1
|
León-Paz-de-Rodríguez GE, Rodríguez-León E, Iñiguez-Palomares R. DNA Hyperstructure. ACS OMEGA 2024; 9:9013-9026. [PMID: 38434827 PMCID: PMC10905968 DOI: 10.1021/acsomega.3c07379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/29/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
This study presents a new procedure to condense DNA molecules and precipitate them onto a glass slide. The resulting DNA molecules undergo autonomous self-assembly, creating closed superstructures on the micrometer scale, which are called DNA hyperstructures. These structures can be observed using low-magnification (4×) light microscopy. Precisely controlling the alcohol/glacial acetic acid ratio and DNA concentration during precipitation enabled the regulation of structure compaction on the slide. The alcohol/glacial acetic acid ratio is inversely proportional to the DNA concentration to achieve optimal compaction on the slide. Confocal microscopy fluorescence analysis of DNA extracts stained with DAPI shows that nucleic acids self-assemble to form structures during precipitation on the slide. This methodology is relevant since it facilitates the precipitation and visualization of DNA, regardless of its origin or molecular weight. To confirm its versatility, results with DNA extracted from human peripheral blood, the Lambda virus, and plasmid pBR322 are presented. The study examined the morphological features of DNA hyperstructures in both healthy individuals and those diagnosed with different medical conditions or illnesses, revealing distinct patterns specific to each case. This innovative technology has potential for disease detection in peripheral blood samples, ranging from cancer and Alzheimer's disease to determining the gender of the gestational product at an early stage.
Collapse
|
2
|
Radak Z, Pan L, Zhou L, Mozaffaritabar S, Gu Y, A Pinho R, Zheng X, Ba X, Boldogh I. Epigenetic and "redoxogenetic" adaptation to physical exercise. Free Radic Biol Med 2024; 210:65-74. [PMID: 37977212 DOI: 10.1016/j.freeradbiomed.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/03/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Exercise-induced adaptation is achieved by altering the epigenetic landscape of the entire genome leading to the expression of genes involved in various processes including regulatory, metabolic, adaptive, immune, and myogenic functions. Clinical and experimental data suggest that the methylation pattern/levels of promoter/enhancer is not linearly correlated with gene expression and proteome levels during physical activity implying a level of complexity and interplay with other regulatory modulators. It has been shown that a higher level of physical fitness is associated with a slower DNA methylation-based aging clock. There is strong evidence supporting exercise-induced ROS being a key regulatory mediator through overlapping events, both as signaling entities and through oxidative modifications to various protein mediators and DNA molecules. ROS generated by physical activity shapes epigenome both directly and indirectly, a complexity we are beginning to unravel within the epigenetic arrangement. Oxidative modification of guanine to 8-oxoguanine is a non-genotoxic alteration, does not distort DNA helix and serves as an epigenetic-like mark. The reader and eraser of oxidized guanine is the 8-oxoguanine DNA glycosylase 1, contributing to changes in gene expression. In fact, it can modulate methylation patterns of promoters/enhancers consequently leading to multiple phenotypic changes. Here, we provide evidence and discuss the potential roles of exercise-induced ROS in altering cytosine methylation patterns during muscle adaptation processes.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary; Faculty of Sport Sciences, Waseda University, Tokorozawa, 359-1192, Japan.
| | - Lang Pan
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Lei Zhou
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary
| | - Soroosh Mozaffaritabar
- Research Center for Molecular Exercise Science, Hungarian University of Sport Science, 1123, Budapest, Hungary
| | - Yaodong Gu
- Faculty of Sports Science, Ningbo University, Ningbo, China
| | - Ricardo A Pinho
- Laboratory of Exercise Biochemistry in Health, Graduate Program in Health Sciences, School of Medicine, Pontifícia Universidade Católica do Paraná, Curitiba, Paraná, Brazil
| | - Xu Zheng
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, Jilin, China; Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Xueqing Ba
- Key Laboratory of Molecular Epigenetics of Ministry of Education, School of Life Science, Northeast Normal University, Changchun, Jilin, China; Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| | - Istvan Boldogh
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, Galveston, TX77555, USA
| |
Collapse
|
3
|
McGregor LA, Deckard CE, Smolen JA, Porter GM, Sczepanski JT. Thymine DNA glycosylase mediates chromatin phase separation in a DNA methylation-dependent manner. J Biol Chem 2023; 299:104907. [PMID: 37307918 PMCID: PMC10404674 DOI: 10.1016/j.jbc.2023.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/14/2023] Open
Abstract
Thymine DNA glycosylase (TDG) is an essential enzyme involved in numerous biological pathways, including DNA repair, DNA demethylation, and transcriptional activation. Despite these important functions, the mechanisms surrounding the actions and regulation of TDG are poorly understood. In this study, we demonstrate that TDG induces phase separation of DNA and nucleosome arrays under physiologically relevant conditions in vitro and show that the resulting chromatin droplets exhibited behaviors typical of phase-separated liquids, supporting a liquid-liquid phase separation model. We also provide evidence that TDG has the capacity to form phase-separated condensates in the cell nucleus. The ability of TDG to induce chromatin phase separation is dependent on its intrinsically disordered N- and C-terminal domains, which in isolation, promote the formation of chromatin-containing droplets having distinct physical properties, consistent with their unique mechanistic roles in the phase separation process. Interestingly, DNA methylation alters the phase behavior of the disordered domains of TDG and compromises formation of chromatin condensates by full-length TDG, indicating that DNA methylation regulates the assembly and coalescence of TDG-mediated condensates. Overall, our results shed new light on the formation and physical nature of TDG-mediated chromatin condensates, which have broad implications for the mechanism and regulation of TDG and its associated genomic processes.
