1
|
Sood A, Schuette G, Zhang B. Dynamical phase transition in models that couple chromatin folding with histone modifications. Phys Rev E 2024; 109:054411. [PMID: 38907407 DOI: 10.1103/physreve.109.054411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/25/2024] [Indexed: 06/24/2024]
Abstract
Genomic regions can acquire heritable epigenetic states through unique histone modifications, which lead to stable gene expression patterns without altering the underlying DNA sequence. However, the relationship between chromatin conformational dynamics and epigenetic stability is poorly understood. In this paper, we propose kinetic models to investigate the dynamic fluctuations of histone modifications and the spatial interactions between nucleosomes. Our model explicitly incorporates the influence of chemical modifications on the structural stability of chromatin and the contribution of chromatin contacts to the cooperative nature of chemical reactions. Through stochastic simulations and analytical theory, we have discovered distinct steady-state outcomes in different kinetic regimes, resembling a dynamical phase transition. Importantly, we have validated that the emergence of this transition, which occurs on biologically relevant timescales, is robust against variations in model design and parameters. Our findings suggest that the viscoelastic properties of chromatin and the timescale at which it transitions from a gel-like to a liquidlike state significantly impact dynamic processes that occur along the one-dimensional DNA sequence.
Collapse
|
2
|
Abdulla AZ, Salari H, Tortora MMC, Vaillant C, Jost D. 4D epigenomics: deciphering the coupling between genome folding and epigenomic regulation with biophysical modeling. Curr Opin Genet Dev 2023; 79:102033. [PMID: 36893485 DOI: 10.1016/j.gde.2023.102033] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/25/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023]
Abstract
Recent experimental observations suggest a strong coupling between the 3D nuclear chromosome organization and epigenomics. However, the mechanistic and functional bases of such interplay remain elusive. In this review, we describe how biophysical modeling has been instrumental in characterizing how genome folding may impact the formation of epigenomic domains and, conversely, how epigenomic marks may affect chromosome conformation. Finally, we discuss how this mutual feedback loop between chromatin organization and epigenome regulation, via the formation of physicochemical nanoreactors, may represent a key functional role of 3D compartmentalization in the assembly and maintenance of stable - but yet plastic - epigenomic landscapes.
Collapse
Affiliation(s)
- Amith Z Abdulla
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69007 Lyon, France; École Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, 46 Allée d'Italie, 69007 Lyon, France. https://twitter.com/@AmithZafal
| | - Hossein Salari
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69007 Lyon, France; École Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, 46 Allée d'Italie, 69007 Lyon, France. https://twitter.com/@hosseinsalari65
| | - Maxime M C Tortora
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69007 Lyon, France
| | - Cédric Vaillant
- École Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, 46 Allée d'Italie, 69007 Lyon, France.
| | - Daniel Jost
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 46 Allée d'Italie, 69007 Lyon, France.
| |
Collapse
|
3
|
Ubertini MA, Smrek J, Rosa A. Entanglement Length Scale Separates Threading from Branching of Unknotted and Non-concatenated Ring Polymers in Melts. Macromolecules 2022; 55:10723-10736. [PMID: 36530522 PMCID: PMC9753756 DOI: 10.1021/acs.macromol.2c01264] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/14/2022] [Indexed: 11/30/2022]
Abstract
Current theories on the conformation and dynamics of unknotted and non-concatenated ring polymers in melt conditions describe each ring as a tree-like double-folded object. While evidence from simulations supports this picture on a single ring level, other works show pairs of rings also thread each other, a feature overlooked in the tree theories. Here we reconcile this dichotomy using Monte Carlo simulations of the ring melts with different bending rigidities. We find that rings are double-folded (more strongly for stiffer rings) on and above the entanglement length scale, while the threadings are localized on smaller scales. The different theories disagree on the details of the tree structure, i.e., the fractal dimension of the backbone of the tree. In the stiffer melts we find an indication of a self-avoiding scaling of the backbone, while more flexible chains do not exhibit such a regime. Moreover, the theories commonly neglect threadings and assign different importance to the impact of the progressive constraint release (tube dilation) on single ring relaxation due to the motion of other rings. Despite that each threading creates only a small opening in the double-folded structure, the threading loops can be numerous and their length can exceed substantially the entanglement scale. We link the threading constraints to the divergence of the relaxation time of a ring, if the tube dilation is hindered by pinning a fraction of other rings in space. Current theories do not predict such divergence and predict faster than measured diffusion of rings, pointing at the relevance of the threading constraints in unpinned systems as well. Revision of the theories with explicit threading constraints might elucidate the validity of the conjectured existence of topological glass.
