical strain across the glymphatic unit decreases the venous efflux rate of CSF, dependent on the degree of strain and the specific glymphatic subunit of interest. For example, a 20% mechanical strain on capillary basement membranes does not significantly decrease venous efflux (2% decrease in flow rates), while the same magnitude of strain on astrocyte networks and interstitial spaces decreases efflux flow rates by 7% and 22%, respectively. Our simulations reveal that solid stress from growing brain tumors directly reduces glymphatic fluid transport, independently from biochemical effects from cancer cells. Understanding these pathophysiological implications is crucial for developing targeted interventions aimed at restoring effective waste clearance mechanisms in the brain. This study opens potential avenues for future experimental research in brain tumor-related glymphatic dysfunction.
Collapse
Affiliation(s)
- Saeed Siri
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Alice Burchett
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Meenal Datta
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
| |
Collapse
|
2
|
Sun Q, Peng S, Xu Q, Weikop P, Hussain R, Song W, Nedergaard M, Ding F. Enhancing glymphatic fluid transport by pan-adrenergic inhibition suppresses epileptogenesis in male mice. Nat Commun 2024; 15:9600. [PMID: 39505840 PMCID: PMC11541706 DOI: 10.1038/s41467-024-53430-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Epileptogenesis is the process whereby the previously normally functioning brain begins to generate spontaneous, unprovoked seizures. Status epilepticus (SE), which entails a massive release of neuronal glutamate and other neuroactive substances, is one of the best-known triggers of epileptogenesis. We here asked whether pharmacologically promoting glymphatic clearance during or after SE is beneficial and able to attenuate the subsequent epileptogenesis. We induced SE in adult male mice by intrahippocampal kainic acid (KA) infusion. Acute administration of a cocktail of adrenergic receptor antagonists (propranolol, prazosin, and atipamezole: PPA), enhanced glymphatic flow and effectively reduced the severity of spontaneous seizures in the chronic phase. The PPA treatment also reduced reactive gliosis and inhibited the loss of polarized expression of AQP4 water channels in the vascular endfeet of astrocytes. Administration of PPA after cessation of SE (30 hours post KA) also effectively suppressed epileptogenesis and improved outcome. Conversely, mice with constitutively low glymphatic transport due to genetic deletion of the aquaporin 4 (AQP4) water channel showed exacerbation of KA-induced epileptogenesis. We conclude that the pharmacological modulation of glymphatic fluid transport may represent a potential strategy to dampen epileptogenesis and the occurrence of spontaneous seizures following KA-induced SE.
Collapse
Affiliation(s)
- Qian Sun
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sisi Peng
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
- Department of PET/MR, Shanghai Universal Medical Imaging Diagnostic Center, Shanghai, China
| | - Qiwu Xu
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| | - Pia Weikop
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| | - Rashad Hussain
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| | - Wei Song
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA.
- Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark.
| | - Fengfei Ding
- Center for Translational Neuromedicine, University of Rochester, Rochester, NY, USA.
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Siri S, Burchett A, Datta M. Simulating the Impact of Tumor Mechanical Forces on Glymphatic Networks in the Brain Parenchyma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.18.594808. [PMID: 38826201 PMCID: PMC11142116 DOI: 10.1101/2024.05.18.594808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background The brain glymphatic system is currently being explored in the context of many neurological disorders and diseases, including traumatic brain injury, Alzheimer's disease, and ischemic stroke. However, little is known about the impact of brain tumors on glymphatic function. Mechanical forces generated during tumor development and growth may be responsible for compromised glymphatic transport pathways, reducing waste clearance and cerebrospinal fluid (CSF) transport in the brain parenchyma. One such force is solid stress, i.e., growth-induced forces from cell hyperproliferation and excess matrix deposition. Because there are no prior studies assessing the impact of tumor-derived solid stress on glymphatic system structure and performance in the brain parenchyma, this study serves to fill an important gap in the field. Methods We adapted a previously developed Electrical Analog Model using MATLAB Simulink for glymphatic transport coupled with Finite Element Analysis for tumor mechanical stresses and strains in COMSOL. This allowed simulation of the impact of tumor mechanical force generation on fluid transport within brain parenchymal glymphatic units - which include paravascular spaces, astrocytic networks, interstitial spaces, and capillary basement membranes. We conducted a parametric analysis to compare the contributions of tumor size, tumor proximity, and ratio of glymphatic subunits to the stress and strain experienced by the glymphatic unit and corresponding reduction in flow rate of CSF. Results Mechanical stresses intensify with proximity to the tumor and increasing tumor size, highlighting the vulnerability of nearby glymphatic units to tumor-derived forces. Our stress and strain profiles reveal compressive deformation of these surrounding glymphatics and demonstrate that varying the relative contributions of astrocytes vs. interstitial spaces impact the resulting glymphatic structure significantly under tumor mechanical forces. Increased tumor size and proximity caused increased stress and strain across all glymphatic subunits, as does decreased astrocyte composition. Indeed, our model reveals an inverse correlation between extent of astrocyte contribution to the composition of the glymphatic unit and the resulting mechanical stress. This increased mechanical strain across the glymphatic unit decreases the venous efflux rate of CSF, dependent on the degree of strain and the specific glymphatic subunit of interest. For example, a 20% mechanical strain on capillary basement membranes does not significantly decrease venous efflux (2% decrease in flow rates), while the same magnitude of strain on astrocyte networks and interstitial spaces decreases efflux flow rates by 7% and 22%, respectively. Conclusion Our simulations reveal that solid stress from brain tumors directly reduces glymphatic fluid transport, independently from biochemical effects from cancer cells. Understanding these pathophysiological implications is crucial for developing targeted interventions aimed at restoring effective waste clearance mechanisms in the brain.This study opens potential avenues for future experimental research in brain tumor-related glymphatic dysfunction.
Collapse
|
4
|
Tanaka M, Hirayoshi Y, Minatani S, Hasegawa I, Itoh Y. Diffusion Mediates Molecular Transport through the Perivascular Space in the Brain. Int J Mol Sci 2024; 25:2480. [PMID: 38473727 DOI: 10.3390/ijms25052480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The perivascular space has been proposed as a clearance pathway for degradation products in the brain, including amyloid β, the accumulation of which may induce Alzheimer's disease. Live images were acquired using a two-photon microscope through a closed cranial window in mice. In topical application experiments, the dynamics of FITC-dextran were evaluated from 30 to 150 min after the application and closure of the window. In continuous injection experiments, image acquisition began before the continuous injection of FITC-dextran. The transport of dextran molecules of different sizes was evaluated. In topical application experiments, circumferential accumulation around the penetrating arteries, veins, and capillaries was observed, even at the beginning of the observation period. No further increases were detected. In continuous injection experiments, a time-dependent increase in the fluorescence intensity was observed around the penetrating arteries and veins. Lower-molecular-weight dextran was transported more rapidly than higher-molecular-weight dextran, especially around the arteries. The largest dextran molecules were not transported significantly during the observation period. The size-dependent transport of dextran observed in the present study strongly suggests that diffusion is the main mechanism mediating substance transport in the perivascular space.
