1
|
Zhang S, Chen L, Woon E, Liu J, Ryu J, Chen H, Fang H, Feng B. Suppression of Visceral Nociception by Selective C-Fiber Transmission Block Using Temporal Interference Sinusoidal Stimulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.13.618090. [PMID: 39464113 PMCID: PMC11507756 DOI: 10.1101/2024.10.13.618090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Chronic visceral pain management remains challenging due to limitations in selective targeting of C-fiber nociceptors. This study investigates temporal interference stimulation (TIS) on dorsal root ganglia (DRG) as a novel approach for selective C-fiber transmission block. We employed (1) GCaMP6 recordings in mouse whole DRG using a flexible, transparent microelectrode array for visualizing L6 DRG neuron activation, (2) ex vivo single-fiber recordings to assess sinusoidal stimulation effects on peripheral nerve axons, (3) in vivo behavioral assessment measuring visceromotor responses (VMR) to colorectal distension in mice, including a TNBS-induced visceral hypersensitivity model, and (4) immunohistological analysis to evaluate immediate immune responses in DRG following TIS. We demonstrated that TIS (2000 Hz and 2020 Hz carrier frequencies) enabled tunable activation of L6 DRG neurons, with the focal region adjustable by altering stimulation amplitude ratios. Low-frequency (20-50 Hz) sinusoidal stimulation effectively blocked C-fiber and Aδ-fiber transmission while sparing fast-conducting A-fibers, with 20 Hz showing highest efficacy. TIS of L6 DRG reversibly suppressed VMR to colorectal distension in both control and TNBS-induced visceral hypersensitive mice. The blocking effect was fine-tunable by adjusting interfering stimulus signal amplitude ratios. No apparent immediate immune responses were observed in DRG following hours-long TIS. In conclusion, TIS on lumbosacral DRG demonstrates promise as a selective, tunable approach for managing chronic visceral pain by effectively blocking C-fiber transmission. This technique addresses limitations of current neuromodulation methods and offers potential for more targeted relief in chronic visceral pain conditions.
Collapse
|
2
|
Xi H, Li X, Zhang Z, Cui X, Zhu B, Jing X, Gao X. Continuous peripheral electrical nerve stimulation improves cardiac function via autonomic nerve regulation in MI rats. Heart Rhythm 2024; 21:2010-2019. [PMID: 38642597 DOI: 10.1016/j.hrthm.2024.04.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Peripheral electrical nerve stimulation (PENS) reportedly improves cardiac function after myocardial ischemia (MI) by rebalancing the cardiac autonomic nervous system. The dynamic and continuous influence of PENS on autonomic and cardiac function based on cardiac self-repair is not well understood. OBJECTIVES This study aimed to explore the relationship between autonomic nervous balance and functional cardiac repair after MI and to clarify the optimal acupoint selection and time course for PENS. METHODS The activities of the superior cervical cardiac sympathetic nerve and vagus nerve were recorded to evaluate the autonomic tone directly. The pressure-volume loop system was used for left ventricular diastolic and systolic function. Noninvasive continuous electrocardiography and echocardiography were performed to analyze heart rate, heart rate variability, and left ventricular function. The effect of continuous PENS (cPENS) or instant PENS (iPENS) on autonomic and cardiac indications was tested. RESULTS Sympathetic nerve activity and vagus nerve activity increased as compensatory self-regulation on days 7 and 14 post-MI, followed by an imbalance of autonomic tone and cardiac dysfunction on day 28. cPENS at acupoint PC6 maintained autonomic hyperexcitability, improved myocardial systolic and diastolic abilities, and reduced myocardial fibrosis on day 28 post-MI, whereas cPENS at acupoint ST36 had a limited effect. Both iPENS at PC6 and ST36 improved the autonomic and cardiac function of rats in the cPENS groups. CONCLUSION Rats showed autonomic fluctuations and cardiac dysfunction 28 days post-MI. cPENS produced sympathomimetic action to sustain cardiac self-compensation, but with acupoint specificity. On the basis of cPENS, iPENS evoked autonomic regulation and cardiac benefits without acupoint differentiation.