Collapse
Affiliation(s)
- Mattia Alberto Ubertini
- Scuola
Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136Trieste, Italy
| | - Jan Smrek
- Faculty
of Physics, University of Vienna, Boltzmanngasse 5, A-1090Vienna, Austria
| | - Angelo Rosa
- Scuola
Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136Trieste, Italy
| |
Collapse
|
4
|
Abdulla AZ, Vaillant C, Jost D. Painters in chromatin: a unified quantitative framework to systematically characterize epigenome regulation and memory. Nucleic Acids Res 2022; 50:9083-9104. [PMID: 36018799 PMCID: PMC9458448 DOI: 10.1093/nar/gkac702] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022] Open
Abstract
In eukaryotes, many stable and heritable phenotypes arise from the same DNA sequence, owing to epigenetic regulatory mechanisms relying on the molecular cooperativity of 'reader-writer' enzymes. In this work, we focus on the fundamental, generic mechanisms behind the epigenome memory encoded by post-translational modifications of histone tails. Based on experimental knowledge, we introduce a unified modeling framework, the painter model, describing the mechanistic interplay between sequence-specific recruitment of chromatin regulators, chromatin-state-specific reader-writer processes and long-range spreading mechanisms. A systematic analysis of the model building blocks highlights the crucial impact of tridimensional chromatin organization and state-specific recruitment of enzymes on the stability of epigenomic domains and on gene expression. In particular, we show that enhanced 3D compaction of the genome and enzyme limitation facilitate the formation of ultra-stable, confined chromatin domains. The model also captures how chromatin state dynamics impact the intrinsic transcriptional properties of the region, slower kinetics leading to noisier expression. We finally apply our framework to analyze experimental data, from the propagation of γH2AX around DNA breaks in human cells to the maintenance of heterochromatin in fission yeast, illustrating how the painter model can be used to extract quantitative information on epigenomic molecular processes.
Collapse
Affiliation(s)
- Amith Z Abdulla
- Laboratoire de Biologie et Modélisation de la Cellule, École Normale Supérieure de Lyon, CNRS, UMR5239, Inserm U1293, Université Claude Bernard Lyon 1, 46 Allée d’Italie, 69007 Lyon, France,École Normale Supérieure de Lyon, CNRS, Laboratoire de Physique, 46 Allée d’Italie, 69007 Lyon, France
| | - Cédric Vaillant
- Correspondence may also be addressed to Cédric Vaillant. Tel: +33 4 72 72 81 54; Fax: +33 4 72 72 80 00;
| | - Daniel Jost
- To whom correspondence should be addressed. Tel: +33 4 72 72 86 30; Fax: +33 4 72 72 80 00;
| |
Collapse
|
5
|
Jost D. Polymer Modeling of 3D Epigenome Folding: Application to Drosophila. Methods Mol Biol 2022; 2301:293-305. [PMID: 34415542 DOI: 10.1007/978-1-0716-1390-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mechanistic modeling in biology allows to investigate, based on first principles, if putative hypotheses are compatible with observations and to drive further experimental works. Along this line, polymer modeling has been instrumental in 3D genomics to better understand the impact of key mechanisms on the spatial genome organization. Here, I describe how polymer-based models can be practically used to study the role of epigenome in chromosome folding. I illustrate this methodology in the context of Drosophila epigenome folding.
Collapse
Affiliation(s)
- Daniel Jost
- University of Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Biologie et Modélisation de la Cellule, Lyon, France.
| |
Collapse
|
6
|
Spatial organization of chromosomes leads to heterogeneous chromatin motion and drives the liquid- or gel-like dynamical behavior of chromatin. Genome Res 2021; 32:28-43. [PMID: 34963660 PMCID: PMC8744683 DOI: 10.1101/gr.275827.121] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022]
Abstract
Chromosome organization and dynamics are involved in regulating many fundamental processes such as gene transcription and DNA repair. Experiments unveiled that chromatin motion is highly heterogeneous inside cell nuclei, ranging from a liquid-like, mobile state to a gel-like, rigid regime. Using polymer modeling, we investigate how these different physical states and dynamical heterogeneities may emerge from the same structural mechanisms. We found that the formation of topologically associating domains (TADs) is a key driver of chromatin motion heterogeneity. In particular, we showed that the local degree of compaction of the TAD regulates the transition from a weakly compact, fluid state of chromatin to a more compact, gel state exhibiting anomalous diffusion and coherent motion. Our work provides a comprehensive study of chromosome dynamics and a unified view of chromatin motion enabling interpretation of the wide variety of dynamical behaviors observed experimentally across different biological conditions, suggesting that the "liquid" or "solid" state of chromatin are in fact two sides of the same coin.