Collapse
Affiliation(s)
- Marie Tanaka
- Department of Neurology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Yoko Hirayoshi
- Department of Neurology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Shinobu Minatani
- Department of Neurology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Itsuki Hasegawa
- Department of Neurology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| | - Yoshiaki Itoh
- Department of Neurology, Osaka City University Graduate School of Medicine, Osaka 545-8585, Japan
| |
Collapse
|
5
|
Xiong H, Wilson BA, Ge X, Gao X, Cai Q, Xu X, Bachoo R, Qin Z. Glioblastoma Margin as a Diffusion Barrier Revealed by Photoactivation of Plasmonic Nanovesicles. NANO LETTERS 2024; 24:1570-1578. [PMID: 38287297 DOI: 10.1021/acs.nanolett.3c04101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Glioblastoma (GBM) is the most complex and lethal primary brain cancer. Adequate drug diffusion and penetration are essential for treating GBM, but how the spatial heterogeneity in GBM impacts drug diffusion and transport is poorly understood. Herein, we report a new method, photoactivation of plasmonic nanovesicles (PANO), to measure molecular diffusion in the extracellular space of GBM. By examining three genetically engineered GBM mouse models that recapitulate key clinical features including the angiogenic core and diffuse infiltration, we found that the tumor margin has the lowest diffusion coefficient (highest tortuosity) compared with the tumor core and surrounding brain tissue. Analysis of the cellular composition shows that tortuosity in the GBM is strongly correlated with neuronal loss and astrocyte activation. Our all-optical measurement reveals the heterogeneous GBM microenvironment and highlights the tumor margin as a diffusion barrier for drug transport in the brain, with implications for therapeutic delivery.
Collapse
Affiliation(s)
- Hejian Xiong
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510000, China
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Blake A Wilson
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Xiaoqian Ge
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Xiaofei Gao
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Qi Cai
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Biological and Agricultural Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Xueqi Xu
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Robert Bachoo
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Zhenpeng Qin
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
- Department of Bioengineering, The University of Texas at Dallas, Richardson, Texas 75080, United States
- Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
6
|
Ge X, Xu X, Cai Q, Xiong H, Xie C, Hong Y, Gao X, Yao Y, Bachoo R, Qin Z. Live Mapping of the Brain Extracellular Matrix and Remodeling in Neurological Disorders. SMALL METHODS 2024; 8:e2301117. [PMID: 37922523 PMCID: PMC10842100 DOI: 10.1002/smtd.202301117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/06/2023] [Indexed: 11/07/2023]
Abstract
Live imaging of the brain extracellular matrix (ECM) provides vital insights into changes that occur in neurological disorders. Current techniques such as second or third-harmonic generation offer limited contrast for live imaging of the brain ECM. Here, a new method, pan-ECM via chemical labeling of extracellular proteins, is introduced for live brain ECM imaging. pan-ECM labels all major ECM components in live tissue including the interstitial matrix, basement membrane, and perineuronal nets. pan-ECM enables in vivo observation of the ECM heterogeneity between the glioma core and margin, as well as the assessment of ECM deterioration under stroke condition, without ECM shrinkage from tissue fixation. These findings indicate that the pan-ECM approach is a novel way to image the entire brain ECM in live brain tissue with optical resolution. pan-ECM has the potential to advance the understanding of ECM in brain function and neurological diseases.
Collapse
Affiliation(s)
- Xiaoqian Ge
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Xueqi Xu
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Qi Cai
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Hejian Xiong
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Chen Xie
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, 76010, USA
| | - Xiaofei Gao
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yao Yao
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, 33612, USA
| | - Robert Bachoo
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zhenpeng Qin
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, 75080, USA
- Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX, 75080, USA
- Department of Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
7
|
Xiong H, Wilson BA, Ge X, Gao X, Cai Q, Xu X, Bachoo R, Qin Z. Glioblastoma Margin as a Diffusion Barrier Revealed by Photoactivation of Plasmonic Nanovesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.29.564569. [PMID: 37961149 PMCID: PMC10634930 DOI: 10.1101/2023.10.29.564569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Glioblastoma (GBM) is the most complex and lethal adult primary brain cancer. Adequate drug diffusion and penetration are essential for treating GBM, but how the spatial heterogeneity in GBM impacts drug diffusion and transport is poorly understood. Herein, we report a new method, photoactivation of plasmonic nanovesicles (PANO), to measure molecular diffusion in the extracellular space of GBM. By examining three genetically engineered GBM mouse models that recapitulate key clinical features including angiogenic core and diffuse infiltration, we found that the tumor margin has the lowest diffusion coefficient (highest tortuosity) compared with the tumor core and surrounding brain tissue. Analysis of the cellular composition shows that the tortuosity in the GBM is strongly correlated with neuronal loss and astrocyte activation. Our all-optical measurement reveals the heterogeneous GBM microenvironment and highlights the tumor margin as a diffusion barrier for drug transport in the brain, with implications for therapeutic delivery.
Collapse
|
8
|
Idumah G, Somersalo E, Calvetti D. A spatially distributed model of brain metabolism highlights the role of diffusion in brain energy metabolism. J Theor Biol 2023; 572:111567. [PMID: 37393987 DOI: 10.1016/j.jtbi.2023.111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/04/2023]
Abstract
The different active roles of neurons and astrocytes during neuronal activation are associated with the metabolic processes necessary to supply the energy needed for their respective tasks at rest and during neuronal activation. Metabolism, in turn, relies on the delivery of metabolites and removal of toxic byproducts through diffusion processes and the cerebral blood flow. A comprehensive mathematical model of brain metabolism should account not only for the biochemical processes and the interaction of neurons and astrocytes, but also the diffusion of metabolites. In the present article, we present a computational methodology based on a multidomain model of the brain tissue and a homogenization argument for the diffusion processes. In our spatially distributed compartment model, communication between compartments occur both through local transport fluxes, as is the case within local astrocyte-neuron complexes, and through diffusion of some substances in some of the compartments. The model assumes that diffusion takes place in the extracellular space (ECS) and in the astrocyte compartment. In the astrocyte compartment, the diffusion across the syncytium network is implemented as a function of gap junction strength. The diffusion process is implemented numerically by means of a finite element method (FEM) based spatial discretization, and robust stiff solvers are used to time integrate the resulting large system. Computed experiments show the effects of ECS tortuosity, gap junction strength and spatial anisotropy in the astrocyte network on the brain energy metabolism.
