1
|
Keiderling TA. Structure of Condensed Phase Peptides: Insights from Vibrational Circular Dichroism and Raman Optical Activity Techniques. Chem Rev 2020; 120:3381-3419. [DOI: 10.1021/acs.chemrev.9b00636] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Timothy A. Keiderling
- Department of Chemistry, University of Illinois at Chicago 845 West Taylor Street m/c 111, Chicago, Illinois 60607-7061, United States
| |
Collapse
|
2
|
Melcrová A, Kessler J, Bouř P, Kaminský J. Simulation of Raman optical activity of multi-component monosaccharide samples. Phys Chem Chem Phys 2016; 18:2130-42. [DOI: 10.1039/c5cp04111b] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Determination of the saccharide structure in solution is a laborious process that can be significantly enhanced by chiral optical spectroscopies.
Collapse
Affiliation(s)
- Adéla Melcrová
- Institute of Organic Chemistry and Biochemistry
- 166 10 Prague
- Czech Republic
- J. Heyrovský Institute of Physical Chemistry
- 182 23 Prague
| | - Jiří Kessler
- Institute of Organic Chemistry and Biochemistry
- 166 10 Prague
- Czech Republic
| | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry
- 166 10 Prague
- Czech Republic
| | - Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry
- 166 10 Prague
- Czech Republic
| |
Collapse
|
3
|
Poopari MR, Dezhahang Z, Xu Y. Identifying dominant conformations of N-acetyl-L-cysteine methyl ester and N-acetyl-L-cysteine in water: VCD signatures of the amide I and the C=O stretching bands. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 136 Pt A:131-140. [PMID: 24076069 DOI: 10.1016/j.saa.2013.08.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/07/2013] [Accepted: 08/30/2013] [Indexed: 06/02/2023]
Abstract
Infrared (IR) and vibrational circular dichroism (VCD) spectra of N-Acetyl-L-Cysteine Methyl Ester (NALCME) and N-Acetyl-L-Cysteine (NALC) in D2O under different pHs were measured. We focus on the VCD signatures of the amide I and the C=O stretching spectral signatures of the neutral NALCME and NALC species and the related ones of the deprotonated NALC species in the region of 1800-1500 cm(-1). A sign inversion is observed for the amide I VCD band going from the neutral NALCME and NALC to the deprotonated NALC species. Density functional theory (DFT) calculations were carried out to search for the possible conformations of these three species and to simulate their IR and VCD spectra at the B3LYP/aug-cc-pVTZ level in the gas phase and with the polarization continuum model of water solvent. The most stable conformations found for neutral NALCME and NALC exhibit drastically difference VCD patterns, whereas those of deprotonated NALC show similar patterns. We establish an empirical structural-spectral relationship where the aforementioned VCD signatures can be used as spectral markers to identify dominant conformations of these two amino acid derivatives under different pHs. It is recognized that the dominant conformers identified using the VCD spectral markers differ from those based on the relative DFT energies for neutral NALCME and NALC. The influence of solvent on both the conformational geometries and their relative stabilities is discussed. The aforementioned discrepancy can be attributed to the explicit solute-solvent hydrogen-bonding interactions which are not accounted for in the calculations. The empirical structural-spectral relationship identified can potentially be applied to large, related amino acids and polypeptides in water.
Collapse
Affiliation(s)
| | - Zahra Dezhahang
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Yunjie Xu
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada.