Collapse
Affiliation(s)
- Lauren A McGregor
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Charles E Deckard
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Justin A Smolen
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Gabriela M Porter
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
4
|
Hafner A, Mackenzie S. Re-analysis of publicly available methylomes using signal detection yields new information. Sci Rep 2023; 13:3307. [PMID: 36849495 PMCID: PMC9971211 DOI: 10.1038/s41598-023-30422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/22/2023] [Indexed: 03/01/2023] Open
Abstract
Cytosine methylation is an epigenetic mark that participates in regulation of gene expression and chromatin stability in plants. Advancements in whole genome sequencing technologies have enabled investigation of methylome dynamics under different conditions. However, the computational methods for analyzing bisulfite sequence data have not been unified. Contention remains in the correlation of differentially methylated positions with the investigated treatment and exclusion of noise, inherent to these stochastic datasets. The prevalent approaches apply Fisher's exact test, logistic, or beta regression, followed by an arbitrary cut-off for differences in methylation levels. A different strategy, the MethylIT pipeline, utilizes signal detection to determine cut-off based on a fitted generalized gamma probability distribution of methylation divergence. Re-analysis of publicly available BS-seq data from two epigenetic studies in Arabidopsis and applying MethylIT revealed additional, previously unreported results. Methylome repatterning in response to phosphate starvation was confirmed to be tissue-specific and included phosphate assimilation genes in addition to sulfate metabolism genes not implicated in the original study. During seed germination plants undergo major methylome reprogramming and use of MethylIT allowed us to identify stage-specific gene networks. We surmise from these comparative studies that robust methylome experiments must account for data stochasticity to achieve meaningful functional analyses.
Collapse
Affiliation(s)
- Alenka Hafner
- Department of Biology, The Pennsylvania State University, 362 Frear N Bldg, University Park, PA, 16802, USA
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, USA
| | - Sally Mackenzie
- Department of Biology, The Pennsylvania State University, 362 Frear N Bldg, University Park, PA, 16802, USA.
- Department of Plant Science, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
5
|
Abhange K, Makler A, Wen Y, Ramnauth N, Mao W, Asghar W, Wan Y. Small extracellular vesicles in cancer. Bioact Mater 2021; 6:3705-3743. [PMID: 33898874 PMCID: PMC8056276 DOI: 10.1016/j.bioactmat.2021.03.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EV) are lipid-bilayer enclosed vesicles in submicron size that are released from cells. A variety of molecules, including proteins, DNA fragments, RNAs, lipids, and metabolites can be selectively encapsulated into EVs and delivered to nearby and distant recipient cells. In tumors, through such intercellular communication, EVs can regulate initiation, growth, metastasis and invasion of tumors. Recent studies have found that EVs exhibit specific expression patterns which mimic the parental cell, providing a fingerprint for early cancer diagnosis and prognosis as well as monitoring responses to treatment. Accordingly, various EV isolation and detection technologies have been developed for research and diagnostic purposes. Moreover, natural and engineered EVs have also been used as drug delivery nanocarriers, cancer vaccines, cell surface modulators, therapeutic agents and therapeutic targets. Overall, EVs are under intense investigation as they hold promise for pathophysiological and translational discoveries. This comprehensive review examines the latest EV research trends over the last five years, encompassing their roles in cancer pathophysiology, diagnostics and therapeutics. This review aims to examine the full spectrum of tumor-EV studies and provide a comprehensive foundation to enhance the field. The topics which are discussed and scrutinized in this review encompass isolation techniques and how these issues need to be overcome for EV-based diagnostics, EVs and their roles in cancer biology, biomarkers for diagnosis and monitoring, EVs as vaccines, therapeutic targets, and EVs as drug delivery systems. We will also examine the challenges involved in EV research and promote a framework for catalyzing scientific discovery and innovation for tumor-EV-focused research.
Collapse
Affiliation(s)
- Komal Abhange
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | - Amy Makler
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yi Wen
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | - Natasha Ramnauth
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Wenjun Mao
- Department of Cardiothoracic Surgery, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Waseem Asghar
- Micro and Nanotechnology in Medicine, Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Yuan Wan
- The Pq Laboratory of Micro/Nano BiomeDx, Department of Biomedical Engineering, Binghamton University-SUNY, Binghamton, NY 13902, USA
| |
Collapse
|
6
|
Srikulwong U, Phanchai W, Srepusharawoot P, Sakonsinsiri C, Puangmali T. Computational Insights into Molecular Adsorption Characteristics of Methylated DNA on Graphene Oxide for Multicancer Early Detection. J Phys Chem B 2021; 125:6697-6708. [PMID: 34110832 DOI: 10.1021/acs.jpcb.1c02808] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
DNA methylation is an epigenetic modification involving the transfer of a methyl group to cytosine residues of a DNA molecule. Altered DNA methylation of certain genes is associated with several diseases including cancer. Nanomaterials, such as graphene oxide (GO), offer great potential as sensing elements for methylated DNA (mDNA) detection due to their distinct properties. Understanding molecular interactions between mDNA and GO can make provision for developing a universal cancer screening test. Molecular dynamics (MD) simulation and density functional theory (DFT) calculation have been employed for investigating their detailed macro- and microscale interactions. Based upon the MD simulation, different adsorption levels of methylated and unmethylated DNAs on GO were represented by a contacting surface area (CSA), which depends on surrounding conditions (in water or a MgCl2 solution). In water, the CSAs of the methylated and unmethylated single-stranded DNA (ssDNA) were ≈13 and ≈5 nm2, respectively, representing more preferable adsorption on GO for the methylated ssDNA. In the presence of divalent ions (Mg2+), the CSAs of both methylated and unmethylated DNA molecules were ≈8 nm2, suggesting that there was no significant difference in adsorption in a saline solution. To reveal the electrical property of GO covered by either methylated or unmethylated DNA, its electronic structure was investigated by the DFT calculation. The energy gaps of pristine graphene (pG) and GO adsorbed by 5-methylcytosine (5mC) were 1.6 and 12.9 meV, respectively, while cytosine adsorption resulted in lower energy gaps (1.2 meV for pG and 9.5 meV for GO). When comparing methylated DNA-covered GO with that covered with unmethylated DNA, remarkable differences in electrical conductivity, which were caused by the electronic structure of GO, were observed. These findings will provide a new route for an efficient detection method of DNA methylation, which can further be used to develop a universal cancer test.