Collapse
Affiliation(s)
- Hanqing Xi
- Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Xia Li
- Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Ziyi Zhang
- Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Xiang Cui
- Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Bing Zhu
- Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Xianghong Jing
- Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, P.R. China
| | - Xinyan Gao
- Institute of Acupuncture and Moxibustion, Academy of Chinese Medical Sciences, Beijing, P.R. China.
| |
Collapse
|
3
|
Zhang S, Chen L, Ladez SR, Seferge A, Liu J, Feng B. Blocking Aδ- and C-fiber neural transmission by sub-kilohertz peripheral nerve stimulation. Front Neurosci 2024; 18:1404903. [PMID: 39077428 PMCID: PMC11284050 DOI: 10.3389/fnins.2024.1404903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Introduction We recently showed that sub-kilohertz electrical stimulation of the afferent somata in the dorsal root ganglia (DRG) reversibly blocks afferent transmission. Here, we further investigated whether similar conduction block can be achieved by stimulating the nerve trunk with electrical peripheral nerve stimulation (ePNS). Methods We explored the mechanisms and parameters of conduction block by ePNS via ex vivo single-fiber recordings from two somatic (sciatic and saphenous) and one autonomic (vagal) nerves harvested from mice. Action potentials were evoked on one end of the nerve and recorded on the other end from teased nerve filaments, i.e., single-fiber recordings. ePNS was delivered in the middle of the nerve trunk using a glass suction electrode at frequencies of 5, 10, 50, 100, 500, and 1000 Hz. Results Suprathreshold ePNS reversibly blocks axonal neural transmission of both thinly myelinated Aδ-fiber axons and unmyelinated C-fiber axons. ePNS leads to a progressive decrease in conduction velocity (CV) until transmission blockage, suggesting activity-dependent conduction slowing. The blocking efficiency is dependent on the axonal conduction velocity, with Aδ-fibers efficiently blocked by 50-1000 Hz stimulation and C-fibers blocked by 10-50 Hz. The corresponding NEURON simulation of action potential transmission indicates that the disrupted transmembrane sodium and potassium concentration gradients underly the transmission block by the ePNS. Discussion The current study provides direct evidence of reversible Aδ- and C-fiber transmission blockage by low-frequency (<100 Hz) electrical stimulation of the nerve trunk, a previously overlooked mechanism that can be harnessed to enhance the therapeutic effect of ePNS in treating neurological disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
4
|
Lee JI, Werginz P, Kameneva T, Im M, Fried SI. Membrane depolarization mediates both the inhibition of neural activity and cell-type-differences in response to high-frequency stimulation. Commun Biol 2024; 7:734. [PMID: 38890481 PMCID: PMC11189419 DOI: 10.1038/s42003-024-06359-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/20/2024] [Indexed: 06/20/2024] Open
Abstract
Neuromodulation using high frequency (>1 kHz) electric stimulation (HFS) enables preferential activation or inhibition of individual neural types, offering the possibility of more effective treatments across a broad spectrum of neurological diseases. To improve effectiveness, it is important to better understand the mechanisms governing activation and inhibition with HFS so that selectivity can be optimized. In this study, we measure the membrane potential (Vm) and spiking responses of ON and OFF α-sustained retinal ganglion cells (RGCs) to a wide range of stimulus frequencies (100-2500 Hz) and amplitudes (10-100 µA). Our findings indicate that HFS induces shifts in Vm, with both the strength and polarity of the shifts dependent on the stimulus conditions. Spiking responses in each cell directly correlate with the shifts in Vm, where strong depolarization leads to spiking suppression. Comparisons between the two cell types reveal that ON cells are more depolarized by a given amplitude of HFS than OFF cells-this sensitivity difference enables the selective targeting. Computational modeling indicates that ion-channel dynamics largely account for the shifts in Vm, suggesting that a better understanding of the differences in ion-channel properties across cell types may improve the selectivity and ultimately, enhance HFS-based neurostimulation strategies.
