1
|
Bu B, Tian Z, Li D, Zhang K, Chen W, Ji B, Diao J. Double-Transmembrane Domain of SNAREs Decelerates the Fusion by Increasing the Protein-Lipid Mismatch. J Mol Biol 2023; 435:168089. [PMID: 37030649 PMCID: PMC10247502 DOI: 10.1016/j.jmb.2023.168089] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/02/2023] [Accepted: 04/02/2023] [Indexed: 04/10/2023]
Abstract
SNARE is the essential mediator of membrane fusion that highly relies on the molecular structure of SNAREs. For instance, the protein syntaxin-1 involved in neuronal SNAREs, has a single transmembrane domain (sTMD) leading to fast fusion, while the syntaxin 17 has a V-shape double TMDs (dTMDs), taking part in the autophagosome maturation. However, it is not clear how the TMD structure influences the fusion process. Here, we demonstrate that the dTMDs significantly reduce fusion rate compared with the sTMD by using an in vitro reconstitution system. Through theoretical analysis, we reveal that the V-shape dTMDs can significantly increase protein-lipid mismatch, thereby raising the energy barrier of the fusion, and that increasing the number of SNAREs can reduce the energy barrier or protein-lipid mismatch. This study provides a physicochemical mechanistic understanding of SNARE-regulated membrane fusion.
Collapse
Affiliation(s)
- Bing Bu
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Dechang Li
- Institute of Applied Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China.
| | - Kai Zhang
- Department of Biochemistry, University of Illinois, Urbana-Champaign, Illinois 61801, USA
| | - Wei Chen
- Department of Cell Biology and Department of Cardiology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Baohua Ji
- Institute of Applied Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
2
|
Fezoua-Boubegtiten Z, Hastoy B, Scotti P, Milochau A, Bathany K, Desbat B, Castano S, Oda R, Lang J. The transmembrane domain of the SNARE protein VAMP2 is highly sensitive to its lipid environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:670-676. [DOI: 10.1016/j.bbamem.2018.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/15/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022]
|
3
|
Abstract
This chapter expounds the single vesicle-vesicle fluorescence resonance energy transfer (FRET) measurement to study the membrane fusion mediated by SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins. The formation of a four-α-helix bundle of SNARE proteins can drive two membranes to a close proximity for fusion. Through single-molecule FRET-based microscopy, the lipid-mixing process at the single-vesicle level can be tracked in real time. This reconstitution system is applicable to study the molecular mechanism of SNAREs during different membrane fusion stages, such as docking, hemifusion, and full fusion. Four main parts are described in this chapter, including SNARE reconstitution, imaging preparation, data collection, and analysis.
Collapse
Affiliation(s)
- Yachong Hu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
4
|
Fusion assays for model membranes: a critical review. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2019. [DOI: 10.1016/bs.abl.2019.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|
5
|
Bu B, Crowe M, Diao J, Ji B, Li D. Cholesterol suppresses membrane leakage by decreasing water penetrability. SOFT MATTER 2018; 14:5277-5282. [PMID: 29896597 DOI: 10.1039/c8sm00644j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Membrane fusion is a fundamental biological process that lies at the heart of enveloped virus infection, synaptic signaling, intracellular vesicle trafficking, gamete fertilization, and cell-cell fusion. Membrane fusion is initiated as two apposed membranes merge to a single bilayer called a hemifusion diaphragm. It is believed that the contents of the two fusing membranes are released through a fusion pore formed at the hemifusion diaphragm, and yet another possible pathway has been proposed in which an undefined pore may form outside the hemifusion diaphragm at the apposed membranes, leading to the so-called leaky fusion. Here, we performed all-atom molecular dynamics simulations to study the evolution of the hemifusion diaphragm structure with various lipid compositions. We found that the lipid cholesterol decreased water penetrability to inhibit leakage pore formation. Biochemical leakage experiments support these simulation results. This study may shed light on the underlying mechanism of the evolution pathways of the hemifusion structure, especially the understanding of content leakage during membrane fusion.
