1
|
Kohga H, Mori T, Tanaka Y, Yoshikaie K, Taniguchi K, Fujimoto K, Fritz L, Schneider T, Tsukazaki T. Crystal structure of the lipid flippase MurJ in a "squeezed" form distinct from its inward- and outward-facing forms. Structure 2022; 30:1088-1097.e3. [PMID: 35660157 DOI: 10.1016/j.str.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/15/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
The bacterial peptidoglycan enclosing the cytoplasmic membrane is a fundamental cellular architecture. The integral membrane protein MurJ plays an essential role in flipping the cell wall building block Lipid II across the cytoplasmic membrane for peptidoglycan biosynthesis. Previously reported crystal structures of MurJ have elucidated its V-shaped inward- or outward-facing forms with an internal cavity for substrate binding. MurJ transports Lipid II using its cavity through conformational transitions between these two forms. Here, we report two crystal structures of inward-facing forms from Arsenophonus endosymbiont MurJ and an unprecedented crystal structure of Escherichia coli MurJ in a "squeezed" form, which lacks a cavity to accommodate the substrate, mainly because of the increased proximity of transmembrane helices 2 and 8. Subsequent molecular dynamics simulations supported the hypothesis that the squeezed form is an intermediate conformation. This study fills a gap in our understanding of the Lipid II flipping mechanism.
Collapse
Affiliation(s)
- Hidetaka Kohga
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takaharu Mori
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshiki Tanaka
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | | | | | - Kei Fujimoto
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Lisa Fritz
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Tomoya Tsukazaki
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
2
|
Khalid S, Schroeder C, Bond PJ, Duncan AL. What have molecular simulations contributed to understanding of Gram-negative bacterial cell envelopes? MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35294337 PMCID: PMC9558347 DOI: 10.1099/mic.0.001165] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bacterial cell envelopes are compositionally complex and crowded and while highly dynamic in some areas, their molecular motion is very limited, to the point of being almost static in others. Therefore, it is no real surprise that studying them at high resolution across a range of temporal and spatial scales requires a number of different techniques. Details at atomistic to molecular scales for up to tens of microseconds are now within range for molecular dynamics simulations. Here we review how such simulations have contributed to our current understanding of the cell envelopes of Gram-negative bacteria.
Collapse
Affiliation(s)
- Syma Khalid
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Cyril Schroeder
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Peter J Bond
- Bioinformatics Institute (A*STAR), Singapore 138671, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| |
Collapse
|
3
|
Tanaka Y, Iwaki S, Sasaki A, Tsukazaki T. Crystal structures of a nicotine MATE transporter provide insight into its mechanism of substrate transport. FEBS Lett 2021; 595:1902-1913. [PMID: 34050946 DOI: 10.1002/1873-3468.14136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/17/2021] [Accepted: 05/23/2021] [Indexed: 11/08/2022]
Abstract
A transporter of the multidrug and toxic compound extrusion (MATE) family, Nicotiana tabacum MATE2 (NtMATE2), is located in the vacuole membrane of the tobacco plant root and is involved in the transportation of nicotine, a secondary or specialized metabolic compound in Solanaceae. Here, we report the crystal structures of NtMATE2 in its outward-facing forms. The overall structure has a bilobate V-shape with pseudo-symmetrical assembly of the N- and C-lobes. In one crystal structure, the C-lobe cavity of NtMATE2 interacts with an unidentified molecule that may partially mimic a substrate. In addition, NtMATE2-specific conformational transitions imply that an unprecedented movement of the transmembrane α-helix 7 is related to the release of the substrate into the vacuolar lumen.