Collapse
Affiliation(s)
- Jae-Ik Lee
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Paul Werginz
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Biomedical Electronics, TU Wien, Vienna, Austria
| | - Tatiana Kameneva
- School of Science, Computing, and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC, Australia
- Department of Biomedical Engineering, University of Melbourne, Parkville, VIC, Australia
| | - Maesoon Im
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, South Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, Republic of Korea
| | - Shelley I Fried
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Boston VA Healthcare System, Rehabilitation, Research and Development, Boston, MA, USA
| |
Collapse
|
5
|
Ye H, Dima M, Hall V, Hendee J. Cellular mechanisms underlying carry-over effects after magnetic stimulation. Sci Rep 2024; 14:5167. [PMID: 38431662 PMCID: PMC10908793 DOI: 10.1038/s41598-024-55915-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/28/2024] [Indexed: 03/05/2024] Open
Abstract
Magnetic fields are widely used for neuromodulation in clinical settings. The intended effect of magnetic stimulation is that neural activity resumes its pre-stimulation state right after stimulation. Many theoretical and experimental works have focused on the cellular and molecular basis of the acute neural response to magnetic field. However, effects of magnetic stimulation can still last after the termination of the magnetic stimulation (named "carry-over effects"), which could generate profound effects to the outcome of the stimulation. However, the cellular and molecular mechanisms of carry-over effects are largely unknown, which renders the neural modulation practice using magnetic stimulation unpredictable. Here, we investigated carry-over effects at the cellular level, using the combination of micro-magnetic stimulation (µMS), electrophysiology, and computation modeling. We found that high frequency magnetic stimulation could lead to immediate neural inhibition in ganglion neurons from Aplysia californica, as well as persistent, carry-over inhibition after withdrawing the magnetic stimulus. Carry-over effects were found in the neurons that fired action potentials under a variety of conditions. The carry-over effects were also observed in the neurons when the magnetic field was applied across the ganglion sheath. The state of the neuron, specifically synaptic input and membrane potential fluctuation, plays a significant role in generating the carry-over effects after magnetic stimulation. To elucidate the cellular mechanisms of such carry-over effects under magnetic stimulation, we simulated a single neuron under magnetic stimulation with multi-compartment modeling. The model successfully replicated the carry-over effects in the neuron, and revealed that the carry-over effect was due to the dysfunction of the ion channel dynamics that were responsible for the initiation and sustaining of membrane excitability. A virtual voltage-clamp experiment revealed a compromised Na conductance and enhanced K conductance post magnetic stimulation, rendering the neurons incapable of generating action potentials and, therefore, leading to the carry over effects. Finally, both simulation and experimental results demonstrated that the carry-over effects could be controlled by disturbing the membrane potential during the post-stimulus inhibition period. Delineating the cellular and ion channel mechanisms underlying carry-over effects could provide insights to the clinical outcomes in brain stimulation using TMS and other modalities. This research incentivizes the development of novel neural engineering or pharmacological approaches to better control the carry-over effects for optimized clinical outcomes.
Collapse
Affiliation(s)
- Hui Ye
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA.