Collapse
|
7
|
Zhou R, Gao YQ. A DNA Sequence Based Polymer Model for Chromatin Folding. Int J Mol Sci 2021; 22:1328. [PMID: 33572740 PMCID: PMC7865792 DOI: 10.3390/ijms22031328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/16/2021] [Accepted: 01/25/2021] [Indexed: 11/17/2022] Open
Abstract
The recent development of sequencing technology and imaging methods has provided an unprecedented understanding of the inter-phase chromatin folding in mammalian nuclei. It was found that chromatin folds into topological-associated domains (TADs) of hundreds of kilo base pairs (kbps), and is further divided into spatially segregated compartments (A and B). The compartment B tends to be located near to the periphery or the nuclear center and interacts with other domains of compartments B, while compartment A tends to be located between compartment B and interacts inside the domains. These spatial domains are found to highly correlate with the mosaic CpG island (CGI) density. High CGI density corresponds to compartments A and small TADs, and vice versa. The variation of contact probability as a function of sequential distance roughly follows a power-law decay. Different chromosomes tend to segregate to occupy different chromosome territories. A model that can integrate these properties at multiple length scales and match many aspects is highly desired. Here, we report a DNA-sequence based coarse-grained block copolymer model that considers different interactions between blocks of different CGI density, interactions of TAD formation, as well as interactions between chromatin and the nuclear envelope. This model captures the various single-chromosome properties and partially reproduces the formation of chromosome territories.
Collapse
Affiliation(s)
- Rui Zhou
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China;
| | - Yi Qin Gao
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China;
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing 100871, China
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Shenzhen Bay Laboratory, 5F, No.9 Duxue Rd., Nanshan District, Shenzhen 518055, China
| |
Collapse
|
8
|
4D Genome Rewiring during Oncogene-Induced and Replicative Senescence. Mol Cell 2020; 78:522-538.e9. [PMID: 32220303 PMCID: PMC7208559 DOI: 10.1016/j.molcel.2020.03.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 12/20/2019] [Accepted: 03/04/2020] [Indexed: 12/26/2022]
Abstract
To understand the role of the extensive senescence-associated 3D genome reorganization, we generated genome-wide chromatin interaction maps, epigenome, replication-timing, whole-genome bisulfite sequencing, and gene expression profiles from cells entering replicative senescence (RS) or upon oncogene-induced senescence (OIS). We identify senescence-associated heterochromatin domains (SAHDs). Differential intra- versus inter-SAHD interactions lead to the formation of senescence-associated heterochromatin foci (SAHFs) in OIS but not in RS. This OIS-specific configuration brings active genes located in genomic regions adjacent to SAHDs in close spatial proximity and favors their expression. We also identify DNMT1 as a factor that induces SAHFs by promoting HMGA2 expression. Upon DNMT1 depletion, OIS cells transition to a 3D genome conformation akin to that of cells in replicative senescence. These data show how multi-omics and imaging can identify critical features of RS and OIS and discover determinants of acute senescence and SAHF formation. Deep multi-omics characterization of replicative and oncogene-induced senescence Senescence-associated heterochromatin domains (SAHDs) form SAHFs via 3D changes DNMT1 is required for SAHF formation via regulation of HMGA2 expression SAHF formation leads to expression of SAHF-adjacent genes via 3D chromatin contacts
Collapse
|
9
|
Ghosh SK, Jost D. Genome organization via loop extrusion, insights from polymer physics models. Brief Funct Genomics 2020; 19:119-127. [PMID: 31711163 DOI: 10.1093/bfgp/elz023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/26/2019] [Accepted: 08/31/2019] [Indexed: 12/12/2022] Open
Abstract
Understanding how genomes fold and organize is one of the main challenges in modern biology. Recent high-throughput techniques like Hi-C, in combination with cutting-edge polymer physics models, have provided access to precise information on 3D chromosome folding to decipher the mechanisms driving such multi-scale organization. In particular, structural maintenance of chromosome (SMC) proteins play an important role in the local structuration of chromatin, putatively via a loop extrusion process. Here, we review the different polymer physics models that investigate the role of SMCs in the formation of topologically associated domains (TADs) during interphase via the formation of dynamic loops. We describe the main physical ingredients, compare them and discuss their relevance against experimental observations.