Collapse
Affiliation(s)
- Gideon Idumah
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, USA
| | - Erkki Somersalo
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, USA
| | - Daniela Calvetti
- Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, USA.
| |
Collapse
|
9
|
Gu Z, Chen H, Zhao H, Yang W, Song Y, Li X, Wang Y, Du D, Liao H, Pan W, Li X, Gao Y, Han H, Tong Z. New insight into brain disease therapy: nanomedicines-crossing blood-brain barrier and extracellular space for drug delivery. Expert Opin Drug Deliv 2022; 19:1618-1635. [PMID: 36285632 DOI: 10.1080/17425247.2022.2139369] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Brain diseases including brain tumor, Alzheimer's disease, Parkinson's disease, etc. are difficult to treat. The blood-brain barrier (BBB) is a major obstacle for drug delivery into the brain. Although nano-package and receptor-mediated delivery of nanomedicine markedly increases BBB penetration, it yet did not extensively improve clinical cure rate. Recently, brain extracellular space (ECS) and interstitial fluid (ISF) drainage in ECS have been found to determine whether a drug dissolved in ISF can reach its target cells. Notably, an increase in tortuosity of ECS associated with slower ISF drainage induced by the accumulated harmful substances, such as: amyloid-beta (Aβ), α-synuclein, and metabolic wastes, causes drug delivery failure. AREAS COVERED The methods of nano-package and receptor-mediated drug delivery and the penetration efficacy of nanomedicines across BBB and ECS are assessed. EXPERT OPINION Invasive delivering drug via ECS and noninvasive near-infrared photo-sensitive nanomedicines may provide a promising benefit to patients with brain disease.
Collapse
Affiliation(s)
- Ziqi Gu
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Haishu Chen
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Han Zhao
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Wanting Yang
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yilan Song
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xiang Li
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Yang Wang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Radiology, Peking University Third Hospital, Beijing, China
| | - Dan Du
- Department of Radiology, Peking University Third Hospital, Beijing, China.,Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China
| | - Haikang Liao
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Wenhao Pan
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yajuan Gao
- Department of Radiology, Peking University Third Hospital, Beijing, China.,NMPA key Laboratory for Evaluation of Medical Imaging Equipment and Technique, Beijing, China
| | - Hongbin Han
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China.,Department of Radiology, Peking University Third Hospital, Beijing, China.,Beijing Key Laboratory of Magnetic Resonance Imaging Devices and Technology, Peking University Third Hospital, Beijing, China.,Peking University Shenzhen Graduate School, Shenzhen, China
| | - Zhiqian Tong
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Oujiang Laboratory, School of Mental Health, Wenzhou Medical University, Wenzhou, China.,The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
10
|
Kaur J, Fahmy LM, Davoodi-Bojd E, Zhang L, Ding G, Hu J, Zhang Z, Chopp M, Jiang Q. Waste Clearance in the Brain. Front Neuroanat 2021; 15:665803. [PMID: 34305538 PMCID: PMC8292771 DOI: 10.3389/fnana.2021.665803] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022] Open
Abstract
Waste clearance (WC) is an essential process for brain homeostasis, which is required for the proper and healthy functioning of all cerebrovascular and parenchymal brain cells. This review features our current understanding of brain WC, both within and external to the brain parenchyma. We describe the interplay of the blood-brain barrier (BBB), interstitial fluid (ISF), and perivascular spaces within the brain parenchyma for brain WC directly into the blood and/or cerebrospinal fluid (CSF). We also discuss the relevant role of the CSF and its exit routes in mediating WC. Recent discoveries of the glymphatic system and meningeal lymphatic vessels, and their relevance to brain WC are highlighted. Controversies related to brain WC research and potential future directions are presented.
Collapse
Affiliation(s)
- Jasleen Kaur
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Lara M. Fahmy
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, United States
| | - Esmaeil Davoodi-Bojd
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Radiology, Henry Ford Health System, Detroit, MI, United States
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI, United States
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Neurology, Wayne State University, Detroit, MI, United States
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI, United States
- Department of Physics, Oakland University, Rochester, MI, United States
- Department of Neurology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
11
|
Gipple JM, Haslach HW. Damage to the rat cerebrum under in vitro sinusoidal translational shear deformation. J Mech Behav Biomed Mater 2020; 110:103969. [PMID: 32739843 DOI: 10.1016/j.jmbbm.2020.103969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/01/2020] [Accepted: 06/30/2020] [Indexed: 11/18/2022]
Abstract
Blast waves, which induce sinusoidal shear waves within brain tissue, may cause mild traumatic brain injury (mTBI). To identify damage from a shear deformation wave, sagittal slices of rat cerebra are subjected to 50 cycles of translational shear deformation at six fixed frequencies between 25 Hz and 125 Hz and displacement amplitudes of 10% or 25% of the original length of the specimen. Each deformation frequency produces transient and apparent steady shear stress states that frequency analysis describes by their harmonic wavelet and Fourier frequency components. The dominant frequency components are integer multiples of the applied deformation frequency. The morphology of the shear stress versus time curve, and probably the type of damage, changes with deformation frequency. Damage at the lower frequencies appears to be diffuse bond breaking. Imaging and histology do not clearly detect mild damage due to bond breaking that underlies mTBI, which the analysis of the shear stress response captures. Major transitions in the morphology of the stress response in the two regions occur at about 75 Hz deformation frequency, possibly due to minor damage to cerebral substructures. An increase in deformation frequency increases the drag force between the extracellular fluid and solid matter. The deformation frequency dependence of the shear stress response makes protection against blast mTBI more difficult because the frequency content of a blast wave is not known a priori.