| | - Maria Dima
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA
| | - Vincent Hall
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA
| | - Jenna Hendee
- Department of Biology, Loyola University Chicago, Quinlan Life Sciences Education and Research Center, 1032 W. Sheridan Rd., Chicago, IL, 60660, USA
| |
Collapse
|
6
|
Xie Y, Qin P, Guo T, Al Abed A, Lovell NH, Tsai D. Modulating individual axons and axonal populations in the peripheral nerve using transverse intrafascicular multichannel electrodes. J Neural Eng 2023; 20:046032. [PMID: 37536318 DOI: 10.1088/1741-2552/aced20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 08/03/2023] [Indexed: 08/05/2023]
Abstract
Objective.A transverse intrafascicular multichannel electrode (TIME) may offer advantages over more conventional cuff electrodes including higher spatial selectivity and reduced stimulation charge requirements. However, the performance of TIME, especially in the context of non-conventional stimulation waveforms, remains relatively unexplored. As part of our overarching goal of investigating stimulation efficacy of TIME, we developed a computational toolkit that automates the creation and usage ofin siliconerve models with TIME setup, which solves nerve responses using cable equations and computes extracellular potentials using finite element method.Approach.We began by implementing a flexible and scalable Python/MATLAB-based toolkit for automatically creating models of nerve stimulation in the hybrid NEURON/COMSOL ecosystems. We then developed a sciatic nerve model containing 14 fascicles with 1,170 myelinated (A-type, 30%) and unmyelinated (C-type, 70%) fibers to study fiber responses over a variety of TIME arrangements (monopolar and hexapolar) and stimulation waveforms (kilohertz stimulation and cathodic ramp modulation).Main results.Our toolkit obviates the conventional need to re-create the same nerve in two disparate modeling environments and automates bi-directional transfer of results. Our population-based simulations suggested that kilohertz stimuli provide selective activation of targeted C fibers near the stimulating electrodes but also tended to activate non-targeted A fibers further away. However, C fiber selectivity can be enhanced by hexapolar TIME arrangements that confined the spatial extent of electrical stimuli. Improved upon prior findings, we devised a high-frequency waveform that incorporates cathodic DC ramp to completely remove undesirable onset responses.Conclusion.Our toolkit allows agile, iterative design cycles involving the nerve and TIME, while minimizing the potential operator errors during complex simulation. The nerve model created by our toolkit allowed us to study and optimize the design of next-generation intrafascicular implants for improved spatial and fiber-type selectivity.
Collapse
Affiliation(s)
- Yuyang Xie
- Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Peijun Qin
- Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Amr Al Abed
- Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Nigel H Lovell
- Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia
- Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, NSW 2052, Australia
| | - David Tsai
- Graduate School of Biomedical Engineering, UNSW Sydney, NSW 2052, Australia
- School of Electrical Engineering & Telecommunications, UNSW Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Chang YC, Ahmed U, Jayaprakash N, Mughrabi I, Lin Q, Wu YC, Gerber M, Abbas A, Daytz A, Gabalski AH, Ashville J, Dokos S, Rieth L, Datta-Chaudhuri T, Tracey KJ, Guo T, Al-Abed Y, Zanos S. kHz-frequency electrical stimulation selectively activates small, unmyelinated vagus afferents. Brain Stimul 2022; 15:1389-1404. [PMID: 36241025 PMCID: PMC10164362 DOI: 10.1016/j.brs.2022.09.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/02/2022] [Accepted: 09/30/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Vagal reflexes regulate homeostasis in visceral organs and systems through afferent and efferent neurons and nerve fibers. Small, unmyelinated, C-type afferents comprise over 80% of fibers in the vagus and form the sensory arc of autonomic reflexes of the gut, lungs, heart and vessels and the immune system. Selective bioelectronic activation of C-afferents could be used to mechanistically study and treat diseases of peripheral organs in which vagal reflexes are involved, but it has not been achieved. METHODS We stimulated the vagus in rats and mice using trains of kHz-frequency stimuli. Stimulation effects were assessed using neuronal c-Fos expression, physiological and nerve fiber responses, optogenetic and computational methods. RESULTS Intermittent kHz stimulation for 30 min activates specific motor and, preferentially, sensory vagus neurons in the brainstem. At sufficiently high frequencies (>5 kHz) and at intensities within a specific range (7-10 times activation threshold, T, in rats; 15-25 × T in mice), C-afferents are activated, whereas larger, A- and B-fibers, are blocked. This was determined by measuring fiber-specific acute physiological responses to kHz stimulus trains, and by assessing fiber excitability around kHz stimulus trains through compound action potentials evoked by probing pulses. Aspects of selective activation of C-afferents are explained in computational models of nerve fibers by how fiber size and myelin shape the response of sodium channels to kHz-frequency stimuli. CONCLUSION kHz stimulation is a neuromodulation strategy to robustly and selectively activate vagal C-afferents implicated in physiological homeostasis and disease, over larger vagal fibers.