Collapse
Affiliation(s)
- Unnop Srikulwong
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Witthawat Phanchai
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pornjuk Srepusharawoot
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chadamas Sakonsinsiri
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Theerapong Puangmali
- Department of Physics, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
7
|
Single-molecule micromanipulation studies of methylated DNA. Biophys J 2021; 120:2148-2155. [PMID: 33838135 DOI: 10.1016/j.bpj.2021.03.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 12/31/2022] Open
Abstract
Cytosine methylated at the five-carbon position is the most widely studied reversible DNA modification. Prior findings indicate that methylation can alter mechanical properties. However, those findings were qualitative and sometimes contradictory, leaving many aspects unclear. By applying single-molecule magnetic force spectroscopy techniques allowing for direct manipulation and dynamic observation of DNA mechanics and mechanically driven strand separation, we investigated how CpG and non-CpG cytosine methylation affects DNA micromechanical properties. We quantitatively characterized DNA stiffness using persistence length measurements from force-extension curves in the nanoscale length regime and demonstrated that cytosine methylation results in longer contour length and increased DNA flexibility (i.e., decreased persistence length). In addition, we observed the preferential formation of plectonemes over unwound single-stranded "bubbles" of DNA under physiologically relevant stretching forces and supercoiling densities. The flexibility and high structural stability of methylated DNA is likely to have significant consequences on the recruitment of proteins recognizing cytosine methylation and DNA packaging.
Collapse
|
8
|
Tang M, Zhang M, Xia L, Wei D, Yang Z, Yan S, Du C, Cui HL. Detection of gene mutation responsible for Huntington's disease by terahertz attenuated total reflection microfluidic spectroscopy. JOURNAL OF BIOPHOTONICS 2021; 14:e202000315. [PMID: 32981137 DOI: 10.1002/jbio.202000315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Terahertz absorption spectroscopy based on attenuated total reflection (ATR) from a microfluidic sample cell was designed and implemented to detect gene mutations leading to Huntington's disease (HD). The self-developed compact ATR microfluidic system was employed to detect two groups of base-repeated DNA molecules combined with a terahertz time-domain spectrometer in a marker-free manner. The first group featured different repetition patterns of oligonucleotide fragments, and the second group included the HD gene. For the oligonucleotides of different repetition patterns, there were significant differences among the three oligonucleotides with three repeats of the double bases, which could be unambiguously classified and identified; For the HD gene, it was found that the magnitude of the terahertz absorption coefficients of the four oligonucleotide solutions was, in ascending order, CAG-4 < CAG-16 < CAG-32 < CAG-40 (the numbers are the repeat times of the CAG base segment, with 40 repeats belonging to the HD gene), when the concentration of oligonucleotide was 1 mg/mL. Principal component analysis result indicated that the spectral differences of the four oligonucleotide solutions with different CAG repeat times were statistically significant and clearly distinguishable. These results demonstrate the potential of terahertz spectroscopy as a noninvasive, unmarked, fast and low-cost assay for gene diagnosis and clinical disease detection.
Collapse
Affiliation(s)
- Mingjie Tang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingkun Zhang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Liangping Xia
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- Key Laboratory of Micro Nano Optoelectronic Devices and Intelligent Perception Systems, Yangtze Normal University, Chongqing, China
| | - Dongshan Wei
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
- School of Electronic Engineering, Dongguan University of Technology, Dongguan, China
| | - Zhongbo Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Shihan Yan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Chunlei Du
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Hong-Liang Cui
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| |
Collapse
|
9
|
Sina AAI, Lin TY, Vaidyanathan R, Wang Z, Dey S, Wang J, Behren A, Wuethrich A, Carrascosa LG, Trau M. Methylation dependent gold adsorption behaviour identifies cancer derived extracellular vesicular DNA. NANOSCALE HORIZONS 2020; 5:1317-1323. [PMID: 32530449 DOI: 10.1039/d0nh00258e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Extracellular vesicles (EV) play a major role in intercellular communication by transmitting cellular materials (e.g. protein, RNA) among distant cells. Recent evidence suggests that they could also contribute to carrying DNA which could inform on the mutational status of the parent tumour DNA. Thus, the fundamental analysis of evDNA could open a better understanding of tumour metastasis and provide new pathways for noninvasive detection and monitoring of cancer. To explore the potential of evDNA for diagnostics, the isolation of pure evDNA from body fluids free of cfDNA contamination is crucial. Herein, we use a liposome based model system to develop an improved evDNA isolation protocol free from cfDNA contamination and evaluate the methylation dependent physicochemical properties of evDNA to develop a simple test for detecting cancer evDNA. Using a highly sensitive multiplex microelectrode device, we demonstrate that serum-evDNA derived from cancer patients show different solution and surface based properties than normal evDNA due to their different methylation landscape (i.e. methylscape). This microdevice allows simultaneous analysis of multiple samples in a single platform from as low as 500 pg μL-1 of evDNA.