Collapse
Affiliation(s)
- Surya K Ghosh
- Univ Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France.,Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India
| | - Daniel Jost
- Univ Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France.,Laboratory of Biology and Modelling of the Cell, Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, Inserm U1210, F-69007 Lyon, France
| |
Collapse
|
10
|
Zhou R, Gao YQ. Polymer models for the mechanisms of chromatin 3D folding: review and perspective. Phys Chem Chem Phys 2020; 22:20189-20201. [DOI: 10.1039/d0cp01877e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this perspective paper, classical physical models for mammalian interphase chromatin folding are reviewed.
Collapse
Affiliation(s)
- Rui Zhou
- Biomedical Pioneering Innovation Center
- Peking University
- 100871 Beijing
- China
| | - Yi Qin Gao
- Biomedical Pioneering Innovation Center
- Peking University
- 100871 Beijing
- China
- Beijing Advanced Innovation Center for Genomics
| |
Collapse
|
11
|
Kumar A, Chaudhuri D. Cross-linker mediated compaction and local morphologies in a model chromosome. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:354001. [PMID: 31112939 DOI: 10.1088/1361-648x/ab2350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Chromatin and associated proteins constitute the highly folded structure of chromosomes. We consider a self-avoiding polymer model of the chromatin, segments of which may get cross-linked via protein binders that repel each other. The binders cluster together via the polymer mediated attraction, in turn, folding the polymer. Using molecular dynamics simulations, and a mean field description, we explicitly demonstrate the continuous nature of the folding transition, characterized by unimodal distributions of the polymer size across the transition. At the transition point the chromatin size and cross-linker clusters display large fluctuations, and a maximum in their negative cross-correlation, apart from a critical slowing down. Along the transition, we distinguish the local chain morphologies in terms of topological loops, inter-loop gaps, and zippering. The topologies are dominated by simply connected loops at the criticality, and by zippering in the folded phase.
Collapse
Affiliation(s)
- Amit Kumar
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India. Homi Bhaba National Institute, Anushaktigar, Mumbai 400094, India
| | | |
Collapse
|
12
|
Jost D, Vaillant C. Epigenomics in 3D: importance of long-range spreading and specific interactions in epigenomic maintenance. Nucleic Acids Res 2019; 46:2252-2264. [PMID: 29365171 PMCID: PMC5861409 DOI: 10.1093/nar/gky009] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/11/2018] [Indexed: 02/05/2023] Open
Abstract
Recent progresses of genome-wide chromatin conformation capture techniques have shown that the genome is segmented into hierarchically organized spatial compartments. However, whether this non-random 3D organization only reflects or indeed contributes—and how—to the regulation of genome function remain to be elucidated. The observation in many species that 3D domains correlate strongly with the 1D epigenomic information along the genome suggests a dynamic coupling between chromatin organization and epigenetic regulation. Here, we posit that chromosome folding may contribute to the maintenance of a robust epigenomic identity via the formation of spatial compartments like topologically-associating domains. Using a novel theoretical framework, the living chromatin model, we show that 3D compartmentalization leads to the spatial colocalization of epigenome regulators, thus increasing their local concentration and enhancing their ability to spread an epigenomic signal at long-range. Interestingly, we find that the presence of 1D insulator elements, like CTCF, may contribute greatly to the stable maintenance of adjacent antagonistic epigenomic domains. We discuss the generic implications of our findings in the light of various biological contexts from yeast to human. Our approach provides a modular framework to improve our understanding and to investigate in details the coupling between the structure and function of chromatin.