Collapse
Affiliation(s)
| | | | - Akira Sasaki
- Nara Institute of Science and Technology, Ikoma, Japan
| | | |
Collapse
|
4
|
Raturi S, Nair AV, Shinoda K, Singh H, Bai B, Murakami S, Fujitani H, van Veen HW. Engineered MATE multidrug transporters reveal two functionally distinct ion-coupling pathways in NorM from Vibrio cholerae. Commun Biol 2021; 4:558. [PMID: 33976372 PMCID: PMC8113278 DOI: 10.1038/s42003-021-02081-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 04/01/2021] [Indexed: 11/09/2022] Open
Abstract
Multidrug and toxic compound extrusion (MATE) transport proteins confer multidrug resistance on pathogenic microorganisms and affect pharmacokinetics in mammals. Our understanding of how MATE transporters work, has mostly relied on protein structures and MD simulations. However, the energetics of drug transport has not been studied in detail. Many MATE transporters utilise the electrochemical H+ or Na+ gradient to drive substrate efflux, but NorM-VC from Vibrio cholerae can utilise both forms of metabolic energy. To dissect the localisation and organisation of H+ and Na+ translocation pathways in NorM-VC we engineered chimaeric proteins in which the N-lobe of H+-coupled NorM-PS from Pseudomonas stutzeri is fused to the C-lobe of NorM-VC, and vice versa. Our findings in drug binding and transport experiments with chimaeric, mutant and wildtype transporters highlight the versatile nature of energy coupling in NorM-VC, which enables adaptation to fluctuating salinity levels in the natural habitat of V. cholerae.
Collapse
Affiliation(s)
- Sagar Raturi
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- University College Dublin Clinical Research Centre, St. Vincent's University Hospital, Dublin, Ireland
| | - Asha V Nair
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Keiko Shinoda
- Microbial Membrane Transport Engineering, Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Himansha Singh
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Boyan Bai
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Satoshi Murakami
- Department of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama, Japan
| | - Hideaki Fujitani
- Laboratories for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | | |
Collapse
|
5
|
A second shell residue modulates a conserved ATP-binding site with radically different affinities for ATP. Biochim Biophys Acta Gen Subj 2020; 1865:129766. [PMID: 33069831 DOI: 10.1016/j.bbagen.2020.129766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/16/2020] [Accepted: 10/14/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND Prediction of ligand binding and design of new function in enzymes is a time-consuming and expensive process. Crystallography gives the impression that proteins adopt a fixed shape, yet enzymes are functionally dynamic. Molecular dynamics offers the possibility of probing protein movement while predicting ligand binding. Accordingly, we choose the bacterial F1Fo ATP synthase ε subunit to unravel why ATP affinity by ε subunits from Bacillus subtilis and Bacillus PS3 differs ~500-fold, despite sharing identical sequences at the ATP-binding site. METHODS We first used the Bacillus PS3 ε subunit structure to model the B. subtilis ε subunit structure and used this to explore the utility of molecular dynamics (MD) simulations to predict the influence of residues outside the ATP binding site. To verify the MD predictions, point mutants were made and ATP binding studies were employed. RESULTS MD simulations predicted that E102 in the B. subtilis ε subunit, outside of the ATP binding site, influences ATP binding affinity. Engineering E102 to alanine or arginine revealed a ~10 or ~54 fold increase in ATP binding, respectively, confirming the MD prediction that E102 drastically influences ATP binding affinity. CONCLUSIONS These findings reveal how MD can predict how changes in the "second shell" residues around substrate binding sites influence affinity in simple protein structures. Our results reveal why seemingly identical ε subunits in different ATP synthases have radically different ATP binding affinities. GENERAL SIGNIFICANCE This study may lead to greater utility of molecular dynamics as a tool for protein design and exploration of protein design and function.
Collapse
|
6
|
Krah A, Marzinek JK, Bond PJ. Characterizing the Hydration Properties of Proton Binding Sites in the ATP Synthase c-Rings of Bacillus Species. J Phys Chem B 2020; 124:7176-7183. [PMID: 32687713 DOI: 10.1021/acs.jpcb.0c03896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The membrane-embedded domain of ATP synthases contains the c-ring, which translocates ions across the membrane, and its resultant rotation is coupled to ATP synthesis in the extramembranous domain. During rotation, the c-ring becomes accessible on both sides of the lipid bilayer to solvent via channels connected to the other membrane-embedded component, the a subunit, and thereby allows the ion to be released into the solvent environment. In recent times, many experimental structures of c-rings from different species have been solved. In some of these, a water molecule with a proposed "structural role" has been identified within the c-ring ion binding site, but in general, the requirement for high resolution to resolve specific water densities complicates their interpretation. In the present study, we use molecular dynamics (MD) simulations and rigorous free energy calculations to characterize the dynamics and energetics of a water molecule within the ion binding site of the c-ring from Bacillus pseudofirmus OF4, in its wild type (WT) and P51A mutant forms, along with the c-ring from thermophilic Bacillus PS3. Our data suggest that a water molecule stably binds to the P51A mutant, as well as helping to identify a bound water molecule in Bacillus PS3 whose presence was previously overlooked due to the limited resolution of the structural data. Sequence analysis further identifies a novel conserved sequence motif that is likely required to harbor a water molecule for stable ion coordination in the binding site of such proteins.