Collapse
Affiliation(s)
- Yao-Chuan Chang
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Umair Ahmed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Naveen Jayaprakash
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Ibrahim Mughrabi
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Qihang Lin
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Yi-Chen Wu
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Michael Gerber
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Adam Abbas
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Anna Daytz
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Arielle H Gabalski
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Jason Ashville
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Socrates Dokos
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Loren Rieth
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, 26506, United States
| | - Timir Datta-Chaudhuri
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Kevin J Tracey
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Tianruo Guo
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, 11030, United States; Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.
| |
Collapse
|
8
|
Chen L, Guo T, Zhang S, Smith PP, Feng B. Blocking peripheral drive from colorectal afferents by subkilohertz dorsal root ganglion stimulation. Pain 2022; 163:665-681. [PMID: 34232925 PMCID: PMC8720331 DOI: 10.1097/j.pain.0000000000002395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 06/16/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Clinical evidence indicates dorsal root ganglion (DRG) stimulation effectively reduces pain without the need to evoke paresthesia. This paresthesia-free anesthesia by DRG stimulation can be promising to treat pain from the viscera, where paresthesia usually cannot be produced. Here, we explored the mechanisms and parameters for DRG stimulation using an ex vivo preparation with mouse distal colon and rectum (colorectum), pelvic nerve, L6 DRG, and dorsal root in continuity. We conducted single-fiber recordings from split dorsal root filaments and assessed the effect of DRG stimulation on afferent neural transmission. We determined the optimal stimulus pulse width by measuring the chronaxies of DRG stimulation to be below 216 µs, indicating spike initiation likely at attached axons rather than somata. Subkilohertz DRG stimulation significantly attenuates colorectal afferent transmission (10, 50, 100, 500, and 1000 Hz), of which 50 and 100 Hz show superior blocking effects. Synchronized spinal nerve and DRG stimulation reveals a progressive increase in conduction delay by DRG stimulation, suggesting activity-dependent slowing in blocked fibers. Afferents blocked by DRG stimulation show a greater increase in conduction delay than the unblocked counterparts. Midrange frequencies (50-500 Hz) are more efficient at blocking transmission than lower or higher frequencies. In addition, DRG stimulation at 50 and 100 Hz significantly attenuates in vivo visceromotor responses to noxious colorectal balloon distension. This reversible conduction block in C-type and Aδ-type afferents by subkilohertz DRG stimulation likely underlies the paresthesia-free anesthesia by DRG stimulation, thereby offering a promising new approach for managing chronic visceral pain.
Collapse
Affiliation(s)
- Longtu Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| | - Tiantian Guo
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| | - Shaopeng Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| | - Phillip P. Smith
- School of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Bin Feng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
9
|
Abstract
Scientist and technologist have long sought to advance limb prostheses that connect directly to the peripheral nervous system, enabling a person with amputation to volitionally control synthetic actuators that move, stiffen and power the prosthesis, as well as to experience natural afferent sensations from the prosthesis. Recently, the agonist-antagonist myoneural interface (AMI) was developed, a mechanoneural transduction architecture and neural interface system designed to provide persons with amputation improved muscle-tendon proprioception and neuroprosthetic control. In this paper, we provide an overview of the AMI, including its conceptual framing and preclinical science, surgical techniques for its construction, and clinical efficacy related to pain mitigation, phantom limb range of motion, fascicle dynamics, central brain proprioceptive sensorimotor preservation, and prosthetic controllability. Following this broad overview, we end with a discussion of current limitations of the AMI and potential resolutions to such challenges.