Collapse
Affiliation(s)
- Abu Ali Ibn Sina
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ban DK, Liu Y, Wang Z, Ramachandran S, Sarkar N, Shi Z, Liu W, Karkisaval AG, Martinez-Loran E, Zhang F, Glinsky G, Bandaru PR, Fan C, Lal R. Direct DNA Methylation Profiling with an Electric Biosensor. ACS NANO 2020; 14:6743-6751. [PMID: 32407064 DOI: 10.1021/acsnano.9b10085] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
DNA methylation is one of the principal epigenetic mechanisms that control gene expression in humans, and its profiling provides critical information about health and disease. Current profiling methods require chemical modification of bases followed by sequencing, which is expensive and time-consuming. Here, we report a direct and rapid determination of DNA methylation using an electric biosensor. The device consists of a DNA-tweezer probe integrated on a graphene field-effect transistor for label-free, highly sensitive, and specific methylation profiling. The device performance was evaluated with a target DNA that harbors a sequence of the methylguanine-DNA methyltransferase, a promoter of glioblastoma multiforme, a lethal brain tumor. The results show that we successfully profiled the methylated and nonmethylated forms at picomolar concentrations. Further, fluorescence kinetics and molecular dynamics simulations revealed that the position of the methylation site(s), their proximity, and accessibility to the toe-hold region of the tweezer probe are the primary determinants of the device performance.
Collapse
Affiliation(s)
- Deependra Kumar Ban
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yushuang Liu
- School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
| | - Zejun Wang
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Srinivasan Ramachandran
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Nirjhar Sarkar
- Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Ze Shi
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Wenhan Liu
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Abhijith G Karkisaval
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Erick Martinez-Loran
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Feng Zhang
- School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot 010018, China
- State Key Laboratory of Respiratory Disease, Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Gennadi Glinsky
- Institute of Engineering in Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Prabhakar R Bandaru
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Nanoengineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Chunhai Fan
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ratnesh Lal
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Institute of Engineering in Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
11
|
Kaur P, Longley MJ, Pan H, Wang W, Countryman P, Wang H, Copeland WC. Single-molecule level structural dynamics of DNA unwinding by human mitochondrial Twinkle helicase. J Biol Chem 2020; 295:5564-5576. [PMID: 32213598 PMCID: PMC7186178 DOI: 10.1074/jbc.ra120.012795] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/24/2020] [Indexed: 11/06/2022] Open
Abstract
Knowledge of the molecular events in mitochondrial DNA (mtDNA) replication is crucial to understanding the origins of human disorders arising from mitochondrial dysfunction. Twinkle helicase is an essential component of mtDNA replication. Here, we employed atomic force microscopy imaging in air and liquids to visualize ring assembly, DNA binding, and unwinding activity of individual Twinkle hexamers at the single-molecule level. We observed that the Twinkle subunits self-assemble into hexamers and higher-order complexes that can switch between open and closed-ring configurations in the absence of DNA. Our analyses helped visualize Twinkle loading onto and unloading from DNA in an open-ringed configuration. They also revealed that closed-ring conformers bind and unwind several hundred base pairs of duplex DNA at an average rate of ∼240 bp/min. We found that the addition of mitochondrial single-stranded (ss) DNA-binding protein both influences the ways Twinkle loads onto defined DNA substrates and stabilizes the unwound ssDNA product, resulting in a ∼5-fold stimulation of the apparent DNA-unwinding rate. Mitochondrial ssDNA-binding protein also increased the estimated translocation processivity from 1750 to >9000 bp before helicase disassociation, suggesting that more than half of the mitochondrial genome could be unwound by Twinkle during a single DNA-binding event. The strategies used in this work provide a new platform to examine Twinkle disease variants and the core mtDNA replication machinery. They also offer an enhanced framework to investigate molecular mechanisms underlying deletion and depletion of the mitochondrial genome as observed in mitochondrial diseases.
Collapse
Affiliation(s)
- Parminder Kaur
- Physics Department, North Carolina State University, Raleigh, North Carolina 27695; Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695.
| | - Matthew J Longley
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Hai Pan
- Physics Department, North Carolina State University, Raleigh, North Carolina 27695
| | - Wendy Wang
- Physics Department, North Carolina State University, Raleigh, North Carolina 27695
| | - Preston Countryman
- Physics Department, North Carolina State University, Raleigh, North Carolina 27695
| | - Hong Wang
- Physics Department, North Carolina State University, Raleigh, North Carolina 27695; Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina 27695; Toxicology Program, North Carolina State University, Raleigh, North Carolina 27695
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709.
| |
Collapse
|
12
|
Epigenetically reprogrammed methylation landscape drives the DNA self-assembly and serves as a universal cancer biomarker. Nat Commun 2018; 9:4915. [PMID: 30514834 PMCID: PMC6279781 DOI: 10.1038/s41467-018-07214-w] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 10/21/2018] [Indexed: 02/02/2023] Open
Abstract
Epigenetic reprogramming in cancer genomes creates a distinct methylation landscape encompassing clustered methylation at regulatory regions separated by large intergenic tracks of hypomethylated regions. This methylation landscape that we referred to as Methylscape is displayed by most cancer types, thus may serve as a universal cancer biomarker. To-date most research has focused on the biological consequences of DNA Methylscape changes whereas its impact on DNA physicochemical properties remains unexplored. Herein, we examine the effect of levels and genomic distribution of methylcytosines on the physicochemical properties of DNA to detect the Methylscape biomarker. We find that DNA polymeric behaviour is strongly affected by differential patterning of methylcytosine, leading to fundamental differences in DNA solvation and DNA-gold affinity between cancerous and normal genomes. We exploit these Methylscape differences to develop simple, highly sensitive and selective electrochemical or colorimetric one-step assays for the detection of cancer. These assays are quick, i.e., analysis time ≤10 minutes, and require minimal sample preparation and small DNA input. DNA methylation is an epigenetic modification that control genetic programs. Here, the authors found that the methylation landscape influences the physicochemical properties of DNA and that it can serve as a universal cancer biomarker, and developed a one-step assay for the detection of cancer DNA.