Collapse
Affiliation(s)
- Daniel Jost
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, 38000 Grenoble, France
- To whom correspondence should be addressed. Tel: +33 4 72 72 86 34; Fax: +33 4 72 72 89 50; . Correspondence may also be addressed to Daniel Jost. Tel: +33 4 56 52 00 69; Fax: +33 4 56 52 00 44;
| | - Cédric Vaillant
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, 69007 Lyon, France
- To whom correspondence should be addressed. Tel: +33 4 72 72 86 34; Fax: +33 4 72 72 89 50; . Correspondence may also be addressed to Daniel Jost. Tel: +33 4 56 52 00 69; Fax: +33 4 56 52 00 44;
| |
Collapse
|
13
|
Socol M, Wang R, Jost D, Carrivain P, Vaillant C, Le Cam E, Dahirel V, Normand C, Bystricky K, Victor JM, Gadal O, Bancaud A. Rouse model with transient intramolecular contacts on a timescale of seconds recapitulates folding and fluctuation of yeast chromosomes. Nucleic Acids Res 2019; 47:6195-6207. [PMID: 31114898 PMCID: PMC6614813 DOI: 10.1093/nar/gkz374] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/25/2019] [Accepted: 05/09/2019] [Indexed: 01/08/2023] Open
Abstract
DNA folding and dynamics along with major nuclear functions are determined by chromosome structural properties, which remain, thus far, elusive in vivo. Here, we combine polymer modeling and single particle tracking experiments to determine the physico-chemical parameters of chromatin in vitro and in living yeast. We find that the motion of reconstituted chromatin fibers can be recapitulated by the Rouse model using mechanical parameters of nucleosome arrays deduced from structural simulations. Conversely, we report that the Rouse model shows some inconsistencies to analyze the motion and structural properties inferred from yeast chromosomes determined with chromosome conformation capture techniques (specifically, Hi-C). We hence introduce the Rouse model with Transient Internal Contacts (RouseTIC), in which random association and dissociation occurs along the chromosome contour. The parametrization of this model by fitting motion and Hi-C data allows us to measure the kinetic parameters of the contact formation reaction. Chromosome contacts appear to be transient; associated to a lifetime of seconds and characterized by an attractive energy of -0.3 to -0.5 kBT. We suggest attributing this energy to the occurrence of histone tail-DNA contacts and notice that its amplitude sets chromosomes in 'theta' conditions, in which they are poised for compartmentalization and phase separation.
Collapse
Affiliation(s)
- Marius Socol
- LAAS-CNRS, Université de Toulouse, CNRS, F-31400 Toulouse, France
- IRIM, CNRS, University of Montpellier, France
| | - Renjie Wang
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
- Material Science & Engineering School, Henan University of Technology, 450001 Zhengzhou, P.R. China
| | - Daniel Jost
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France
| | - Pascal Carrivain
- Laboratoire de Physique, Ecole Normale Supérieure de Lyon, CNRS UMR 5672, Lyon 69007, France
| | - Cédric Vaillant
- Laboratoire de Physique, Ecole Normale Supérieure de Lyon, CNRS UMR 5672, Lyon 69007, France
| | - Eric Le Cam
- Genome Maintenance and Molecular Microscopy UMR8126, CNRS, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, F-94805 Villejuif Cedex France
| | - Vincent Dahirel
- Sorbonne Université, CNRS, Physicochimie des Electrolytes et Nanosystèmes interfaciaux, laboratoire PHENIX, F-75005 Paris, France
| | - Christophe Normand
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Kerstin Bystricky
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Jean-Marc Victor
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, F-75005 Paris, France
| | - Olivier Gadal
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Aurélien Bancaud
- LAAS-CNRS, Université de Toulouse, CNRS, F-31400 Toulouse, France
| |
Collapse
|
14
|
Papale A, Rosa A. The Ising model in swollen vs. compact polymers: Mean-field approach and computer simulations. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2018; 41:144. [PMID: 30552518 DOI: 10.1140/epje/i2018-11752-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
We study the properties of the classical Ising model with nearest-neighbor interaction for spins located at the monomers of long polymer chains in 2 and 3 dimensions. We compare results for two ensembles of polymers with very different single chain properties: 1) swollen, self-avoiding linear polymer chains in good solvent conditions and 2) compact, space-filling randomly branching polymers in melt. By employing a mean-field approach and Monte Carlo computer simulations, we show that swollen polymers cannot sustain an ordered phase. On the contrary, compact polymers may indeed produce an observable phase transition. Finally, we briefly consider the statistical properties of the ordered phase by comparing polymer chains within the same universality class but characterized by very different shapes.