Collapse
Affiliation(s)
- Alexander Krah
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Jan K Marzinek
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| |
Collapse
|
7
|
Krah A, Huber RG, McMillan DGG, Bond PJ. The Molecular Basis for Purine Binding Selectivity in the Bacterial ATP Synthase ϵ Subunit. Chembiochem 2020; 21:3249-3254. [PMID: 32608105 DOI: 10.1002/cbic.202000291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/30/2020] [Indexed: 12/21/2022]
Abstract
The ϵ subunit of ATP synthases has been proposed to regulate ATP hydrolysis in bacteria. Prevailing evidence supports the notion that when the ATP concentration falls below a certain threshold, the ϵ subunit changes its conformation from a non-inhibitory down-state to an extended up-state that then inhibits enzymatic ATP hydrolysis by binding to the catalytic domain. It has been demonstrated that the ϵ subunit from Bacillus PS3 is selective for ATP over other nucleotides, including GTP. In this study, the purine triphosphate selectivity is rationalized by using results from MD simulations and free energy calculations for the R103A/R115A mutant of the ϵ subunit from Bacillus PS3, which binds ATP more strongly than the wild-type protein. Our results are in good agreement with experimental data, and the elucidated molecular basis for selectivity could help to guide the design of novel GTP sensors.
Collapse
Affiliation(s)
- Alexander Krah
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Str. #07-01 Matrix, Singapore, 138671, Singapore.,Korea Institute for Advanced Study, School of Computational Sciences, 85 Hoegiro, Dongdaemun-gu, Seoul, 02455, Republic of Korea
| | - Roland G Huber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Str. #07-01 Matrix, Singapore, 138671, Singapore
| | - Duncan G G McMillan
- Delft University of Technology, Department of Biotechnology, Van der Maasweg 9, Delft, 2629HZ, The Netherlands
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Str. #07-01 Matrix, Singapore, 138671, Singapore.,National University of Singapore, Department of Biological Sciences, 14 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
8
|
Zhang R, Abdel-Motaal H, Zou Q, Guo S, Zheng X, Wang Y, Zhang Z, Meng L, Xu T, Jiang J. A Novel MFS-MDR Transporter, MdrP, Employs D223 as a Key Determinant in the Na + Translocation Coupled to Norfloxacin Efflux. Front Microbiol 2020; 11:955. [PMID: 32547505 PMCID: PMC7272687 DOI: 10.3389/fmicb.2020.00955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 04/21/2020] [Indexed: 11/13/2022] Open
Abstract
Multidrug resistance (MDR) transporters of the major facilitator superfamily (MFS) were previously believed to drive the extrusion of multiple antimicrobial drugs through the coupling to proton translocation. Here, we present the identification of the first Na+-coupled MFS-MDR transporter, MdrP, which also can achieve H+-coupled drug efflux independently of Na+. Importantly, we propose that MdrP can extrude norfloxacin in a mode of drug/Na+ antiport, which has not yet been reported in any MFS member. On this basis, we further provide the insights into a novel Na+ and H+ coupling mechanism of MFS-MDR transporters, even for all secondary transporters. The most important finding lies in that D223 should mainly act as a key determinant in the Na+ translocation coupled to norfloxacin efflux. Furthermore, our results partially modify the knowledge of the conformational stability-related residues in the motif A of MFS transporters and imply the importance of a new positively charged residue, R361, for the stabilization of outward-facing conformation of MFS transporters. These novel findings positively contribute to the knowledge of MFS-MDR transporters, especially about Na+ and H+ coupling mechanism. This study is based mainly on measurements in intact cells or everted membranes, and a biochemical assay with a reconstituted MdrP protein should be necessary to come to conclusion to be assured.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Microbiology and Biotechnology, College of Biological Sciences, Northeast Agricultural University, Harbin, China
| | - Heba Abdel-Motaal
- Department of Microbiology and Biotechnology, College of Biological Sciences, Northeast Agricultural University, Harbin, China
| | - Qiao Zou
- Department of Microbiology and Biotechnology, College of Biological Sciences, Northeast Agricultural University, Harbin, China
| | - Sijia Guo
- Department of Microbiology and Biotechnology, College of Biological Sciences, Northeast Agricultural University, Harbin, China
| | - Xiutao Zheng
- Department of Microbiology and Biotechnology, College of Biological Sciences, Northeast Agricultural University, Harbin, China