Collapse
|
13
|
Lin KN, Grandhi TSP, Goklany S, Rege K. Chemotherapeutic Drug-Conjugated Microbeads Demonstrate Preferential Binding to Methylated Plasmid DNA. Biotechnol J 2018; 13:e1700701. [DOI: 10.1002/biot.201700701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/25/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Kevin N. Lin
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University; Tempe AZ 85287 USA
| | - Taraka Sai Pavan Grandhi
- Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University; Tempe AZ 85287 USA
| | - Sheba Goklany
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University; Tempe AZ 85287 USA
| | - Kaushal Rege
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University; Tempe AZ 85287 USA
| |
Collapse
|
14
|
Guha R, Mohajerani F, Mukhopadhyay A, Collins MD, Sen A, Velegol D. Modulation of Spatiotemporal Particle Patterning in Evaporating Droplets: Applications to Diagnostics and Materials Science. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43352-43362. [PMID: 29143530 DOI: 10.1021/acsami.7b13675] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Spatiotemporal particle patterning in evaporating droplets lacks a common design framework. Here, we demonstrate autonomous control of particle distribution in evaporating droplets through the imposition of a salt-induced self-generated electric field as a generalized patterning strategy. Through modeling, a new dimensionless number, termed "capillary-phoresis" (CP) number, arises, which determines the relative contributions of electrokinetic and convective transport to pattern formation, enabling one to accurately predict the mode of particle assembly by controlling the spontaneous electric field and surface potentials. Modulation of the CP number allows the particles to be focused in a specific region in space or distributed evenly. Moreover, starting with a mixture of two different particle types, their relative placement in the ensuing pattern can be controlled, allowing coassemblies of multiple, distinct particle populations. By this approach, hypermethylated DNA, prevalent in cancerous cells, can be qualitatively distinguished from normal DNA of comparable molecular weights. In other examples, we show uniform dispersion of several particle types (polymeric colloids, multiwalled carbon nanotubes, and molecular dyes) on different substrates (metallic Cu, metal oxide, and flexible polymer), as dictated by the CP number. Depending on the particle, the highly uniform distribution leads to surfaces with a lower sheet resistance, as well as superior dye-printed displays.
Collapse
Affiliation(s)
- Rajarshi Guha
- Department of Chemical Engineering and ‡Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Farzad Mohajerani
- Department of Chemical Engineering and ‡Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Ahana Mukhopadhyay
- Department of Chemical Engineering and ‡Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Matthew D Collins
- Department of Chemical Engineering and ‡Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Ayusman Sen
- Department of Chemical Engineering and ‡Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Darrell Velegol
- Department of Chemical Engineering and ‡Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|
15
|
Pan H, Bilinovich SM, Kaur P, Riehn R, Wang H, Williams DC. CpG and methylation-dependent DNA binding and dynamics of the methylcytosine binding domain 2 protein at the single-molecule level. Nucleic Acids Res 2017. [PMID: 28637186 PMCID: PMC5587734 DOI: 10.1093/nar/gkx548] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The methylcytosine-binding domain 2 (MBD2) protein recruits the nucleosome remodeling and deacetylase complex (NuRD) to methylated DNA to modify chromatin and regulate transcription. Importantly, MBD2 functions within CpG islands that contain 100s to 1000s of potential binding sites. Since NuRD physically rearranges nucleosomes, the dynamic mobility of this complex is directly related to function. In these studies, we use NMR and single-molecule atomic force microscopy and fluorescence imaging to study DNA binding dynamics of MBD2. Single-molecule fluorescence tracking on DNA tightropes containing regions with CpG-rich and CpG-free regions reveals that MBD2 carries out unbiased 1D diffusion on CpG-rich DNA but subdiffusion on CpG-free DNA. In contrast, the protein stably and statically binds to methylated CpG (mCpG) regions. The intrinsically disordered region (IDR) on MBD2 both reduces exchange between mCpG sites along the DNA as well as the dissociation from DNA, acting like an anchor that restricts the dynamic mobility of the MBD domain. Unexpectedly, MBD2 binding to methylated CpGs induces DNA bending that is augmented by the IDR region of the protein. These results suggest that MBD2 targets NuRD to unmethylated or methylated CpG islands where its distinct dynamic binding modes help maintain open or closed chromatin, respectively.