Collapse
Affiliation(s)
- Andrea Papale
- Sissa (Scuola Internazionale Superiore di Studi Avanzati), Via Bonomea 265, 34136, Trieste, Italy
| | - Angelo Rosa
- Sissa (Scuola Internazionale Superiore di Studi Avanzati), Via Bonomea 265, 34136, Trieste, Italy.
| |
Collapse
|
15
|
Negri M, Gherardi M, Tiana G, Cosentino Lagomarsino M. Spontaneous domain formation in disordered copolymers as a mechanism for chromosome structuring. SOFT MATTER 2018; 14:6128-6136. [PMID: 29998272 DOI: 10.1039/c8sm00468d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Motivated by the problem of domain formation in chromosomes, we studied a co-polymer model where only a subset of the monomers feel attractive interactions. These monomers are displaced randomly from a regularly-spaced pattern, thus introducing some quenched disorder in the system. Previous work has shown that in the case of regularly-spaced interacting monomers this chain can fold into structures characterized by multiple distinct domains of consecutive segments. In each domain, attractive interactions are balanced by the entropy cost of forming loops. We show by advanced replica-exchange simulations that adding disorder in the position of the interacting monomers further stabilizes these domains. The model suggests that the partitioning of the chain into well-defined domains of consecutive monomers is a spontaneous property of heteropolymers. In the case of chromosomes, evolution could have acted on the spacing of interacting monomers to modulate in a simple way the underlying domains for functional reasons.
Collapse
Affiliation(s)
- Matteo Negri
- Department of Physics, Universitá degli Studi di Milano, via Celoria 16, 20133 Milano, Italy.
| | | | | | | |
Collapse
|
16
|
Ghosh SK, Jost D. How epigenome drives chromatin folding and dynamics, insights from efficient coarse-grained models of chromosomes. PLoS Comput Biol 2018; 14:e1006159. [PMID: 29813054 PMCID: PMC6003694 DOI: 10.1371/journal.pcbi.1006159] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 06/15/2018] [Accepted: 04/28/2018] [Indexed: 11/19/2022] Open
Abstract
The 3D organization of chromosomes is crucial for regulating gene expression and cell function. Many experimental and polymer modeling efforts are dedicated to deciphering the mechanistic principles behind chromosome folding. Chromosomes are long and densely packed-topologically constrained-polymers. The main challenges are therefore to develop adequate models and simulation methods to investigate properly the multi spatio-temporal scales of such macromolecules. Here, we proposed a generic strategy to develop efficient coarse-grained models for self-avoiding polymers on a lattice. Accounting accurately for the polymer entanglement length and the volumic density, we show that our simulation scheme not only captures the steady-state structural and dynamical properties of the system but also tracks the same dynamics at different coarse-graining. This strategy allows a strong power-law gain in numerical efficiency and offers a systematic way to define reliable coarse-grained null models for chromosomes and to go beyond the current limitations by studying long chromosomes during an extended time period with good statistics. We use our formalism to investigate in details the time evolution of the 3D organization of chromosome 3R (20 Mbp) in drosophila during one cell cycle (20 hours). We show that a combination of our coarse-graining strategy with a one-parameter block copolymer model integrating epigenomic-driven interactions quantitatively reproduce experimental data at the chromosome-scale and predict that chromatin motion is very dynamic during the cell cycle.
Collapse
Affiliation(s)
- Surya K. Ghosh
- Univ Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France
| | - Daniel Jost
- Univ Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France
| |
Collapse
|
17
|
Szabo Q, Jost D, Chang JM, Cattoni DI, Papadopoulos GL, Bonev B, Sexton T, Gurgo J, Jacquier C, Nollmann M, Bantignies F, Cavalli G. TADs are 3D structural units of higher-order chromosome organization in Drosophila. SCIENCE ADVANCES 2018; 4:eaar8082. [PMID: 29503869 PMCID: PMC5829972 DOI: 10.1126/sciadv.aar8082] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 01/30/2018] [Indexed: 05/19/2023]
Abstract
Deciphering the rules of genome folding in the cell nucleus is essential to understand its functions. Recent chromosome conformation capture (Hi-C) studies have revealed that the genome is partitioned into topologically associating domains (TADs), which demarcate functional epigenetic domains defined by combinations of specific chromatin marks. However, whether TADs are true physical units in each cell nucleus or whether they reflect statistical frequencies of measured interactions within cell populations is unclear. Using a combination of Hi-C, three-dimensional (3D) fluorescent in situ hybridization, super-resolution microscopy, and polymer modeling, we provide an integrative view of chromatin folding in Drosophila. We observed that repressed TADs form a succession of discrete nanocompartments, interspersed by less condensed active regions. Single-cell analysis revealed a consistent TAD-based physical compartmentalization of the chromatin fiber, with some degree of heterogeneity in intra-TAD conformations and in cis and trans inter-TAD contact events. These results indicate that TADs are fundamental 3D genome units that engage in dynamic higher-order inter-TAD connections. This domain-based architecture is likely to play a major role in regulatory transactions during DNA-dependent processes.