| |
Collapse
|
4
|
Nakata H, Fedorov DG, Yokojima S, Kitaura K, Nakamura S. Simulations of Raman Spectra Using the Fragment Molecular Orbital Method. J Chem Theory Comput 2014; 10:3689-98. [DOI: 10.1021/ct5003829] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroya Nakata
- Department
of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Nakamura
Lab, Research Cluster for Innovation, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Japan Society for the Promotion of Science, Kojimachi Business Center Building, 5-3-1 Kojimachi,
Chiyoda-ku, Tokyo 102-0083, Japan
| | - Dmitri G. Fedorov
- NRI, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1
Umezono,Tsukuba, Ibaraki 305-8568, Japan
| | - Satoshi Yokojima
- Nakamura
Lab, Research Cluster for Innovation, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachiouji-shi, Tokyo 192-0392, Japan
| | - Kazuo Kitaura
- Graduate
School of System Informatics, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe 657-8501 Japan
| | - Shinichiro Nakamura
- Nakamura
Lab, Research Cluster for Innovation, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
5
|
Quesada-Moreno MM, Márquez-García AÁ, Avilés-Moreno JR, López-González JJ. Conformational landscape of l-threonine in neutral, acid and basic solutions from vibrational circular dichroism spectroscopy and quantum chemical calculations. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.tetasy.2013.09.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
6
|
l-Serine in aqueous solutions at different pH: Conformational preferences and vibrational spectra of cationic, anionic and zwitterionic species. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2013.04.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Poopari MR, Zhu P, Dezhahang Z, Xu Y. Vibrational absorption and vibrational circular dichroism spectra of leucine in water under different pH conditions: Hydrogen-bonding interactions with water. J Chem Phys 2012. [DOI: 10.1063/1.4767401] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
8
|
Alberto ME, Cosentino C, Russo N. Hydrolysis mechanism of anticancer Pd(II) complexes with coumarin derivatives: a theoretical investigation. Struct Chem 2011. [DOI: 10.1007/s11224-011-9927-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Dailidonis VV, Danilov VI, Früchtl HA, van Mourik T. The nature of base stacking: a Monte Carlo study. Theor Chem Acc 2011. [DOI: 10.1007/s00214-011-1046-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Stachowicz A, Styrcz A, Korchowiec J, Modaressi A, Rogalski M. DFT studies of cation binding by β-cyclodextrin. Theor Chem Acc 2011. [DOI: 10.1007/s00214-011-1014-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Jiang N, Tan RX, Ma J. Simulations of Solid-State Vibrational Circular Dichroism Spectroscopy of (S)-Alternarlactam by Using Fragmentation Quantum Chemical Calculations. J Phys Chem B 2011; 115:2801-13. [DOI: 10.1021/jp110152q] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nan Jiang
- School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
| | - Ren Xiang Tan
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210093, People’s Republic of China
| | - Jing Ma
- School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of MOE, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
| |
Collapse
|
12
|
Wixom RL, Gehrke CW. Chromatography in the Millennium-Perspectives. CHROMATOGRAPHY 2010. [DOI: 10.1002/9780470555729.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
13
|
Min CG, Ren AM, Guo JF, Li ZW, Zou LY, Goddard JD, Feng JK. A Time-Dependent Density Functional Theory Investigation on the Origin of Red Chemiluminescence. Chemphyschem 2010; 11:251-9. [DOI: 10.1002/cphc.200900607] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Abstract
In this chapter, new developments and main applications of vibrational circular dichroism (VCD) spectroscopy reported in the last 5 years are described. This includes the determinations of absolute configurations of chiral molecules, understanding solvent effects and modeling solvent-solute explicit hydrogen bonding networks using induced solvent chirality, studies of transition metal complexes and their peculiar and enormous intensity enhancements in VCD spectra, investigations of conformational preference of chiral ligands bound to gold nano particles, and two new advances in applying matrix isolation VCD spectroscopy to flexible, multi-conformational chiral molecules and complexes, and in development of femtosecond laser based VCD instruments for transient VCD monitoring. A brief review of the experimental techniques and theoretical methods is also given. The purpose of this chapter is to provide an up-to-date perspective on the capability of VCD to solve significant problems about chiral molecules in solution, in thin film states, or on surfaces.