Collapse
Affiliation(s)
- Jenna M Gipple
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Henry W Haslach
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
12
|
Kaur J, Davoodi-Bojd E, Fahmy LM, Zhang L, Ding G, Hu J, Zhang Z, Chopp M, Jiang Q. Magnetic Resonance Imaging and Modeling of the Glymphatic System. Diagnostics (Basel) 2020; 10:diagnostics10060344. [PMID: 32471025 PMCID: PMC7344900 DOI: 10.3390/diagnostics10060344] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
The glymphatic system is a newly discovered waste drainage pathway in the brain; it plays an important role in many neurological diseases. Ongoing research utilizing various cerebrospinal fluid tracer infusions, either directly or indirectly into the brain parenchyma, is investigating clearance pathways by using distinct imaging techniques. In the present review, we discuss the role of the glymphatic system in various neurological diseases and efflux pathways of brain waste clearance based on current evidence and controversies. We mainly focus on new magnetic resonance imaging (MRI) modeling techniques, along with traditional computational modeling, for a better understanding of the glymphatic system function. Future sophisticated modeling techniques hold the potential to generate quantitative maps for glymphatic system parameters that could contribute to the diagnosis, monitoring, and prognosis of neurological diseases. The non-invasive nature of MRI may provide a safe and effective way to translate glymphatic system measurements from bench-to-bedside.
Collapse
Affiliation(s)
- Jasleen Kaur
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Esmaeil Davoodi-Bojd
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
- Department of Radiology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Lara M Fahmy
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI 48201, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, MI 48201, USA;
| | - Zhenggang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI 48202, USA; (J.K.); (E.D.-B.); (L.M.F.); (L.Z.); (G.D.); (Z.Z.); (M.C.)
- Department of Physics, Oakland University, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-313-916-8735; Fax: +1-313-916-1324
| |
Collapse
|
13
|
Martinac AD, Bilston LE. Computational modelling of fluid and solute transport in the brain. Biomech Model Mechanobiol 2019; 19:781-800. [DOI: 10.1007/s10237-019-01253-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/05/2019] [Indexed: 01/10/2023]
|
14
|
Hosseini-Farid M, Ramzanpour M, McLean J, Ziejewski M, Karami G. A poro-hyper-viscoelastic rate-dependent constitutive modeling for the analysis of brain tissues. J Mech Behav Biomed Mater 2019; 102:103475. [PMID: 31627069 DOI: 10.1016/j.jmbbm.2019.103475] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 09/07/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022]
Abstract
In this paper, the dynamic behavior of bovine brain tissue, measured from in-vitro unconfined compression tests, is examined and represented through a viscoelastic biphasic model. The experiments have been carried out under three compression speeds of 10, 100, and 1000 mm/s. The results exhibited significant rate-dependent behavior. The brain tissue is modeled as a biphasic continuum consisting of a compressible solid matrix, fully saturated with an incompressible interstitial fluid. The governing equations based on conservation of mass and momentum are used to describe the solid-fluid interactions. An inverse scheme is employed in which a finite element model runs iteratively to optimize constitutive constants. The obtained material parameters of the proposed biphasic model show relatively good agreement (R2 ≥ 0.96) with the experimental tissue mechanical responses at different rates. The model can successfully capture the key aspects of the rate-dependency for both solid and fluid phases under large strain deformation. This poro-hyper viscoelastic model can effectively estimate the global and local rate-dependent tissue deformations, the spatial variations in pore spaces, hydrostatic pressure as well as fluid diffusion through the tissue.
Collapse
Affiliation(s)
| | | | - Jayse McLean
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND, 58104, USA
| | - Mariusz Ziejewski
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND, 58104, USA
| | - Ghodrat Karami
- Department of Mechanical Engineering, North Dakota State University, Fargo, ND, 58104, USA.
| |
Collapse
|
15
|
Haydukivska K, Blavatska V. Universal size properties of a star-ring polymer structure in disordered environments. Phys Rev E 2018; 97:032502. [PMID: 29776140 DOI: 10.1103/physreve.97.032502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Indexed: 01/24/2023]
Abstract
We consider the complex polymer system, consisting of a ring polymer connected to the f_{1}-branched starlike structure, in a good solvent in the presence of structural inhomogeneities. In particular cases f_{1}=1 and f_{1}=2, such a system restores the synthesized tadpole-shaped polystyrenes [Doi et al., Macromolecules 46, 1075 (2013)MAMOBX0024-929710.1021/ma302511j]. We assume that structural defects are correlated at large distances x according to a power law x^{-a}. Applying the direct polymer renormalization approach, we evaluate the universal size characteristics such as the ratio of the radii of gyration of star-ring and star topologies, and compare the effective sizes of single arms in complex structures and isolated polymers of the same total molecular weight. The nontrivial impact of disorder on these quantities is analyzed.
Collapse
Affiliation(s)
- K Haydukivska
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 79011 Lviv, Ukraine
| | - V Blavatska
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 79011 Lviv, Ukraine
| |
Collapse
|
16
|
Advances in surface-coated single-walled carbon nanotubes as near-infrared photoluminescence emitters for single-particle tracking applications in biological environments. Polym J 2018. [DOI: 10.1038/s41428-018-0052-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Thulborn KR. Quantitative sodium MR imaging: A review of its evolving role in medicine. Neuroimage 2018; 168:250-268. [PMID: 27890804 PMCID: PMC5443706 DOI: 10.1016/j.neuroimage.2016.11.056] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/23/2016] [Accepted: 11/22/2016] [Indexed: 12/26/2022] Open
Abstract
Sodium magnetic resonance (MR) imaging in humans has promised metabolic information that can improve medical management in important diseases. This technology has yet to find a role in clinical practice, lagging proton MR imaging by decades. This review covers the literature that demonstrates that this delay is explained by initial challenges of low sensitivity at low magnetic fields and the limited performance of gradients and electronics available in the 1980s. These constraints were removed by the introduction of 3T and now ultrahigh (≥7T) magnetic field scanners with superior gradients and electronics for proton MR imaging. New projection pulse sequence designs have greatly improved sodium acquisition efficiency. The increased field strength has provided the expected increased sensitivity to achieve resolutions acceptable for metabolic interpretation even in small target tissues. Consistency of quantification of the sodium MR image to provide metabolic parametric maps has been demonstrated by several different pulse sequences and calibration procedures. The vital roles of sodium ion in membrane transport and the extracellular matrix will be reviewed to indicate the broad opportunities that now exist for clinical sodium MR imaging. The final challenge is for the technology to be supplied on clinical ≥3T scanners.