Collapse
Affiliation(s)
- Quentin Szabo
- Institute of Human Genetics, CNRS, Univ Montpellier, Montpellier, France
| | - Daniel Jost
- Univ Grenoble Alpes, CNRS, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France
| | - Jia-Ming Chang
- Institute of Human Genetics, CNRS, Univ Montpellier, Montpellier, France
| | - Diego I. Cattoni
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Univ Montpellier, 34090 Montpellier, France
| | | | - Boyan Bonev
- Institute of Human Genetics, CNRS, Univ Montpellier, Montpellier, France
| | - Tom Sexton
- Institute of Human Genetics, CNRS, Univ Montpellier, Montpellier, France
| | - Julian Gurgo
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Univ Montpellier, 34090 Montpellier, France
| | - Caroline Jacquier
- Institute of Human Genetics, CNRS, Univ Montpellier, Montpellier, France
| | - Marcelo Nollmann
- Centre de Biochimie Structurale, CNRS UMR5048, INSERM U1054, Univ Montpellier, 34090 Montpellier, France
| | - Frédéric Bantignies
- Institute of Human Genetics, CNRS, Univ Montpellier, Montpellier, France
- Corresponding author. (F.B.); (G.C.)
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS, Univ Montpellier, Montpellier, France
- Corresponding author. (F.B.); (G.C.)
| |
Collapse
|
18
|
Haddad N, Vaillant C, Jost D. IC-Finder: inferring robustly the hierarchical organization of chromatin folding. Nucleic Acids Res 2017; 45:e81. [PMID: 28130423 PMCID: PMC5449546 DOI: 10.1093/nar/gkx036] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/13/2017] [Indexed: 11/22/2022] Open
Abstract
The spatial organization of the genome plays a crucial role in the regulation of gene expression. Recent experimental techniques like Hi-C have emphasized the segmentation of genomes into interaction compartments that constitute conserved functional domains participating in the maintenance of a proper cell identity. Here, we propose a novel method, IC-Finder, to identify interaction compartments (IC) from experimental Hi-C maps. IC-Finder is based on a hierarchical clustering approach that we adapted to account for the polymeric nature of chromatin. Based on a benchmark of realistic in silico Hi-C maps, we show that IC-Finder is one of the best methods in terms of reliability and is the most efficient numerically. IC-Finder proposes two original options: a probabilistic description of the inferred compartments and the possibility to explore the various hierarchies of chromatin organization. Applying the method to experimental data in fly and human, we show how the predicted segmentation may depend on the normalization scheme and how 3D compartmentalization is tightly associated with epigenomic information. IC-Finder provides a robust and generic ‘all-in-one’ tool to uncover the general principles of 3D chromatin folding and their influence on gene regulation. The software is available at http://membres-timc.imag.fr/Daniel.Jost/DJ-TIMC/Software.html.
Collapse
Affiliation(s)
- Noelle Haddad
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69007 Lyon, France
| | - Cédric Vaillant
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69007 Lyon, France
| | - Daniel Jost
- Univ. Grenoble Alpes, CNRS, TIMC-IMAG, F-38000 Grenoble, France
| |
Collapse
|
19
|
Shukron O, Holcman D. Transient chromatin properties revealed by polymer models and stochastic simulations constructed from Chromosomal Capture data. PLoS Comput Biol 2017; 13:e1005469. [PMID: 28369076 PMCID: PMC5393903 DOI: 10.1371/journal.pcbi.1005469] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/17/2017] [Accepted: 03/20/2017] [Indexed: 12/28/2022] Open
Abstract
Chromatin organization can be probed by Chromosomal Capture (5C) data, from which the encounter probability (EP) between genomic sites is presented in a large matrix. This matrix is averaged over a large cell population, revealing diagonal blocks called Topological Associating Domains (TADs) that represent a sub-chromatin organization. To study the relation between chromatin organization and gene regulation, we introduce a computational procedure to construct a bead-spring polymer model based on the EP matrix. The model permits exploring transient properties constrained by the statistics of the 5C data. To construct the polymer model, we proceed in two steps: first, we introduce a minimal number of random connectors inside restricted regions to account for diagonal blocks. Second, we account for long-range frequent specific genomic interactions. Using the constructed polymer, we compute the first encounter time distribution and the conditional probability of three key genomic sites. By simulating single particle trajectories of loci located on the constructed polymers from 5C data, we found a large variability of the anomalous exponent, used to interpret live cell imaging trajectories. The present polymer construction provides a generic tool to study steady-state and transient properties of chromatin constrained by some physical properties embedded in 5C data. Chromatin organization remains poorly understood and polymer models are used to reconstruct such organization, to reveal hidden structures and to quantify genomic interactions. We use a generalized Rouse model (a linear chain of beads connected by springs) with additional interacting molecules that allow stable loop formation. The polymer models are constructed using the minimal number of binding molecules, positioned according to the encounter probability matrix obtained from experimental chromosomal capture data. We determine the conditional encounter probability of 3 key loci regulating gene inactivation from our calibrated polymer model. Using polymer simulations, we generate single particle trajectories and explore their transient properties. The present results suggest that the heterogeneity of anomalous exponents measured in live cell imaging is due to the large combinatorics in reconstructing the chromatin organization from Chromosomal Capture data. The present method and algorithms are generic and can be used to reconstruct a polymer model at a given scale from any Chromosomal Capture data.