Collapse
Affiliation(s)
- Hai Pan
- Department of Physics, North Carolina State University, Raleigh, North Carolina, NC 27695, USA
| | - Stephanie M Bilinovich
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Parminder Kaur
- Department of Physics, North Carolina State University, Raleigh, North Carolina, NC 27695, USA
| | - Robert Riehn
- Department of Physics, North Carolina State University, Raleigh, North Carolina, NC 27695, USA
| | - Hong Wang
- Department of Physics, North Carolina State University, Raleigh, North Carolina, NC 27695, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, NC 27695, USA
| | - David C Williams
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
16
|
Collings CK, Anderson JN. Links between DNA methylation and nucleosome occupancy in the human genome. Epigenetics Chromatin 2017; 10:18. [PMID: 28413449 PMCID: PMC5387343 DOI: 10.1186/s13072-017-0125-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/03/2017] [Indexed: 12/20/2022] Open
Abstract
Background DNA methylation is an epigenetic modification that is enriched in heterochromatin but depleted at active promoters and enhancers. However, the debate on whether or not DNA methylation is a reliable indicator of high nucleosome occupancy has not been settled. For example, the methylation levels of DNA flanking CTCF sites are higher in linker DNA than in nucleosomal DNA, while other studies have shown that the nucleosome core is the preferred site of methylation. In this study, we make progress toward understanding these conflicting phenomena by implementing a bioinformatics approach that combines MNase-seq and NOMe-seq data and by comprehensively profiling DNA methylation and nucleosome occupancy throughout the human genome. Results The results demonstrated that increasing methylated CpG density is correlated with nucleosome occupancy in the total genome and within nearly all subgenomic regions. Features with elevated methylated CpG density such as exons, SINE-Alu sequences, H3K36-trimethylated peaks, and methylated CpG islands are among the highest nucleosome occupied elements in the genome, while some of the lowest occupancies are displayed by unmethylated CpG islands and unmethylated transcription factor binding sites. Additionally, outside of CpG islands, the density of CpGs within nucleosomes was shown to be important for the nucleosomal location of DNA methylation with low CpG frequencies favoring linker methylation and high CpG frequencies favoring core particle methylation. Prominent exceptions to the correlations between methylated CpG density and nucleosome occupancy include CpG islands marked by H3K27me3 and CpG-poor heterochromatin marked by H3K9me3, and these modifications, along with DNA methylation, distinguish the major silencing mechanisms of the human epigenome. Conclusions Thus, the relationship between DNA methylation and nucleosome occupancy is influenced by the density of methylated CpG dinucleotides and by other epigenomic components in chromatin. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0125-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Clayton K Collings
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 320 E. Superior Street, Chicago, IL 60611 USA
| | - John N Anderson
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907 USA
| |
Collapse
|
17
|
Pongor CI, Bianco P, Ferenczy G, Kellermayer R, Kellermayer M. Optical Trapping Nanometry of Hypermethylated CPG-Island DNA. Biophys J 2017; 112:512-522. [PMID: 28109529 PMCID: PMC5300791 DOI: 10.1016/j.bpj.2016.12.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/21/2016] [Accepted: 12/21/2016] [Indexed: 12/31/2022] Open
Abstract
Cytosine methylation is a key mechanism of epigenetic regulation. CpG-dense loci, called "CpG islands", play a particularly important role in modulating gene expression. Methylation has long been suspected to alter the physical properties of DNA, but the full spectrum of the evoked changes is unknown. Here we measured the methylation-induced nanomechanical changes in a DNA molecule with the sequence of a CpG island. For the molecule under tension, contour length, bending rigidity and intrinsic stiffness decreased in hypermethylated dsDNA, pointing at structural compaction which may facilitate DNA packaging in vivo. Intriguingly, increased forces were required to convert hypermethylated dsDNA into an extended S-form configuration. The reduction of force hysteresis during mechanical relaxation indicated that methylation generates a barrier against strand unpeeling and melting-bubble formation. The high structural stability is likely to have significant consequences on the recognition, replication, transcription, and reparation of hypermethylated genetic regions.
Collapse
Affiliation(s)
- Csaba I Pongor
- Biophysics and Radiation Biolology, Semmelweis University, Budapest, Hungary
| | - Pasquale Bianco
- Biophysics and Radiation Biolology, Semmelweis University, Budapest, Hungary; Physiolab, Department of Biology, University of Florence, Sesto Fiorentino (FI), Italy
| | - György Ferenczy
- Biophysics and Radiation Biolology, Semmelweis University, Budapest, Hungary; Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Richárd Kellermayer
- Department of Pediatrics, Section of Pediatric Gastroenterology, Baylor College of Medicine, Houston, Texas
| | - Miklós Kellermayer
- Biophysics and Radiation Biolology, Semmelweis University, Budapest, Hungary; MTA-SE Molecular Biophysics Research Group, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
18
|
Sanchez R, Mackenzie SA. Genome-Wide Discriminatory Information Patterns of Cytosine DNA Methylation. Int J Mol Sci 2016; 17:ijms17060938. [PMID: 27322251 PMCID: PMC4926471 DOI: 10.3390/ijms17060938] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/16/2016] [Accepted: 06/02/2016] [Indexed: 12/11/2022] Open
Abstract
Cytosine DNA methylation (CDM) is a highly abundant, heritable but reversible chemical modification to the genome. Herein, a machine learning approach was applied to analyze the accumulation of epigenetic marks in methylomes of 152 ecotypes and 85 silencing mutants of Arabidopsis thaliana. In an information-thermodynamics framework, two measurements were used: (1) the amount of information gained/lost with the CDM changes I R and (2) the uncertainty of not observing a SNP L C R . We hypothesize that epigenetic marks are chromosomal footprints accounting for different ontogenetic and phylogenetic histories of individual populations. A machine learning approach is proposed to verify this hypothesis. Results support the hypothesis by the existence of discriminatory information (DI) patterns of CDM able to discriminate between individuals and between individual subpopulations. The statistical analyses revealed a strong association between the topologies of the structured population of Arabidopsis ecotypes based on I R and on LCR, respectively. A statistical-physical relationship between I R and L C R was also found. Results to date imply that the genome-wide distribution of CDM changes is not only part of the biological signal created by the methylation regulatory machinery, but ensures the stability of the DNA molecule, preserving the integrity of the genetic message under continuous stress from thermal fluctuations in the cell environment.