Collapse
Affiliation(s)
- Keith R Thulborn
- Center for Magnetic Resonance Research, University of Illinois at Chicago, 1801 West Taylor Street, Chicago, IL 60612, United States.
| |
Collapse
|
18
|
Huang Y, Huang J, Feng M, Ren J, Mi K, Cheng J, Song B, Lang J. Early changes in the apparent diffusion coefficient and MMP-9 expression of a cervical carcinoma U14 allograft model following irradiation. Oncol Lett 2017; 14:6769-6775. [PMID: 29151916 DOI: 10.3892/ol.2017.7035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/20/2017] [Indexed: 02/05/2023] Open
Abstract
A cervical carcinoma allograft model was designed to assess the correlation between early changes in the apparent diffusion coefficient (ADC) values on diffusion-weighted magnetic resonance imaging (DW-MRI) and the expression of matrix metalloproteinase-9 (MMP-9) in tumors. BALB/c mice with U14 tumor allografts on the right rear flank were irradiated with a single 20 Gy dose. All tumor-bearing mice were subjected to DW-MRI, followed by calculation of the ADC values and characterization of the T1 and T2 relaxation time constants. Pre- and post-irradiation ADC values were compared with the tumor volume, and the immunohistochemical staining of MMP-9 and hematoxylin-eosin (HE) staining of tumor allografts. However, no correlations between the pre-treatment ADC values and changes in tumor volumes following irradiation were observed. Notably, the mean ADC value was significantly higher in the irradiated tumors (0.756±0.102×10-3 mm2/sec) as compared with those in the untreated tumors (0.501±0.052×10-3 mm2/sec; P=0.002; r=0.682). Additionally, immunohistochemical staining demonstrated that MMP-9 expression in the irradiated tumors was significantly increased. The mean ADC value was significantly higher in the irradiated tumors with high MMP-9 expression levels (0.815±0.112×10-3 mm2/sec), as compared with in the untreated tumors with low MMP-9 expression levels (0.631±0.068×10-3 mm2/sec). Quantitative analysis determined that the ADC values were correlated with MMP-9 expression (r=0.752; P=0.003). Combined, these results suggest that radiation-induced increases in MMP-9 expression levels may be responsible for early changes in the mean ADC value and the response to irradiation in cervical carcinoma.
Collapse
Affiliation(s)
- Yecai Huang
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Jianming Huang
- Department of Biochemistry and Molecular Biology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Mei Feng
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Jing Ren
- Department of Radiology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Kun Mi
- Department of Biochemistry and Molecular Biology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Jia Cheng
- Department of Biochemistry and Molecular Biology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| | - Bing Song
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jinyi Lang
- Department of Radiation Oncology, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
19
|
Development of Halofluorochromic Polymer Nanoassemblies for the Potential Detection of Liver Metastatic Colorectal Cancer Tumors Using Experimental and Computational Approaches. Pharm Res 2017; 34:2385-2402. [PMID: 28840432 DOI: 10.1007/s11095-017-2245-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/31/2017] [Indexed: 12/25/2022]
Abstract
PURPOSE To develop polymer nanoassemblies (PNAs) modified with halofluorochromic dyes to allow for the detection of liver metastatic colorectal cancer (CRC) to improve therapeutic outcomes. METHODS We combine experimental and computational approaches to evaluate macroscopic and microscopic PNA distributions in patient-derived xenograft primary and orthotropic liver metastatic CRC tumors. Halofluorochromic and non-halofluorochromic PNAs (hfPNAs and n-hfPNAs) were prepared from poly(ethylene glycol), fluorescent dyes (Nile blue, Alexa546, and IR820), and hydrophobic groups (palmitate), all of which were covalently tethered to a cationic polymer scaffold [poly(ethylene imine) or poly(lysine)] forming particles with an average diameter < 30 nm. RESULTS Dye-conjugated PNAs showed no aggregation under opsonizing conditions for 24 h and displayed low tissue diffusion and cellular uptake. Both hfPNAs and n-hfPNAs accumulated in primary and liver metastatic CRC tumors within 12 h post intravenous injection. In comparison to n-hfPNAs, hfPNAs fluoresced strongly only in the acidic tumor microenvironment (pH < 7.0) and distinguished small metastatic CRC tumors from healthy liver stroma. Computational simulations revealed that PNAs would steadily accumulate mainly in acidic (hypoxic) interstitium of metastatic tumors, independently of the vascularization degree of the tissue surrounding the lesions. CONCLUSION The combined experimental and computational data confirms that hfPNAs detecting acidic tumor tissue can be used to identify small liver metastatic CRC tumors with improved accuracy.
Collapse
|
20
|
Smith AJ, Yao X, Dix JA, Jin BJ, Verkman AS. Test of the 'glymphatic' hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. eLife 2017; 6:27679. [PMID: 28826498 PMCID: PMC5578736 DOI: 10.7554/elife.27679] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 08/18/2017] [Indexed: 12/11/2022] Open
Abstract
Transport of solutes through brain involves diffusion and convection. The importance of convective flow in the subarachnoid and paravascular spaces has long been recognized; a recently proposed ‘glymphatic’ clearance mechanism additionally suggests that aquaporin-4 (AQP4) water channels facilitate convective transport through brain parenchyma. Here, the major experimental underpinnings of the glymphatic mechanism were re-examined by measurements of solute movement in mouse brain following intracisternal or intraparenchymal solute injection. We found that: (i) transport of fluorescent dextrans in brain parenchyma depended on dextran size in a manner consistent with diffusive rather than convective transport; (ii) transport of dextrans in the parenchymal extracellular space, measured by 2-photon fluorescence recovery after photobleaching, was not affected just after cardiorespiratory arrest; and (iii) Aqp4 gene deletion did not impair transport of fluorescent solutes from sub-arachnoid space to brain in mice or rats. Our results do not support the proposed glymphatic mechanism of convective solute transport in brain parenchyma.