| | - Yuting Wang
- Department of Microbiology and Biotechnology, College of Biological Sciences, Northeast Agricultural University, Harbin, China
| | - Zhenglai Zhang
- Department of Microbiology and Biotechnology, College of Biological Sciences, Northeast Agricultural University, Harbin, China
| | - Lin Meng
- Department of Microbiology and Biotechnology, College of Biological Sciences, Northeast Agricultural University, Harbin, China
| | - Tong Xu
- Department of Microbiology and Biotechnology, College of Biological Sciences, Northeast Agricultural University, Harbin, China
| | - Juquan Jiang
- Department of Microbiology and Biotechnology, College of Biological Sciences, Northeast Agricultural University, Harbin, China
| |
Collapse
|
9
|
Krah A, Huber RG, Bond PJ. How Ligand Binding Affects the Dynamical Transition Temperature in Proteins. Chemphyschem 2020; 21:916-926. [DOI: 10.1002/cphc.201901221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/03/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Alexander Krah
- School of Computational SciencesKorea Institute for Advanced Study 85 Hoegiro, Dongdaemun-gu Seoul 02455 Republic of Korea
- Bioinformatics InstituteAgency for Science Technology and Research (A*STAR) 30 Biopolis Str., #07-01 Matrix 138671 Singapore
| | - Roland G. Huber
- Bioinformatics InstituteAgency for Science Technology and Research (A*STAR) 30 Biopolis Str., #07-01 Matrix 138671 Singapore
| | - Peter J. Bond
- Bioinformatics InstituteAgency for Science Technology and Research (A*STAR) 30 Biopolis Str., #07-01 Matrix 138671 Singapore
- National University of SingaporeDepartment of Biological Sciences 14 Science Drive 4 Singapore 117543
| |
Collapse
|
10
|
Mitusińska K, Raczyńska A, Bzówka M, Bagrowska W, Góra A. Applications of water molecules for analysis of macromolecule properties. Comput Struct Biotechnol J 2020; 18:355-365. [PMID: 32123557 PMCID: PMC7036622 DOI: 10.1016/j.csbj.2020.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/26/2020] [Accepted: 02/01/2020] [Indexed: 01/12/2023] Open
Abstract
Water molecules maintain proteins' structures, functions, stabilities and dynamics. They can occupy certain positions or pass quickly via a protein's interior. Regardless of their behaviour, water molecules can be used for the analysis of proteins' structural features and biochemical properties. Here, we present a list of several software programs that use the information provided by water molecules to: i) analyse protein structures and provide the optimal positions of water molecules for protein hydration, ii) identify high-occupancy water sites in order to analyse ligand binding modes, and iii) detect and describe tunnels and cavities. The analysis of water molecules' distribution and trajectories sheds a light on proteins' interactions with small molecules, on the dynamics of tunnels and cavities, on protein composition and also on the functionality, transportation network and location of functionally relevant residues. Finally, the correct placement of water molecules in protein crystal structures can significantly improve the reliability of molecular dynamics simulations.
Collapse
Affiliation(s)
| | | | | | | | - Artur Góra
- Tunneling Group, Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, Gliwice, Poland
| |
Collapse
|
11
|
Krah A, Huber RG, Zachariae U, Bond PJ. On the ion coupling mechanism of the MATE transporter ClbM. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183137. [PMID: 31786188 DOI: 10.1016/j.bbamem.2019.183137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/27/2019] [Accepted: 11/26/2019] [Indexed: 01/02/2023]
Abstract
Bacteria use a number of mechanisms to defend themselves from antimicrobial drugs. One important defense strategy is the ability to export drugs by multidrug transporters. One class of multidrug transporter, the so-called multidrug and toxic compound extrusion (MATE) transporters, extrude a variety of antibiotic compounds from the bacterial cytoplasm. These MATE transporters are driven by a Na+, H+, or combined Na+/H+ gradient, and act as antiporters to drive a conformational change in the transporter from the outward to the inward-facing conformation. In the inward-facing conformation, a chemical compound (drug) binds to the protein, resulting in a switch to the opposite conformation, thereby extruding the drug. Using molecular dynamics simulations, we now report the structural basis for Na+ and H+ binding in the dual ion coupled MATE transporter ClbM from Escherichia coli, which is connected to colibactin-induced genotoxicity, yielding novel insights into the ion/drug translocation mechanism of this bacterial transporter.