Collapse
|
10
|
Zhang J, Mao G, Feng Y, Zhang B, Liu B, Lu X, Wang Z. Inhibiting Spasticity by Blocking Nerve Signal Conduction in Rats With Spinal Cord Transection. IEEE Trans Neural Syst Rehabil Eng 2021; 29:2355-2364. [PMID: 34723805 DOI: 10.1109/tnsre.2021.3124530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Spasticity is a common motor disorder following a variety of upper motor neuron lesions that seriously affects the quality of patient's life. We aimed to evaluate whether muscle spasms can be suppressed by blocking nerve signal conduction. A rat model of lower limb spasm was prepared and the conduction of pathological nerve signals were blocked to study the inhibitory effect of nerve signal block on muscle spasm. The experimental results showed that 4 weeks after the 9th segment of the rat's thoracic spinal cord was completely transacted, the H/M -ratio of the lower limbs increased, and rate-dependent depression was weakened. When the rat model was stimulated by external forces, the electromyography (EMG) signals of the spastic gastrocnemius muscles continued to erupt. After blocking the conduction of nerve signals in the rat sciatic nerve, the spastic EMG signal of the gastrocnemius muscle disappeared. The effective blocking time and blocking efficiency increased with increasing blocking signal amplitude, and the maximum blocking efficiency reached 73%. The experimental results of this study proved the feasibility of inhibiting lower limb spasticity by blocking nerve signal conduction.
Collapse
|
11
|
Affiliation(s)
- Stanisa Raspopovic
- Neuroengineering Laboratory, Institute for Robotics and Intelligent Systems, Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland.
| |
Collapse
|
12
|
Conde SV. Low frequency conduction block: a promising new technique to advance bioelectronic medicines. Bioelectron Med 2021; 7:11. [PMID: 34304739 PMCID: PMC8311921 DOI: 10.1186/s42234-021-00073-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 01/13/2023] Open
Abstract
Nerve conduction block is an appealing way to selective target the nervous system for treating pathological conditions. Several modalities were described in the past, with the kilohertz frequency stimulation generating an enormous interest and tested successfully in clinical settings. Some shortcomings associated with different modalities of nerve blocking can limit its clinical use, as the “onset response”, the high demand of energy supply, among others. A recent study by Muzquiz and colleagues describes the efficacy and reversibility of low frequency alternating currents in blocking the cervical vagus in the pig, in the absence of an onset effect and apparent lack of neuronal damage.
Collapse
Affiliation(s)
- Silvia V Conde
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Faculdade Ciências Médicas, Universidade Nova de Lisboa, 1169-056, Lisboa, Portugal. .,CEDOC, Centro Estudos Doenças Crónicas, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana, nº6, 6A, Edifício CEDOC II, piso 3, 1150-082, Lisboa, Portugal.
| |
Collapse
|
13
|
Fitchett A, Mastitskaya S, Aristovich K. Selective Neuromodulation of the Vagus Nerve. Front Neurosci 2021; 15:685872. [PMID: 34108861 PMCID: PMC8180849 DOI: 10.3389/fnins.2021.685872] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 01/01/2023] Open
Abstract
Vagus nerve stimulation (VNS) is an effective technique for the treatment of refractory epilepsy and shows potential for the treatment of a range of other serious conditions. However, until now stimulation has generally been supramaximal and non-selective, resulting in a range of side effects. Selective VNS (sVNS) aims to mitigate this by targeting specific fiber types within the nerve to produce functionally specific effects. In recent years, several key paradigms of sVNS have been developed-spatially selective, fiber-selective, anodal block, neural titration, and kilohertz electrical stimulation block-as well as various stimulation pulse parameters and electrode array geometries. sVNS can significantly reduce the severity of side effects, and in some cases increase efficacy of the treatment. While most studies have focused on fiber-selective sVNS, spatially selective sVNS has demonstrated comparable mitigation of side-effects. It has the potential to achieve greater specificity and provide crucial information about vagal nerve physiology. Anodal block achieves strong side-effect mitigation too, but is much less specific than fiber- and spatially selective paradigms. The major hurdle to achieving better selectivity of VNS is a limited knowledge of functional anatomical organization of vagus nerve. It is also crucial to optimize electrode array geometry and pulse shape, as well as expand the applications of sVNS beyond the current focus on cardiovascular disease.