Collapse
Affiliation(s)
- Guochun Yang
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2G2, Canada
| | | |
Collapse
|
15
|
Cramer CJ, Truhlar DG. Density functional theory for transition metals and transition metal chemistry. Phys Chem Chem Phys 2009; 11:10757-816. [PMID: 19924312 DOI: 10.1039/b907148b] [Citation(s) in RCA: 1079] [Impact Index Per Article: 71.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We introduce density functional theory and review recent progress in its application to transition metal chemistry. Topics covered include local, meta, hybrid, hybrid meta, and range-separated functionals, band theory, software, validation tests, and applications to spin states, magnetic exchange coupling, spectra, structure, reactivity, and catalysis, including molecules, clusters, nanoparticles, surfaces, and solids.
Collapse
Affiliation(s)
- Christopher J Cramer
- Department of Chemistry and Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455-0431, USA.
| | | |
Collapse
|
16
|
Role of quantum chemical calculations in molecular biophysics with a historical perspective. Theor Chem Acc 2009. [DOI: 10.1007/s00214-009-0622-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Computational study on the conformation and vibration frequencies of β-sheet of ε-polylysine in vacuum. Int J Mol Sci 2009; 10:3358-3370. [PMID: 20111685 PMCID: PMC2812828 DOI: 10.3390/ijms10083358] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 07/21/2009] [Accepted: 07/27/2009] [Indexed: 11/29/2022] Open
Abstract
Two oligomers, each containing 3 l-lysine residues, were used as model molecules for the simulation of the β-sheet conformation of ɛ-polylysine (ɛ-PLL) chains. Their C terminals were capped with ethylamine and N terminals were capped with α-l-aminobutanoic acid, respectively. The calculations were carried out with the hybrid two-level ONOIM (B3LYP/6-31G:PM3) computational chemistry method. The optimized conformation was obtained and IR frequencies were compared with experimental data. The result indicated that the two chains were winded around each other to form a distinct cyclohepta structure through bifurcated hydrogen bonds. The groups of amide and α-amidocyanogen coming from one chain and the carbonyl group from the other chain were involved in the cyclohepta structure. The bond angle of the bifurcated hydrogen bonds was 66.6°. The frequency analysis at ONIOM [B3LYP/6-31G (d):PM3] level showed the IR absorbances of the main groups, such as the amide and amidocyanogen groups, were in accordance with the experimental data.
Collapse
|
18
|
Lakhani A, Malon P, Keiderling TA. Comparison of vibrational circular dichroism instruments: development of a new dispersive VCD. APPLIED SPECTROSCOPY 2009; 63:775-785. [PMID: 19589215 DOI: 10.1366/000370209788701189] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A dispersive vibrational circular dichroism (VCD) instrument has been designed and optimized for the measurement of mid-infrared (MIR) bands such as the amide I and amide II vibrational modes of peptides and proteins. The major design considerations were to construct a compact VCD instrument for biological molecules, to increase signal-to-noise (S/N) ratio, to simultaneously collect and digitize the sample transmission and polarization modulation signals, and to digitally ratio them to yield a VCD spectrum. These were realized by assembling new components using design factors adapted from previous VCD instruments. A collection of spectra for peptides and proteins having different dominant secondary structures (alpha-helix, beta-sheet, and random coil) measured for identical samples under the same conditions showed that the new instrument had substantially improved S/N as compared with our previous dispersive VCD instrument. These instruments both provide protein VCD for the amide I that are comparable to or somewhat better than those measurable with commercial Fourier transform (FT) VCD instruments if just the amide I band in the spectra is obtained at modest resolution (8 cm(-1)) with the same total data collection time on each type of instrument.