Collapse
Affiliation(s)
- Alex J Smith
- Department of Medicine, University of California, San Francisco, San Francisco, United States.,Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Xiaoming Yao
- Department of Medicine, University of California, San Francisco, San Francisco, United States.,Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - James A Dix
- Department of Medicine, University of California, San Francisco, San Francisco, United States.,Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Byung-Ju Jin
- Department of Medicine, University of California, San Francisco, San Francisco, United States.,Department of Physiology, University of California, San Francisco, San Francisco, United States
| | - Alan S Verkman
- Department of Medicine, University of California, San Francisco, San Francisco, United States.,Department of Physiology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
21
|
Nicholson C, Hrabětová S. Brain Extracellular Space: The Final Frontier of Neuroscience. Biophys J 2017; 113:2133-2142. [PMID: 28755756 DOI: 10.1016/j.bpj.2017.06.052] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/31/2017] [Accepted: 06/07/2017] [Indexed: 01/15/2023] Open
Abstract
Brain extracellular space is the narrow microenvironment that surrounds every cell of the central nervous system. It contains a solution that closely resembles cerebrospinal fluid with the addition of extracellular matrix molecules. The space provides a reservoir for ions essential to the electrical activity of neurons and forms an intercellular chemical communication channel. Attempts to reveal the size and structure of the extracellular space using electron microscopy have had limited success; however, a biophysical approach based on diffusion of selected probe molecules has proved useful. A point-source paradigm, realized in the real-time iontophoresis method using tetramethylammonium, as well as earlier radiotracer methods, have shown that the extracellular space occupies ∼20% of brain tissue and small molecules have an effective diffusion coefficient that is two-fifths that in a free solution. Monte Carlo modeling indicates that geometrical constraints, including dead-space microdomains, contribute to the hindrance to diffusion. Imaging the spread of macromolecules shows them increasingly hindered as a function of size and suggests that the gaps between cells are predominantly ∼40 nm with wider local expansions that may represent dead-spaces. Diffusion measurements also characterize interactions of ions and proteins with the chondroitin and heparan sulfate components of the extracellular matrix; however, the many roles of the matrix are only starting to become apparent. The existence and magnitude of bulk flow and the so-called glymphatic system are topics of current interest and controversy. The extracellular space is an exciting area for research that will be propelled by emerging technologies.
Collapse
Affiliation(s)
- Charles Nicholson
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, New York; Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York.
| | - Sabina Hrabětová
- Department of Cell Biology, State University of New York Downstate Medical Center, Brooklyn, New York; The Robert Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, New York
| |
Collapse
|
22
|
Song G, Luo T, Dong L, Liu Q. Extracellular diffusion quantified by magnetic resonance imaging during rat C6 glioma cell progression. ACTA ACUST UNITED AC 2017; 50:e5403. [PMID: 28678913 PMCID: PMC5496150 DOI: 10.1590/1414-431x20175403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 05/02/2017] [Indexed: 12/31/2022]
Abstract
Solution reflux and edema hamper the convection-enhanced delivery of the standard treatment for glioma. Therefore, a real-time magnetic resonance imaging (MRI) method was developed to monitor the dosing process, but a quantitative analysis of local diffusion and clearance parameters has not been assessed. The objective of this study was to compare diffusion into the extracellular space (ECS) at different stages of rat C6 gliomas, and analyze the effects of the extracellular matrix (ECM) on the diffusion process. At 10 and 20 days, after successful glioma modeling, gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) was introduced into the ECS of rat C6 gliomas. Diffusion parameters and half-life of the reagent were then detected using MRI, and quantified according to the mathematical model of diffusion. The main ECM components [chondroitin sulfate proteoglycans (CSPGs), collagen IV, and tenascin C] were detected by immunohistochemical and immunoblot analyses. In 20-day gliomas, Gd-DTPA diffused more slowly and derived higher tortuosity, with lower clearance rate and longer half-life compared to 10-day gliomas. The increased glioma ECM was associated with different diffusion and clearance parameters in 20-day rat gliomas compared to 10-day gliomas. ECS parameters were altered with C6 glioma progression from increased ECM content. Our study might help better understand the glioma microenvironment and provide benefits for interstitial drug delivery to treat brain gliomas.
Collapse
Affiliation(s)
- G Song
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - T Luo
- Department of Radiology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - L Dong
- Department of Radiology, The Secondary Affiliated Hospital, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Q Liu
- Department of Radiology, The Secondary Affiliated Hospital, Baotou Medical College, Baotou, Inner Mongolia, China
| |
Collapse
|
23
|
Godin AG, Varela JA, Gao Z, Danné N, Dupuis JP, Lounis B, Groc L, Cognet L. Single-nanotube tracking reveals the nanoscale organization of the extracellular space in the live brain. NATURE NANOTECHNOLOGY 2017; 12:238-243. [PMID: 27870840 DOI: 10.1038/nnano.2016.248] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 10/14/2016] [Indexed: 05/18/2023]
Abstract
The brain is a dynamic structure with the extracellular space (ECS) taking up almost a quarter of its volume. Signalling molecules, neurotransmitters and nutrients transit via the ECS, which constitutes a key microenvironment for cellular communication and the clearance of toxic metabolites. The spatial organization of the ECS varies during sleep, development and aging and is probably altered in neuropsychiatric and degenerative diseases, as inferred from electron microscopy and macroscopic biophysical investigations. Here we show an approach to directly observe the local ECS structures and rheology in brain tissue using super-resolution imaging. We inject single-walled carbon nanotubes into rat cerebroventricles and follow the near-infrared emission of individual nanotubes as they diffuse inside the ECS for tens of minutes in acute slices. Because of the interplay between the nanotube geometry and the ECS local environment, we can extract information about the dimensions and local viscosity of the ECS. We find a striking diversity of ECS dimensions down to 40 nm, and as well as of local viscosity values. Moreover, by chemically altering the extracellular matrix of the brains of live animals before nanotube injection, we reveal that the rheological properties of the ECS are affected, but these alterations are local and inhomogeneous at the nanoscale.