Collapse
Affiliation(s)
- Bing Bu
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology, Beijing 100081, China.
| | | | | | | | | |
Collapse
|
6
|
Daudey G, Zope HR, Voskuhl J, Kros A, Boyle AL. Membrane-Fusogen Distance Is Critical for Efficient Coiled-Coil-Peptide-Mediated Liposome Fusion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12443-12452. [PMID: 28980816 PMCID: PMC5666511 DOI: 10.1021/acs.langmuir.7b02931] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/02/2017] [Indexed: 06/07/2023]
Abstract
We have developed a model system for membrane fusion that utilizes lipidated derivatives of a heterodimeric coiled-coil pair dubbed E3 (EIAALEK)3 and K3 (KIAALKE)3. In this system, peptides are conjugated to a lipid anchor via a poly(ethylene glycol) (PEG) spacer, and this contribution studies the influence of the PEG spacer length, coupled with the type of lipid anchor, on liposome-liposome fusion. The effects of these modifications on peptide secondary structure, their interactions with liposomes, and their ability to mediate fusion were studied using a variety of different content mixing experiments and CD spectroscopy. Our results demonstrate the asymmetric role of the peptides in the fusion process because alterations to the PEG spacer length affect E3 and K3 differently. We conclude that negatively charged E3 acts as a "handle" for positively charged K3 and facilitates liposome docking, the first stage of the fusion process, through coiled-coil formation. The efficacy of this E3 handle is enhanced by longer spacer lengths. K3 directs the fusion process via peptide-membrane interactions, but the length of the PEG spacer plays two competing roles: a PEG4/PEG8 spacer length is optimal for membrane destabilization; however, a PEG12 spacer increases the fusion efficiency over time by improving the peptide accessibility for successive fusion events. Both the anchor type and spacer length affect the peptide structure; a cholesterol anchor appears to enhance K3-membrane interactions and thus mediates fusion more efficiently.
Collapse
Affiliation(s)
- Geert
A. Daudey
- Supramolecular and Biomaterials Chemistry, Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | - Alexander Kros
- Supramolecular and Biomaterials Chemistry, Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Aimee L. Boyle
- Supramolecular and Biomaterials Chemistry, Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
7
|
Hu Y, Lai Y, Wang Y, Zhao M, Zhang Y, Crowe M, Tian Z, Long J, Diao J. SNARE-Reconstituted Liposomes as Controllable Zeptoliter Nanoreactors for Macromolecules. ACTA ACUST UNITED AC 2017; 1:e1600018. [DOI: 10.1002/adbi.201600018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/08/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Yachong Hu
- Center for Mitochondrial Biology and Medicine; The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
- Department of Cancer Biology; University of Cincinnati College of Medicine; Cincinnati OH 45267 USA
| | - Ying Lai
- Departments of Molecular and Cellular Physiology; Stanford University; Stanford CA 94305 USA
| | - Yongyao Wang
- Center for Mitochondrial Biology and Medicine; The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
- Department of Cancer Biology; University of Cincinnati College of Medicine; Cincinnati OH 45267 USA
| | - Minglei Zhao
- Departments of Molecular and Cellular Physiology; Stanford University; Stanford CA 94305 USA
| | - Yunxiang Zhang
- Departments of Molecular and Cellular Physiology; Stanford University; Stanford CA 94305 USA
| | - Michael Crowe
- Department of Cancer Biology; University of Cincinnati College of Medicine; Cincinnati OH 45267 USA
| | - Zhiqi Tian
- Center for Mitochondrial Biology and Medicine; The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
- Department of Cancer Biology; University of Cincinnati College of Medicine; Cincinnati OH 45267 USA
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine; The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
| | - Jiajie Diao
- Department of Cancer Biology; University of Cincinnati College of Medicine; Cincinnati OH 45267 USA
| |
Collapse
|
8
|
Mattie S, McNally EK, Karim MA, Vali H, Brett CL. How and why intralumenal membrane fragments form during vacuolar lysosome fusion. Mol Biol Cell 2017; 28:309-321. [PMID: 27881666 PMCID: PMC5231899 DOI: 10.1091/mbc.e15-11-0759] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 11/04/2016] [Accepted: 11/18/2016] [Indexed: 11/11/2022] Open
Abstract
Lysosomal membrane fusion mediates the last step of the autophagy and endocytosis pathways and supports organelle remodeling and biogenesis. Because fusogenic proteins and lipids concentrate in a ring at the vertex between apposing organelle membranes, the encircled area of membrane can be severed and internalized within the lumen as a fragment upon lipid bilayer fusion. How or why this intralumenal fragment forms during fusion, however, is not entirely clear. To better understand this process, we studied fragment formation during homotypic vacuolar lysosome membrane fusion in Saccharomyces cerevisiae Using cell-free fusion assays and light microscopy, we find that GTPase activation and trans-SNARE complex zippering have opposing effects on fragment formation and verify that this affects the morphology of the fusion product and regulates transporter protein degradation. We show that fragment formwation is limited by stalk expansion, a key intermediate of the lipid bilayer fusion reaction. Using electron microscopy, we present images of hemifusion diaphragms that form as stalks expand and propose a model describing how the fusion machinery regulates fragment formation during lysosome fusion to control morphology and protein lifetimes.