Collapse
Affiliation(s)
- Robersy Sanchez
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA.
| | - Sally A Mackenzie
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA.
| |
Collapse
|
19
|
Jimenez-Useche I, Shim D, Yu J, Yuan C. Unmethylated and methylated CpG dinucleotides distinctively regulate the physical properties of DNA. Biopolymers 2016; 101:517-24. [PMID: 24122444 DOI: 10.1002/bip.22411] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 09/11/2013] [Accepted: 09/11/2013] [Indexed: 12/15/2022]
Abstract
In eukaryotic cells, DNA has to bend significantly to pack inside the nucleus. Physical properties of DNA such as bending flexibility and curvature are expected to affect DNA packaging and partially determine the nucleosome positioning patterns inside a cell. DNA CpG methylation, the most common epigenetic modification found in DNA, is known to affect the physical properties of DNA. However, its detailed role in nucleosome formation is less well-established. In this study, we evaluated the effect of defined CpG patterns (unmethylated and methylated) on DNA structure and their respective nucleosome-forming ability. Our results suggest that the addition of CpG dinucleotides, either as a (CG)n stretch or (CGX8 )n repeats at 10 bp intervals, lead to reduced hydrodynamic radius and decreased nucleosome-forming ability of DNA. This effect is more predominant for a DNA stretch ((CG)5) located in the middle of a DNA fragment. Methylation of CpG sites, surprisingly, seems to reduce the difference in DNA structure and nucleosome-forming ability among DNA constructs with different CpG patterns. Our results suggest that unmethylated and methylated CpG patterns can play very different roles in regulating the physical properties of DNA. CpG methylation seems to reduce the DNA conformational variations affiliated with defined CpG patterns. Our results can have significant bearings in understanding the nucleosome positioning pattern in living organisms modulated by DNA sequences and epigenetic features.
Collapse
Affiliation(s)
- Isabel Jimenez-Useche
- School of Chemical Engineering, Purdue University, 480 Stadium Mall Dr., West Lafayette, IN
| | | | | | | |
Collapse
|
20
|
Sanchez R, Mackenzie SA. Information Thermodynamics of Cytosine DNA Methylation. PLoS One 2016; 11:e0150427. [PMID: 26963711 PMCID: PMC4786201 DOI: 10.1371/journal.pone.0150427] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 02/12/2016] [Indexed: 01/10/2023] Open
Abstract
Cytosine DNA methylation (CDM) is a stable epigenetic modification to the genome and a widespread regulatory process in living organisms that involves multicomponent molecular machines. Genome-wide cytosine methylation patterning participates in the epigenetic reprogramming of a cell, suggesting that the biological information contained within methylation positions may be amenable to decoding. Adaptation to a new cellular or organismal environment also implies the potential for genome-wide redistribution of CDM changes that will ensure the stability of DNA molecules. This raises the question of whether or not we would be able to sort out the regulatory methylation signals from the CDM background (“noise”) induced by thermal fluctuations. Here, we propose a novel statistical and information thermodynamic description of the CDM changes to address the last question. The physical basis of our statistical mechanical model was evaluated in two respects: 1) the adherence to Landauer’s principle, according to which molecular machines must dissipate a minimum energy ε = kBT ln2 at each logic operation, where kB is the Boltzmann constant, and T is the absolute temperature and 2) whether or not the binary stretch of methylation marks on the DNA molecule comprise a language of sorts, properly constrained by thermodynamic principles. The study was performed for genome-wide methylation data from 152 ecotypes and 40 trans-generational variations of Arabidopsis thaliana and 93 human tissues. The DNA persistence length, a basic mechanical property altered by CDM, was estimated with values from 39 to 66.9 nm. Classical methylome analysis can be retrieved by applying information thermodynamic modelling, which is able to discriminate signal from noise. Our finding suggests that the CDM signal comprises a language scheme properly constrained by molecular thermodynamic principles, which is part of an epigenomic communication system that obeys the same thermodynamic rules as do current human communication systems.
Collapse
Affiliation(s)
- Robersy Sanchez
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail: (RS); (SAM)
| | - Sally A. Mackenzie
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail: (RS); (SAM)
| |
Collapse
|
21
|
Cassina V, Manghi M, Salerno D, Tempestini A, Iadarola V, Nardo L, Brioschi S, Mantegazza F. Effects of cytosine methylation on DNA morphology: An atomic force microscopy study. Biochim Biophys Acta Gen Subj 2016; 1860:1-7. [DOI: 10.1016/j.bbagen.2015.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/11/2015] [Accepted: 10/08/2015] [Indexed: 12/19/2022]
|
22
|
Nardo L, Lamperti M, Salerno D, Cassina V, Missana N, Bondani M, Tempestini A, Mantegazza F. Effects of non-CpG site methylation on DNA thermal stability: a fluorescence study. Nucleic Acids Res 2015; 43:10722-33. [PMID: 26354864 PMCID: PMC4678853 DOI: 10.1093/nar/gkv884] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/21/2015] [Indexed: 11/14/2022] Open
Abstract
Cytosine methylation is a widespread epigenetic regulation mechanism. In healthy mature cells, methylation occurs at CpG dinucleotides within promoters, where it primarily silences gene expression by modifying the binding affinity of transcription factors to the promoters. Conversely, a recent study showed that in stem cells and cancer cell precursors, methylation also occurs at non-CpG pairs and involves introns and even gene bodies. The epigenetic role of such methylations and the molecular mechanisms by which they induce gene regulation remain elusive. The topology of both physiological and aberrant non-CpG methylation patterns still has to be detailed and could be revealed by using the differential stability of the duplexes formed between site-specific oligonucleotide probes and the corresponding methylated regions of genomic DNA. Here, we present a systematic study of the thermal stability of a DNA oligonucleotide sequence as a function of the number and position of non-CpG methylation sites. The melting temperatures were determined by monitoring the fluorescence of donor-acceptor dual-labelled oligonucleotides at various temperatures. An empirical model that estimates the methylation-induced variations in the standard values of hybridization entropy and enthalpy was developed.