Collapse
Affiliation(s)
- Alexander Krah
- Korea Institute for Advanced Study, School of Computational Sciences, 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea; Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK; Physics, School of Science and Engineering, University of Dundee, Nethergate, Dundee DD1 4NH, UK; Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Str., #07-01 Matrix, Singapore 138671, Singapore.
| | - Roland G Huber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Str., #07-01 Matrix, Singapore 138671, Singapore
| | - Ulrich Zachariae
- Computational Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK; Physics, School of Science and Engineering, University of Dundee, Nethergate, Dundee DD1 4NH, UK
| | - Peter J Bond
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Str., #07-01 Matrix, Singapore 138671, Singapore; National University of Singapore, Department of Biological Sciences, 14 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
12
|
Broadly conserved Na +-binding site in the N-lobe of prokaryotic multidrug MATE transporters. Proc Natl Acad Sci U S A 2018; 115:E6172-E6181. [PMID: 29915058 DOI: 10.1073/pnas.1802080115] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Multidrug and toxic-compound extrusion (MATE) proteins comprise an important but largely uncharacterized family of secondary-active transporters. In both eukaryotes and prokaryotes, these transporters protect the cell by catalyzing the efflux of a broad range of cytotoxic compounds, including human-made antibiotics and anticancer drugs. MATEs are thus potential pharmacological targets against drug-resistant pathogenic bacteria and tumor cells. The activity of MATEs is powered by transmembrane electrochemical ion gradients, but their molecular mechanism and ion specificity are not understood, in part because high-quality structural information is limited. Here, we use computational methods to study PfMATE, from Pyrococcus furiosus, whose structure is the best resolved to date. Analysis of available crystallographic data and additional molecular dynamics simulations unequivocally reveal an occupied Na+-binding site in the N-lobe of this transporter, which had not been previously recognized. We find this site to be selective against K+ and broadly conserved among prokaryotic MATEs, including homologs known to be Na+-dependent such as NorM-VC, VmrA, and ClbM, for which the location of the Na+ site had been debated. We note, however, that the chemical makeup of the proposed Na+ site indicates it is weakly specific against H+, explaining why MATEs featuring this Na+-binding motif may be solely driven by H+ in laboratory conditions. We further posit that the concurrent coupling to H+ and Na+ gradients observed for some Na+-driven MATEs owes to a second H+-binding site, within the C-lobe. In summary, our study provides insights into the structural basis for the complex ion dependency of MATE transporters.
Collapse
|
13
|
Sodium and proton coupling in the conformational cycle of a MATE antiporter from Vibrio cholerae. Proc Natl Acad Sci U S A 2018; 115:E6182-E6190. [PMID: 29915043 DOI: 10.1073/pnas.1802417115] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Secondary active transporters belonging to the multidrug and toxic compound extrusion (MATE) family harness the potential energy of electrochemical ion gradients to export a broad spectrum of cytotoxic compounds, thus contributing to multidrug resistance. The current mechanistic understanding of ion-coupled substrate transport has been informed by a limited set of MATE transporter crystal structures from multiple organisms that capture a 12-transmembrane helix topology adopting similar outward-facing conformations. Although these structures mapped conserved residues important for function, the mechanistic role of these residues in shaping the conformational cycle has not been investigated. Here, we use double-electron electron resonance (DEER) spectroscopy to explore ligand-dependent conformational changes of NorM from Vibrio cholerae (NorM-Vc), a MATE transporter proposed to be coupled to both Na+ and H+ gradients. Distance measurements between spin labels on the periplasmic side of NorM-Vc identified unique structural intermediates induced by binding of Na+, H+, or the substrate doxorubicin. The Na+- and H+-dependent intermediates were associated with distinct conformations of TM1. Site-directed mutagenesis of conserved residues revealed that Na+- and H+-driven conformational changes are facilitated by a network of polar residues in the N-terminal domain cavity, whereas conserved carboxylates buried in the C-terminal domain are critical for stabilizing the drug-bound state. Interpreted in conjunction with doxorubicin binding of mutant NorM-Vc and cell toxicity assays, these results establish the role of ion-coupled conformational dynamics in the functional cycle and implicate H+ in the doxorubicin release mechanism.
Collapse
|