1
|
Blanchard E, Longo G. From axiomatic systems to the Dogmatic gene and beyond. Biosystems 2021; 204:104396. [PMID: 33722644 DOI: 10.1016/j.biosystems.2021.104396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
The positivistic views that dominated the early debate on the foundations of mathematics, at the beginning of the 20th century, survived the "negative results" that have shown the limits of the axiomatic approach since the 1930s. Rigour, abstraction and symbolism have been confused with formalism, based on finite strings of signs, pre-given axioms, and potentially mechanisable rewriting rules. This contributed to major clarifications in the mathematical praxes but obscured the limits of formalisms due to the exclusion of the historical creation of sense proper to any science. We expand on this sometimes fruitful confusion with some case studies. We then hint to the historical creation of sense as a component of an epistemology of mathematics. We continue with an analogy with genocentric approaches in biology, as similar positivistic views resurfaced there fifty years later. Finite sequences of letters in the DNA would completely determine ontogenesis and phylogenesis, according to the Central Dogma of molecular biology. Limits and "negative evidence" have been disregarded while searching for the "gene for" everything. Alternative perspectives require a reconstruction of the sense of history as locus for the constitution of any object of biological knowledge. In particular, the historicity of biological evolution will be understood in terms of changing phase spaces and of the role of rare events in all phylogenetic trajectories. The analysis of the evolutionary production of variability, adaptivity and ecosystemic diversity is a key component of the project we hint to, as part of a renewed relation to the biological environment.
Collapse
Affiliation(s)
- Enka Blanchard
- Digitrust Consortium, Loria, Université de Lorraine, Nancy, France.
| | - Giuseppe Longo
- Centre Cavaillés, République des Savoirs, CNRS and École Normale Supérieure, Paris, France; School of Medicine, Tufts University, Boston, MA, USA
| |
Collapse
|
2
|
Hütt MT, Lesne A. Gene Regulatory Networks: Dissecting Structure and Dynamics. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11467-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
3
|
Lesne A, Victor JM, Bertrand E, Basyuk E, Barbi M. The Role of Supercoiling in the Motor Activity of RNA Polymerases. Methods Mol Biol 2018; 1805:215-232. [PMID: 29971720 DOI: 10.1007/978-1-4939-8556-2_11] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
RNA polymerase (RNAP) is, in its elongation phase, an emblematic example of a molecular motor whose activity is highly sensitive to DNA supercoiling. After a review of DNA supercoiling basic features, we discuss how supercoiling controls polymerase velocity, while being itself modified by polymerase activity. This coupling is supported by single-molecule measurements. Physical modeling allows us to describe quantitatively how supercoiling and torsional constraints mediate a mechanical coupling between adjacent polymerases. On this basis, we obtain a description that may explain the existence and functioning of RNAP convoys.
Collapse
Affiliation(s)
- Annick Lesne
- Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), UMR 7600 CNRS, Sorbonne Université, Paris, France.,Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Montpellier, France.,Université de Montpellier, Montpellier, France.,GDR 3536 CNRS, Sorbonne Université, Paris, France
| | - Jean-Marc Victor
- Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), UMR 7600 CNRS, Sorbonne Université, Paris, France. .,Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Montpellier, France. .,Université de Montpellier, Montpellier, France. .,GDR 3536 CNRS, Sorbonne Université, Paris, France.
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Eugenia Basyuk
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Maria Barbi
- Laboratoire de Physique Théorique de la Matière Condensée (LPTMC), UMR 7600 CNRS, Sorbonne Université, Paris, France.,GDR 3536 CNRS, Sorbonne Université, Paris, France
| |
Collapse
|
4
|
Lesne A, Foray N, Cathala G, Forné T, Wong H, Victor JM. Chromatin fiber allostery and the epigenetic code. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064114. [PMID: 25563208 DOI: 10.1088/0953-8984/27/6/064114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The notion of allostery introduced for proteins about fifty years ago has been extended since then to DNA allostery, where a locally triggered DNA structural transition remotely controls other DNA-binding events. We further extend this notion and propose that chromatin fiber allosteric transitions, induced by histone-tail covalent modifications, may play a key role in transcriptional regulation. We present an integrated scenario articulating allosteric mechanisms at different scales: allosteric transitions of the condensed chromatin fiber induced by histone-tail acetylation modify the mechanical constraints experienced by the embedded DNA, thus possibly controlling DNA-binding of allosteric transcription factors or further allosteric mechanisms at the linker DNA level. At a higher scale, different epigenetic constraints delineate different statistically dominant subsets of accessible chromatin fiber conformations, which each favors the assembly of dedicated regulatory complexes, as detailed on the emblematic example of the mouse Igf2-H19 gene locus and its parental imprinting. This physical view offers a mechanistic and spatially structured explanation of the observed correlation between transcriptional activity and histone modifications. The evolutionary origin of allosteric control supports to speak of an 'epigenetic code', by which events involved in transcriptional regulation are encoded in histone modifications in a context-dependent way.