Collapse
Affiliation(s)
- Antoine G Godin
- Laboratoire Photonique Numérique et Nanosciences, Univ. Bordeaux, UMR 5298, F-33400 Talence, France
- Institut d'Optique &CNRS, LP2N UMR 5298, F-33400 Talence, France
| | - Juan A Varela
- Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000 Bordeaux, France
- CNRS, IINS UMR 5297, F-33000 Bordeaux, France
| | - Zhenghong Gao
- Laboratoire Photonique Numérique et Nanosciences, Univ. Bordeaux, UMR 5298, F-33400 Talence, France
- Institut d'Optique &CNRS, LP2N UMR 5298, F-33400 Talence, France
| | - Noémie Danné
- Laboratoire Photonique Numérique et Nanosciences, Univ. Bordeaux, UMR 5298, F-33400 Talence, France
- Institut d'Optique &CNRS, LP2N UMR 5298, F-33400 Talence, France
| | - Julien P Dupuis
- Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000 Bordeaux, France
- CNRS, IINS UMR 5297, F-33000 Bordeaux, France
| | - Brahim Lounis
- Laboratoire Photonique Numérique et Nanosciences, Univ. Bordeaux, UMR 5298, F-33400 Talence, France
- Institut d'Optique &CNRS, LP2N UMR 5298, F-33400 Talence, France
| | - Laurent Groc
- Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, F-33000 Bordeaux, France
- CNRS, IINS UMR 5297, F-33000 Bordeaux, France
| | - Laurent Cognet
- Laboratoire Photonique Numérique et Nanosciences, Univ. Bordeaux, UMR 5298, F-33400 Talence, France
- Institut d'Optique &CNRS, LP2N UMR 5298, F-33400 Talence, France
| |
Collapse
|
24
|
Jin BJ, Smith AJ, Verkman AS. Spatial model of convective solute transport in brain extracellular space does not support a "glymphatic" mechanism. J Gen Physiol 2016; 148:489-501. [PMID: 27836940 PMCID: PMC5129742 DOI: 10.1085/jgp.201611684] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/21/2016] [Indexed: 01/12/2023] Open
Abstract
A “glymphatic mechanism” has been proposed to mediate convective fluid transport from para-arterial to paravenous extracellular space in the brain. Jin et al. model such a system and find that diffusion, rather than convection, can account for the transport of solutes. A “glymphatic system,” which involves convective fluid transport from para-arterial to paravenous cerebrospinal fluid through brain extracellular space (ECS), has been proposed to account for solute clearance in brain, and aquaporin-4 water channels in astrocyte endfeet may have a role in this process. Here, we investigate the major predictions of the glymphatic mechanism by modeling diffusive and convective transport in brain ECS and by solving the Navier–Stokes and convection–diffusion equations, using realistic ECS geometry for short-range transport between para-arterial and paravenous spaces. Major model parameters include para-arterial and paravenous pressures, ECS volume fraction, solute diffusion coefficient, and astrocyte foot-process water permeability. The model predicts solute accumulation and clearance from the ECS after a step change in solute concentration in para-arterial fluid. The principal and robust conclusions of the model are as follows: (a) significant convective transport requires a sustained pressure difference of several mmHg between the para-arterial and paravenous fluid and is not affected by pulsatile pressure fluctuations; (b) astrocyte endfoot water permeability does not substantially alter the rate of convective transport in ECS as the resistance to flow across endfeet is far greater than in the gaps surrounding them; and (c) diffusion (without convection) in the ECS is adequate to account for experimental transport studies in brain parenchyma. Therefore, our modeling results do not support a physiologically important role for local parenchymal convective flow in solute transport through brain ECS.
Collapse
Affiliation(s)
- Byung-Ju Jin
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143.,Department of Physiology, University of California, San Francisco, San Francisco, CA 94143
| | - Alex J Smith
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143.,Department of Physiology, University of California, San Francisco, San Francisco, CA 94143
| | - Alan S Verkman
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143 .,Department of Physiology, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
25
|
Stromal uptake and transmission of acid is a pathway for venting cancer cell-generated acid. Proc Natl Acad Sci U S A 2016; 113:E5344-53. [PMID: 27543333 DOI: 10.1073/pnas.1610954113] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Proliferation and invasion of cancer cells require favorable pH, yet potentially toxic quantities of acid are produced metabolically. Membrane-bound transporters extrude acid from cancer cells, but little is known about the mechanisms that handle acid once it is released into the poorly perfused extracellular space. Here, we studied acid handling by myofibroblasts (colon cancer-derived Hs675.T, intestinal InMyoFib, embryonic colon-derived CCD-112-CoN), skin fibroblasts (NHDF-Ad), and colorectal cancer (CRC) cells (HCT116, HT29) grown in monoculture or coculture. Expression of the acid-loading transporter anion exchanger 2 (AE2) (SLC4A2 product) was detected in myofibroblasts and fibroblasts, but not in CRC cells. Compared with CRC cells, Hs675.T and InMyoFib myofibroblasts had very high capacity to absorb extracellular acid. Acid uptake into CCD-112-CoN and NHDF-Ad cells was slower and comparable to levels in CRC cells, but increased alongside SLC4A2 expression under stimulation with transforming growth factor β1 (TGFβ1), a cytokine involved in cancer-stroma interplay. Myofibroblasts and fibroblasts are connected by gap junctions formed by proteins such as connexin-43, which allows the absorbed acid load to be transmitted across the stromal syncytium. To match the stimulatory effect on acid uptake, cell-to-cell coupling in NHDF-Ad and CCD-112-CoN cells was strengthened with TGFβ1. In contrast, acid transmission was absent between CRC cells, even after treatment with TGFβ1. Thus, stromal cells have the necessary molecular apparatus for assembling an acid-venting route that can improve the flow of metabolic acid through tumors. Importantly, the activities of stromal AE2 and connexin-43 do not place an energetic burden on cancer cells, allowing resources to be diverted for other activities.
Collapse
|
26
|
Louveau A, Harris TH, Kipnis J. Revisiting the Mechanisms of CNS Immune Privilege. Trends Immunol 2015; 36:569-577. [PMID: 26431936 PMCID: PMC4593064 DOI: 10.1016/j.it.2015.08.006] [Citation(s) in RCA: 469] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/13/2015] [Accepted: 08/13/2015] [Indexed: 12/25/2022]
Abstract
Whereas the study of the interactions between the immune system and the central nervous system (CNS) has often focused on pathological conditions, the importance of neuroimmune communication in CNS homeostasis and function has become clear over that last two decades. Here we discuss the progression of our understanding of the interaction between the peripheral immune system and the CNS. We examine the notion of immune privilege of the CNS in light of both earlier findings and recent studies revealing a functional meningeal lymphatic system that drains cerebrospinal fluid (CSF) to the deep cervical lymph nodes, and consider the implications of a revised perspective on the immune privilege of the CNS on the etiology and pathology of different neurological disorders.