Collapse
Affiliation(s)
- Ofir Shukron
- Institute of Biology, Ecole Normale Supérieure, Paris, France
| | - David Holcman
- Institute of Biology, Ecole Normale Supérieure, Paris, France
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Haddad N, Jost D, Vaillant C. Perspectives: using polymer modeling to understand the formation and function of nuclear compartments. Chromosome Res 2017; 25:35-50. [PMID: 28091870 PMCID: PMC5346151 DOI: 10.1007/s10577-016-9548-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/18/2016] [Accepted: 12/21/2016] [Indexed: 12/20/2022]
Abstract
Compartmentalization is a ubiquitous feature of cellular function. In the nucleus, early observations revealed a non-random spatial organization of the genome with a large-scale segregation between transcriptionally active—euchromatin—and silenced—heterochromatin—parts of the genome. Recent advances in genome-wide mapping and imaging techniques have strikingly improved the resolution at which nuclear genome folding can be analyzed and have revealed a multiscale spatial compartmentalization with increasing evidences that such compartment may indeed result from and participate to genome function. Understanding the underlying mechanisms of genome folding and in particular the link to gene regulation requires a cross-disciplinary approach that combines the new high-resolution techniques with computational modeling of chromatin and chromosomes. In this perspective article, we first present how the copolymer theoretical framework can account for the genome compartmentalization. We then suggest, in a second part, that compartments may act as a “nanoreactor,” increasing the robustness of either activation or repression by enhancing the local concentration of regulators. We conclude with the need to develop a new framework, namely the “living chromatin” model that will allow to explicitly investigate the coupling between spatial compartmentalization and gene regulation.
Collapse
Affiliation(s)
- N Haddad
- CNRS, Laboratoire de Physique, University of Lyon, ENS de Lyon, University of Claude Bernard, 69007, Lyon, France
| | - D Jost
- University Grenoble-Alpes, CNRS, TIMC-IMAG lab, UMR 5525, Grenoble, France.
| | - C Vaillant
- CNRS, Laboratoire de Physique, University of Lyon, ENS de Lyon, University of Claude Bernard, 69007, Lyon, France.
| |
Collapse
|
21
|
Jost D, Vaillant C, Meister P. Coupling 1D modifications and 3D nuclear organization: data, models and function. Curr Opin Cell Biol 2016; 44:20-27. [PMID: 28040646 DOI: 10.1016/j.ceb.2016.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 12/17/2022]
Abstract
Over the past decade, advances in molecular methods have strikingly improved the resolution at which nuclear genome folding can be analyzed. This revealed a wealth of conserved features organizing the one dimensional DNA molecule into tridimensional nuclear domains. In this review, we briefly summarize the main findings and highlight how models based on polymer physics shed light on the principles underlying the formation of these domains. Finally, we discuss the mechanistic similarities allowing self-organization of these structures and the functional importance of these in the maintenance of transcriptional programs.
Collapse
Affiliation(s)
- Daniel Jost
- University Grenoble Alpes, CNRS, TIMC-IMAG lab, UMR 5525, Grenoble, F-38706 La Tronche, France
| | - Cédric Vaillant
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, F-69007 Lyon, France
| | - Peter Meister
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland.
| |
Collapse
|