Collapse
Affiliation(s)
- Ahmed Lakhani
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street (m/c 111), Chicago, Illinois 60607-7061, USA
| | | | | |
Collapse
|
19
|
Yang G, Xu Y. Probing chiral solute-water hydrogen bonding networks by chirality transfer effects: A vibrational circular dichroism study of glycidol in water. J Chem Phys 2009; 130:164506. [DOI: 10.1063/1.3116582] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
|
21
|
Nicu VP, Autschbach J, Baerends EJ. Enhancement of IR and VCD intensities due to charge transfer. Phys Chem Chem Phys 2009; 11:1526-38. [DOI: 10.1039/b816151h] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Nicu VP, Baerends EJ. Effects of Complex Formation on Vibrational Circular Dichroism Spectra. J Phys Chem A 2008; 112:6978-91. [DOI: 10.1021/jp710201q] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Valentin Paul Nicu
- Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands, and Laboratorium für Physikalische Chemie, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | - Evert Jan Baerends
- Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands, and Laboratorium für Physikalische Chemie, ETH Zurich, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| |
Collapse
|
23
|
Jalkanen KJ, Gale JD, Lassen PR, Hemmingsen L, Rodarte A, Degtyarenko IM, Nieminen RM, Brøgger Christensen S, Knapp-Mohammady M, Suhai S. A configurational and conformational study of aframodial and its diasteriomers via experimental and theoretical VA and VCD spectroscopies. Theor Chem Acc 2007. [DOI: 10.1007/s00214-007-0390-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
|
25
|
Jalkanen KJ, Degtyarenko IM, Nieminen RM, Cao X, Nafie LA, Zhu F, Barron LD. Role of hydration in determining the structure and vibrational spectra of L-alanine and N-acetyl L-alanine N′-methylamide in aqueous solution: a combined theoretical and experimental approach. Theor Chem Acc 2007. [DOI: 10.1007/s00214-007-0361-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
A combined theoretical and experimental study of the structure and vibrational absorption, vibrational circular dichroism, Raman and Raman optical activity spectra of the L-histidine zwitterion. Theor Chem Acc 2007. [DOI: 10.1007/s00214-007-0276-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Turner DR, Kubelka J. Infrared and vibrational CD spectra of partially solvated alpha-helices: DFT-based simulations with explicit solvent. J Phys Chem B 2007; 111:1834-45. [PMID: 17256894 DOI: 10.1021/jp0666840] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Theoretical simulations are used to investigate the effects of aqueous solvent on the vibrational spectra of model alpha-helices, which are only partly exposed to solvent to mimic alpha-helices in proteins. Infrared absorption (IR) and vibrational circular dichroism (VCD) amide I' spectra for 15-amide alanine alpha-helices are simulated using density functional theory (DFT) calculations combined with the property transfer method. The solvent is modeled by explicit water molecules hydrogen bonded to the solvated amide groups. Simulated spectra for two partially solvated model alpha-helices, one corresponding to a more exposed and the other to a more buried structure, are compared to the fully solvated and unsolvated (gas phase) simulations. The dependence of the amide I spectra on the orientation of the partially solvated helix with respect to the solvent and effects of solvation on the amide I' of 13C isotopically substituted alpha-helices are also investigated. The partial exposure to solvent causes significant broadening of the amide I' bands due to differences in the vibrational frequencies of the explicitly solvated and unsolvated amide groups. The different degree of partial solvation is reflected primarily in the frequency shifts of the unsolvated (buried) amide group vibrations. Depending on which side of the alpha-helix is exposed to solvent, the simulated IR band-shapes exhibit significant changes, from broad and relatively featureless to distinctly split into two maxima. The simulated amide I' VCD band-shapes for the partially solvated alpha-helices parallel the broadening of the IR and exhibit more sign variation, but generally preserve the sign pattern characteristic of the alpha-helical structures and are much less dependent on the alpha-helix orientation with respect to the solvent. The simulated amide I' IR spectra for the model peptides with explicitly hydrogen-bonded water are consistent with the experimental data for small alpha-helical proteins at very low temperatures, but overestimate the effects of solvent on the protein spectra at ambient temperatures, where the peptide-water hydrogen bonds are weakened by thermal motion.