Collapse
Affiliation(s)
- Annick Lesne
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, UPMC Université Paris 06, Sorbonne Universités, F-75005, Paris, France. Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, Université de Montpellier, F-34293, Montpellier, France. CNRS GDR 3536, UPMC Université Paris 06, F-75005, Paris, France
| | | | | | | | | | | |
Collapse
|
5
|
Nussinov R, Ma B, Tsai CJ, Csermely P. Allosteric conformational barcodes direct signaling in the cell. Structure 2013; 21:1509-21. [PMID: 24010710 PMCID: PMC6361540 DOI: 10.1016/j.str.2013.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/23/2013] [Accepted: 06/05/2013] [Indexed: 01/01/2023]
Abstract
The cellular network is highly interconnected. Pathways merge and diverge. They proceed through shared proteins and may change directions. How are cellular pathways controlled and their directions decided, coded, and read? These questions become particularly acute when we consider that a small number of pathways, such as signaling pathways that regulate cell fates, cell proliferation, and cell death in development, are extensively exploited. This review focuses on these signaling questions from the structural standpoint and discusses the literature in this light. All co-occurring allosteric events (including posttranslational modifications, pathogen binding, and gain-of-function mutations) collectively tag the protein functional site with a unique barcode. The barcode shape is read by an interacting molecule, which transmits the signal. A conformational barcode provides an intracellular address label, which selectively favors binding to one partner and quenches binding to others, and, in this way, determines the pathway direction, and, eventually, the cell's response and fate.
Collapse
Affiliation(s)
- Ruth Nussinov
- Basic Science Program, SAIC-Frederick, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA; Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | | | |
Collapse
|
6
|
Abstract
The spatial structure of the cell is highly organized at all levels: from small complexes and assemblies, to local nano- and microclusters, to global, micrometer scales across and between cells. We suggest that this multiscale spatial cell organization also organizes signaling and coordinates cellular behavior. We propose a new view of the spatial structure of cell signaling systems. This new view describes cell signaling in terms of dynamic allosteric interactions within and among distinct, spatially organized transient clusters. The clusters vary over time and space and are on length scales from nanometers to micrometers. When considered across these length scales, primary factors in the spatial organization are cell membrane domains and the actin cytoskeleton, both also highly dynamic. A key challenge is to understand the interplay across these multiple scales, link it to the physicochemical basis of the conformational behavior of single molecules and ultimately relate it to cellular function. Overall, our premise is that at these scales, cell signaling should be thought of not primarily as a sequence of diffusion-controlled molecular collisions, but instead transient, allostery-driven cluster re-forming interactions.
Collapse
Affiliation(s)
- Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
7
|
Abstract
It is argued that multiscale approaches are necessary for an explanatory modeling of biological systems. A first step, besides common to the multiscale modeling of physical and living systems, is a bottom-up integration based on the notions of effective parameters and minimal models. Top-down effects can be accounted for in terms of effective constraints and inputs. Biological systems are essentially characterized by an entanglement of bottom-up and top-down influences following from their evolutionary history. A self-consistent multiscale scheme is proposed to capture the ensuing circular causality. Its differences with standard mean-field self-consistent equations and slow-fast decompositions are discussed. As such, this scheme offers a way to unravel the multilevel architecture of living systems and their regulation. Two examples, genome functions and biofilms, are detailed.
Collapse
Affiliation(s)
- Annick Lesne
- CNRS UMR 7600, Université Pierre et Marie Curie-Paris 6, 4 place Jussieu, 75252 Paris Cedex 05, France.
| |
Collapse
|
8
|
Abstract
Allosteric propagation results in communication between distinct sites in the protein structure; it also encodes specific effects on cellular pathways, and in this way it shapes cellular response. One example of long-range effects is binding of morphogens to cell surface receptors, which initiates a cascade of protein interactions that leads to genome activation and specific cellular action. Allosteric propagation results from combinations of multiple factors, takes place through dynamic shifts of conformational ensembles, and affects the equilibria of macromolecular interactions. Here, we (a) emphasize the well-known yet still underappreciated role of allostery in conveying explicit signals across large multimolecular assemblies and distances to specify cellular action; (b) stress the need for quantitation of the allosteric effects; and finally, (c) propose that each specific combination of allosteric effectors along the pathway spells a distinct function. The challenges are colossal; the inspiring reward will be predicting function, misfunction, and outcomes of drug regimes.
Collapse
Affiliation(s)
- Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, National Cancer Institute, Frederick, Maryland 21702, USA.
| | | | | |
Collapse
|
9
|
Transcription-dependent dynamic supercoiling is a short-range genomic force. Nat Struct Mol Biol 2013; 20:396-403. [PMID: 23416947 PMCID: PMC3594045 DOI: 10.1038/nsmb.2517] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 01/17/2013] [Indexed: 12/26/2022]
Abstract
Transcription has the capacity to modify mechanically DNA topology, DNA structure, and nucleosome arrangement. Resulting from ongoing transcription, these modifications in turn, may provide instant feedback to the transcription machinery. To substantiate the connection between transcription and DNA dynamics, we charted an ENCODE map of transcription-dependent dynamic supercoiling in human Burkitt lymphoma cells using psoralen photobinding to probe DNA topology in vivo. Dynamic supercoils spread ~1.5 kb upstream of the start sites of active genes. Low and high output promoters handle this torsional stress differently as shown using inhibitors of transcription and topoisomerases, and by chromatin immunoprecipation of RNA polymerase and topoisomerases I and II. Whereas lower outputs are managed adequately by topoisomerase I, high output promoters additionally require topoisomerase II. The genome-wide coupling between transcription and DNA topology emphasizes the importance of dynamic supercoiling for gene regulation.
Collapse
|