Collapse
Affiliation(s)
| | - Svetlana Mastitskaya
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Kirill Aristovich
- Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| |
Collapse
|
14
|
Neudorfer C, Chow CT, Boutet A, Loh A, Germann J, Elias GJ, Hutchison WD, Lozano AM. Kilohertz-frequency stimulation of the nervous system: A review of underlying mechanisms. Brain Stimul 2021; 14:513-530. [PMID: 33757930 DOI: 10.1016/j.brs.2021.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Electrical stimulation in the kilohertz-frequency range has gained interest in the field of neuroscience. The mechanisms underlying stimulation in this frequency range, however, are poorly characterized to date. OBJECTIVE/HYPOTHESIS To summarize the manifold biological effects elicited by kilohertz-frequency stimulation in the context of the currently existing literature and provide a mechanistic framework for the neural responses observed in this frequency range. METHODS A comprehensive search of the peer-reviewed literature was conducted across electronic databases. Relevant computational, clinical, and mechanistic studies were selected for review. RESULTS The effects of kilohertz-frequency stimulation on neural tissue are diverse and yield effects that are distinct from conventional stimulation. Broadly, these can be divided into 1) subthreshold, 2) suprathreshold, 3) synaptic and 4) thermal effects. While facilitation is the dominating mechanism at the subthreshold level, desynchronization, spike-rate adaptation, conduction block, and non-monotonic activation can be observed during suprathreshold kilohertz-frequency stimulation. At the synaptic level, kilohertz-frequency stimulation has been associated with the transient depletion of the available neurotransmitter pool - also known as synaptic fatigue. Finally, thermal effects associated with extrinsic (environmental) and intrinsic (associated with kilohertz-frequency stimulation) temperature changes have been suggested to alter the neural response to stimulation paradigms. CONCLUSION The diverse spectrum of neural responses to stimulation in the kilohertz-frequency range is distinct from that associated with conventional stimulation. This offers the potential for new therapeutic avenues across stimulation modalities. However, stimulation in the kilohertz-frequency range is associated with distinct challenges and caveats that need to be considered in experimental paradigms.
Collapse
Affiliation(s)
- Clemens Neudorfer
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Clement T Chow
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Alexandre Boutet
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Aaron Loh
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Jürgen Germann
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - Gavin Jb Elias
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada
| | - William D Hutchison
- Krembil Research Institute, University of Toronto, Ontario, Canada; Department of Physiology, Toronto Western Hospital and University of Toronto, Ontario, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, Toronto Western Hospital, University of Toronto, Canada; Krembil Research Institute, University of Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Abstract
Peripheral nerve interfaces (PNIs) record and/or modulate neural activity of nerves, which are responsible for conducting sensory-motor information to and from the central nervous system, and for regulating the activity of inner organs. PNIs are used both in neuroscience research and in therapeutical applications such as precise closed-loop control of neuroprosthetic limbs, treatment of neuropathic pain and restoration of vital functions (e.g. breathing and bladder management). Implantable interfaces represent an attractive solution to directly access peripheral nerves and provide enhanced selectivity both in recording and in stimulation, compared to their non-invasive counterparts. Nevertheless, the long-term functionality of implantable PNIs is limited by tissue damage, which occurs at the implant-tissue interface, and is thus highly dependent on material properties, biocompatibility and implant design. Current research focuses on the development of mechanically compliant PNIs, which adapt to the anatomy and dynamic movements of nerves in the body thereby limiting foreign body response. In this paper, we review recent progress in the development of flexible and implantable PNIs, highlighting promising solutions related to materials selection and their associated fabrication methods, and integrated functions. We report on the variety of available interface designs (intraneural, extraneural and regenerative) and different modulation techniques (electrical, optical, chemical) emphasizing the main challenges associated with integrating such systems on compliant substrates.