Collapse
Affiliation(s)
- David R Turner
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, USA
| | | |
Collapse
|
28
|
Losada M, Xu Y. Chirality transfer through hydrogen-bonding: Experimental and ab initio analyses of vibrational circular dichroism spectra of methyl lactate in water. Phys Chem Chem Phys 2007; 9:3127-35. [PMID: 17612736 DOI: 10.1039/b703368k] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The infrared vibrational absorption (VA) and vibrational circular dichroism (VCD) spectra of methyl lactate were measured in the 1000-1800 cm(-1) region in the CCl(4) and H(2)O solvents, respectively. In particular, the chirality transfer effect, i.e. the H-O-H bending bands of the achiral water subunits that are hydrogen-bonded to the methyl lactate molecule exhibit substantial VCD strength, was detected experimentally. A series of density functional theory calculations using B3PW91 and B3LYP functionals with 6-311++G(d,p) and aug-cc-pVTZ basis sets were carried out to simulate the VA and VCD spectra of the methyl lactate monomer and the methyl lactate-(H(2)O)(n) complexes with n = 1, 2, 3. The population weighted VA and VCD spectra of the methyl lactate monomer are in good agreement with the experimental spectra in CCl(4). Implicit polarizable continuum model was found to be inadequate to account for the hydrogen-bonding effect in the observed VA and VCD spectra in H(2)O. The methyl lactate-(H(2)O)(n) complexes with n = 1, 2, 3 were used to model the explicit hydrogen-bonding. The population weighted VA and VCD spectra of the methyl lactate-H(2)O binary complex are shown to capture the main spectral features in the observed spectra in aqueous solution. The theoretical modeling shows that the extent of chirality transfer depends sensitively on the specific binding sites taken by the achiral water molecules. The observation of chirality transfer effect opens a new spectral window to detect and to model the hydrogen-bonding solvent effect on VCD spectra of chiral molecules.
Collapse
Affiliation(s)
- Martin Losada
- Department of Chemistry, University of Alberta, Edmonton, Alberta, CanadaT6G 2G2.
| | | |
Collapse
|
29
|
Kakkar R, Dua A, Zaidi S. Density functional study of the conformations and intramolecular proton transfer in thiohydroxamic acids. Org Biomol Chem 2007; 5:547-57. [PMID: 17252138 DOI: 10.1039/b610899g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The conformational preferences of thiohydroxamic acids (N-hydroxythioamides) are investigated by the density functional B3LYP/6-311++G(3df,3pd)//B3LYP/6-31G(d) method in this work. Unlike hydroxamic acids, the thione and thiol forms are found to be equally stable in the gas phase, and the reaction pathways for the interconversion between the thione and thiol forms have been deduced to involve rotation about the C[double bond, length as m-dash]N bond of the thiol tautomer in the rate-determining step. The effect of aqueous solvation on the reactions has also been investigated. It is found that inclusion of a few explicit water molecules in an implicit solvent calculation is necessary in order to accurately account for hydrogen bonding effects. Thiohydroxamic acids, like their hydroxamic acid analogues, are found to be N-acids, both in the gas phase and in aqueous solution.
Collapse
Affiliation(s)
- Rita Kakkar
- Department of Chemistry, University of Delhi, Delhi, 110 007, India.
| | | | | |
Collapse
|
30
|
Abbate S, Barlati S, Colombi M, Fornili SL, Francescato P, Gangemi F, Lebon F, Longhi G, Manitto P, Recca T, Speranza G, Zoppi N. Study of conformational properties of a biologically active peptide of fibronectin by circular dichroism, NMR and molecular dynamics simulation. Phys Chem Chem Phys 2006; 8:4668-77. [PMID: 17047765 DOI: 10.1039/b604807b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Circular dichroism (CD), and NMR spectra have been recorded and molecular dynamics (MD) simulations have been performed in water and water-trifluoroethanol (TFE) mixed solvent for a synthetic biologically active 13-amino-acid fragment of human fibronectin and two related peptides. The CD results are interpreted on the basis of statistical analyses of MD trajectories and of ensuing calculations of CD spectra based on Schellman's matrix method. It is observed that the peptide conformation is quite variable in water and loses its mobility with the addition of TFE. (1)H-NOE data were found to be consistent with the most abundant calculated conformation.
Collapse
Affiliation(s)
- Sergio Abbate
- Dipartimento di Scienze Biomediche e Biotecnologie, Università di Brescia, viale Europa 11, 25123 Brescia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|