Collapse
Affiliation(s)
- Sevan Mattie
- Department of Biology, Concordia University, Montréal, QC H4B 1R6, Canada
| | - Erin K McNally
- Department of Biology, Concordia University, Montréal, QC H4B 1R6, Canada
| | - Mahmoud A Karim
- Department of Biology, Concordia University, Montréal, QC H4B 1R6, Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| | - Christopher L Brett
- Department of Biology, Concordia University, Montréal, QC H4B 1R6, Canada
- Department of Anatomy and Cell Biology, McGill University, Montréal, QC H3A 0C7, Canada
| |
Collapse
|
9
|
Bu B, Tian Z, Li D, Ji B. High Transmembrane Voltage Raised by Close Contact Initiates Fusion Pore. Front Mol Neurosci 2016; 9:136. [PMID: 28018169 PMCID: PMC5145871 DOI: 10.3389/fnmol.2016.00136] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022] Open
Abstract
Membrane fusion lies at the heart of neuronal communication but the detailed mechanism of a critical step, fusion pore initiation, remains poorly understood. Here, through atomistic molecular dynamics simulations, a transient pore formation induced by a close contact of two apposed bilayers is firstly reported. Such a close contact gives rise to a high local transmembrane voltage that induces the transient pore formation. Through simulations on two apposed bilayers fixed at a series of given distances, the process in which two bilayers approaching to each other under the pulling force from fusion proteins for membrane fusion was mimicked. Of note, this close contact induced fusion pore formation is contrasted with previous reported electroporation under ad hoc applied external electric field or ionic charge in-balance. We show that the transmembrane voltage increases with the decrease of the distance between the bilayers. Below a critical distance, depending on the lipid composition, the local transmembrane voltage can be sufficiently high to induce the transient pores. The size of these pores is approximately 1~2 nm in diameter, which is large enough to allow passing of neurotransmitters. A resealing of the membrane pores resulting from the neutralization of the transmembrane voltage by ions through the pores was then observed. We also found that the membrane tension can either prolong the lifetime of transient pores or cause them to dilate for full collapse. This result provides a possible mechanism for fusion pore formation and regulation of pathway of fusion process.
Collapse
Affiliation(s)
- Bing Bu
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology Beijing, China
| | - Zhiqi Tian
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, Center for Mitochondrial Biology and Medicine, School of Life Science and Technology, Xi'an Jiaotong University Xi'an, China
| | - Dechang Li
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology Beijing, China
| | - Baohua Ji
- Biomechanics and Biomaterials Laboratory, Department of Applied Mechanics, Beijing Institute of Technology Beijing, China
| |
Collapse
|
10
|
Wang Y, Li L, Hou C, Lai Y, Long J, Liu J, Zhong Q, Diao J. SNARE-mediated membrane fusion in autophagy. Semin Cell Dev Biol 2016; 60:97-104. [PMID: 27422330 DOI: 10.1016/j.semcdb.2016.07.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 12/28/2022]
Abstract
Autophagy, a conserved self-eating process for the bulk degradation of cytoplasmic materials, involves double-membrane autophagosomes formed when an isolation membrane emerges and their direct fusion with lysosomes for degradation. For the early biogenesis of autophagosomes and their later degradation in lysosomes, membrane fusion is necessary, although different sets of genes and autophagy-related proteins involved in distinct fusion steps have been reported. To clarify the molecular mechanism of membrane fusion in autophagy, to not only expand current knowledge of autophagy, but also benefit human health, this review discusses key findings that elucidate the unique membrane dynamics of autophagy.
Collapse
Affiliation(s)
- Yongyao Wang
- Center for Mitochondrial Biology and Medicine, Ministry of Education Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Linsen Li
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; State Key Lab of Animal Nutrition, China Agricultural University, Beijing 100193, China
| | - Chen Hou
- Center for Mitochondrial Biology and Medicine, Ministry of Education Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ying Lai
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, Ministry of Education Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, Ministry of Education Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qing Zhong
- Center for Autophagy Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|