Collapse
Affiliation(s)
- Antoine Louveau
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Tajie H Harris
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| |
Collapse
|
27
|
Transient solid–fluid interactions in rat brain tissue under combined translational shear and fixed compression. J Mech Behav Biomed Mater 2015; 48:12-27. [DOI: 10.1016/j.jmbbm.2015.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/30/2015] [Accepted: 04/01/2015] [Indexed: 11/17/2022]
|
28
|
Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 2014; 11:26. [PMID: 25678956 PMCID: PMC4326185 DOI: 10.1186/2045-8118-11-26] [Citation(s) in RCA: 421] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/21/2014] [Indexed: 01/08/2023] Open
Abstract
Interstitial fluid (ISF) surrounds the parenchymal cells of the brain and spinal cord while cerebrospinal fluid (CSF) fills the larger spaces within and around the CNS. Regulation of the composition and volume of these fluids is important for effective functioning of brain cells and is achieved by barriers that prevent free exchange between CNS and blood and by mechanisms that secrete fluid of controlled composition into the brain and distribute and reabsorb it. Structures associated with this regular fluid turnover include the choroid plexuses, brain capillaries comprising the blood-brain barrier, arachnoid villi and perineural spaces penetrating the cribriform plate. ISF flow, estimated from rates of removal of markers from the brain, has been thought to reflect rates of fluid secretion across the blood-brain barrier, although this has been questioned because measurements were made under barbiturate anaesthesia possibly affecting secretion and flow and because CSF influx to the parenchyma via perivascular routes may deliver fluid independently of blood-brain barrier secretion. Fluid secretion at the blood-brain barrier is provided by specific transporters that generate solute fluxes so creating osmotic gradients that force water to follow. Any flow due to hydrostatic pressures driving water across the barrier soon ceases unless accompanied by solute transport because water movements modify solute concentrations. CSF is thought to be derived primarily from secretion by the choroid plexuses. Flow rates measured using phase contrast magnetic resonance imaging reveal CSF movements to be more rapid and variable than previously supposed, even implying that under some circumstances net flow through the cerebral aqueduct may be reversed with net flow into the third and lateral ventricles. Such reversed flow requires there to be alternative sites for both generation and removal of CSF. Fluorescent tracer analysis has shown that fluid flow can occur from CSF into parenchyma along periarterial spaces. Whether this represents net fluid flow and whether there is subsequent flow through the interstitium and net flow out of the cortex via perivenous routes, described as glymphatic circulation, remains to be established. Modern techniques have revealed complex fluid movements within the brain. This review provides a critical evaluation of the data.
Collapse
Affiliation(s)
- Stephen B Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|
29
|
Varjú I, Tenekedjiev K, Keresztes Z, Pap AE, Szabó L, Thelwell C, Longstaff C, Machovich R, Kolev K. Fractal Kinetic Behavior of Plasmin on the Surface of Fibrin Meshwork. Biochemistry 2014; 53:6348-56. [DOI: 10.1021/bi500661m] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Imre Varjú
- Department
of Medical Biochemistry, Semmelweis University, 1094 Budapest, Hungary
| | - Kiril Tenekedjiev
- Department
of Information Technology, Nikola Vaptsarov Naval Academy, 9026 Varna, Bulgaria
| | | | - Andrea Edit Pap
- Microtechnology
Department, Institute of Technical Physics and Materials Science,
Research Centre for Natural Sciences, Hungarian Academy of Sciences, 1121 Budapest, Hungary
| | | | - Craig Thelwell
- Biotherapeutics
Division, Haemostasis Section, National Institute for Biological Standards and Control, South Mimms, Herts, EN6 3QG, U.K
| | - Colin Longstaff
- Biotherapeutics
Division, Haemostasis Section, National Institute for Biological Standards and Control, South Mimms, Herts, EN6 3QG, U.K
| | - Raymund Machovich
- Department
of Medical Biochemistry, Semmelweis University, 1094 Budapest, Hungary
| | - Krasimir Kolev
- Department
of Medical Biochemistry, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
30
|
Haydukivska K, Blavatska V. Ring polymers in crowded environment: conformational properties. J Chem Phys 2014; 141:094906. [PMID: 25194393 DOI: 10.1063/1.4894278] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We analyze the universal size characteristics of flexible ring polymers in solutions in presence of structural obstacles (impurities) in d dimensions. One encounters such situations when considering polymers in gels, colloidal solutions, intra- and extracellular environments. A special case of extended impurities correlated on large distances r according to a power law ~r(-a) is considered. Applying the direct polymer renormalization scheme, we evaluate the estimates for averaged gyration radius ⟨R(g ring)⟩ and spanning radius ⟨R(1/2 ring)⟩ of typical ring polymer conformation up to the first order of double ɛ = 4 - d, δ = 4 - a expansion. Our results quantitatively reveal an extent of the effective size and anisotropy of closed ring macromolecules in disordered environment. In particular, the size ratio of ring and open (linear) polymers of the same molecular weight grows when increasing the strength of disorder according to ⟨R(g ring)(2)⟩/⟨R(g chain)(2)⟩=½(1+(13/48)δ).
Collapse
Affiliation(s)
- K Haydukivska
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 79011 Lviv, Ukraine
| | - V Blavatska
- Institute for Condensed Matter Physics of the National Academy of Sciences of Ukraine, 79011 Lviv, Ukraine
| |
Collapse
|
31
|
Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS 2014. [PMID: 25678956 DOI: 10.1186/10.1186/2045-8118-11-26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023] Open
Abstract
Interstitial fluid (ISF) surrounds the parenchymal cells of the brain and spinal cord while cerebrospinal fluid (CSF) fills the larger spaces within and around the CNS. Regulation of the composition and volume of these fluids is important for effective functioning of brain cells and is achieved by barriers that prevent free exchange between CNS and blood and by mechanisms that secrete fluid of controlled composition into the brain and distribute and reabsorb it. Structures associated with this regular fluid turnover include the choroid plexuses, brain capillaries comprising the blood-brain barrier, arachnoid villi and perineural spaces penetrating the cribriform plate. ISF flow, estimated from rates of removal of markers from the brain, has been thought to reflect rates of fluid secretion across the blood-brain barrier, although this has been questioned because measurements were made under barbiturate anaesthesia possibly affecting secretion and flow and because CSF influx to the parenchyma via perivascular routes may deliver fluid independently of blood-brain barrier secretion. Fluid secretion at the blood-brain barrier is provided by specific transporters that generate solute fluxes so creating osmotic gradients that force water to follow. Any flow due to hydrostatic pressures driving water across the barrier soon ceases unless accompanied by solute transport because water movements modify solute concentrations. CSF is thought to be derived primarily from secretion by the choroid plexuses. Flow rates measured using phase contrast magnetic resonance imaging reveal CSF movements to be more rapid and variable than previously supposed, even implying that under some circumstances net flow through the cerebral aqueduct may be reversed with net flow into the third and lateral ventricles. Such reversed flow requires there to be alternative sites for both generation and removal of CSF. Fluorescent tracer analysis has shown that fluid flow can occur from CSF into parenchyma along periarterial spaces. Whether this represents net fluid flow and whether there is subsequent flow through the interstitium and net flow out of the cortex via perivenous routes, described as glymphatic circulation, remains to be established. Modern techniques have revealed complex fluid movements within the brain. This review provides a critical evaluation of the data.
Collapse
Affiliation(s)
- Stephen B Hladky
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| | - Margery A Barrand
- Department of Pharmacology, University of Cambridge, Cambridge, CB2 1PD UK
| |
Collapse
|