Collapse
Affiliation(s)
- Luca Nardo
- Department of Health Sciences, University of Milano Bicocca, Via Cadore 48, Monza, MB 20900, Italy
| | - Marco Lamperti
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como, CO 22100, Italy
| | - Domenico Salerno
- Department of Health Sciences, University of Milano Bicocca, Via Cadore 48, Monza, MB 20900, Italy
| | - Valeria Cassina
- Department of Health Sciences, University of Milano Bicocca, Via Cadore 48, Monza, MB 20900, Italy
| | - Natalia Missana
- Department of Health Sciences, University of Milano Bicocca, Via Cadore 48, Monza, MB 20900, Italy
| | - Maria Bondani
- Institute for Photonics and Nanotechnology, National Research Council, Via Valleggio 11, Como, CO 22100, Italy
| | - Alessia Tempestini
- LENS-Department of Physics and Astronomy, University of Firenze, Via Sansone 1, Sesto Fiorentino, FI 50019, Italy
| | - Francesco Mantegazza
- Department of Health Sciences, University of Milano Bicocca, Via Cadore 48, Monza, MB 20900, Italy
| |
Collapse
|
23
|
DNA methylation effects on tetra-nucleosome compaction and aggregation. Biophys J 2015; 107:1629-36. [PMID: 25296315 DOI: 10.1016/j.bpj.2014.05.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 05/27/2014] [Accepted: 05/30/2014] [Indexed: 12/19/2022] Open
Abstract
DNA CpG methylation has been associated with chromatin compaction and gene silencing. Whether DNA methylation directly contributes to chromatin compaction remains an open question. In this study, we used fluorescence fluctuation spectroscopy (FFS) to evaluate the compaction and aggregation of tetra-nucleosomes containing specific CpG patterns and methylation levels. The compactness of both unmethylated and methylated tetra-nucleosomes is dependent on DNA sequences. Specifically, methylation of the CpG sites located in the central dyad and the major grooves of DNA seem to have opposite effects on modulating the compactness of tetra-nucleosomes. The interactions among tetra-nucleosomes, however, seem to be enhanced because of DNA methylation independent of sequence contexts. Our finding can shed light on understanding the role of DNA methylation in determining nucleosome positioning pattern and chromatin compactness.
Collapse
|
24
|
Mendonca A, Chang EH, Liu W, Yuan C. Hydroxymethylation of DNA influences nucleosomal conformation and stability in vitro. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1323-9. [DOI: 10.1016/j.bbagrm.2014.09.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 12/18/2022]
|
25
|
van der Vaart A. Coupled binding-bending-folding: The complex conformational dynamics of protein-DNA binding studied by atomistic molecular dynamics simulations. Biochim Biophys Acta Gen Subj 2014; 1850:1091-1098. [PMID: 25161164 DOI: 10.1016/j.bbagen.2014.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND Protein-DNA binding often involves dramatic conformational changes such as protein folding and DNA bending. While thermodynamic aspects of this behavior are understood, and its biological function is often known, the mechanism by which the conformational changes occur is generally unclear. By providing detailed structural and energetic data, molecular dynamics simulations have been helpful in elucidating and rationalizing protein-DNA binding. SCOPE OF REVIEW This review will summarize recent atomistic molecular dynamics simulations of the conformational dynamics of DNA and protein-DNA binding. A brief overview of recent developments in DNA force fields is given as well. MAJOR CONCLUSIONS Simulations have been crucial in rationalizing the intrinsic flexibility of DNA, and have been instrumental in identifying the sequence of binding events, the triggers for the conformational motion, and the mechanism of binding for a number of important DNA-binding proteins. GENERAL SIGNIFICANCE Molecular dynamics simulations are an important tool for understanding the complex binding behavior of DNA-binding proteins. With recent advances in force fields and rapid increases in simulation time scales, simulations will become even more important for future studies. This article is part of a Special Issue entitled Recent developments of molecular dynamics.
Collapse
Affiliation(s)
- Arjan van der Vaart
- Department of Chemistry, University of South Florida, 4202 East Fowler Avenue CHE 205, Tampa, FL 33620, USA.
| |
Collapse
|
26
|
Jimenez-Useche I, Ke J, Tian Y, Shim D, Howell SC, Qiu X, Yuan C. DNA methylation regulated nucleosome dynamics. Sci Rep 2013; 3:2121. [PMID: 23817195 PMCID: PMC3698496 DOI: 10.1038/srep02121] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/17/2013] [Indexed: 01/05/2023] Open
Abstract
A strong correlation between nucleosome positioning and DNA methylation patterns has been reported in literature. However, the mechanistic model accounting for the correlation remains elusive. In this study, we evaluated the effects of specific DNA methylation patterns on modulating nucleosome conformation and stability using FRET and SAXS. CpG dinucleotide repeats at 10 bp intervals were found to play different roles in nucleosome stability dependent on their methylation states and their relative nucleosomal locations. An additional (CpG)5 stretch located in the nucleosomal central dyad does not alter the nucleosome conformation, but significant conformational differences were observed between the unmethylated and methylated nucleosomes. These findings suggest that the correlation between nucleosome positioning and DNA methylation patterns can arise from the variations in nucleosome stability dependent on their sequence and epigenetic content. This knowledge will help to reveal the detailed role of DNA methylation in regulating chromatin packaging and gene transcription.
Collapse
|