Collapse
Affiliation(s)
- Valentina Paggi
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Institute of Microengineering, Institute of Bioengineering, Centre for Neuroprosthetics, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1202 Geneva, Switzerland. Equally contributing authors
| | | | | | | |
Collapse
|
16
|
Non-monotonic kilohertz frequency neural block thresholds arise from amplitude- and frequency-dependent charge imbalance. Sci Rep 2021; 11:5077. [PMID: 33658552 PMCID: PMC7930193 DOI: 10.1038/s41598-021-84503-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Reversible block of nerve conduction using kilohertz frequency electrical signals has substantial potential for treatment of disease. However, the ability to block nerve fibers selectively is limited by poor understanding of the relationship between waveform parameters and the nerve fibers that are blocked. Previous in vivo studies reported non-monotonic relationships between block signal frequency and block threshold, suggesting the potential for fiber-selective block. However, the mechanisms of non-monotonic block thresholds were unclear, and these findings were not replicated in a subsequent in vivo study. We used high-fidelity computational models and in vivo experiments in anesthetized rats to show that non-monotonic threshold-frequency relationships do occur, that they result from amplitude- and frequency-dependent charge imbalances that cause a shift between kilohertz frequency and direct current block regimes, and that these relationships can differ across fiber diameters such that smaller fibers can be blocked at lower thresholds than larger fibers. These results reconcile previous contradictory studies, clarify the mechanisms of interaction between kilohertz frequency and direct current block, and demonstrate the potential for selective block of small fiber diameters.
Collapse
|
17
|
Hegarty DA, Bretherton B. An Open-Label Pilot Study Investigating Noninvasive High-Frequency Peripheral Nerve Fiber Stimulation in Chronic Pain. Pain Pract 2020; 21:578-587. [PMID: 33369130 DOI: 10.1111/papr.12993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Providing sustained and effective treatment via the peripheral nervous system for the management of chronic pain is challenging. Application of noninvasive high-frequency stimulation at or near the painful area may benefit those with chronic pain. This open-label pilot survey examined the impact of this stimulation on pain intensity, activities of daily living, functional capacity, and medication consumption after 2 weeks of treatment. METHODS Stimulation was administered at home using the summation of two high-frequency sinusoidal alternating signals at 3858 and 3980 Hz delivered between two electrodes placed directly over one or two locations of pain. Individuals completed a survey after 2 weeks to assess pain, activities of daily living (ADL), pain medication consumption, quality of life (QoL), mood, sleep, functional outcomes, and satisfaction. RESULTS 463 individuals (372 males; 91 females) retuned the completed survey after 2 weeks of treatment. Pain and ADL scores significantly improved at follow-up compared with baseline (pain mean difference: 3.05; 95% confidence interval [CI]: 2.86, 3.24; ADL mean difference: 1.82; 95% CI: 1.60, 2.04). Corresponding improvements in QoL, sleep, mood, functional outcomes, and satisfaction were noted. On average, 8.00 ± 11.11 hours of pain relief were reported with 54% experiencing reductions in pain medication consumption. 98% would use the stimulation in the future. CONCLUSION Two weeks of noninvasive high-frequency peripheral nerve fiber stimulation appeared to confer positive effects in individuals with chronic pain. Future research employing a control group/arm is needed to establish the long-term impact of this bioelectric technique in specific pain cohorts.
Collapse
Affiliation(s)
- Dominic A Hegarty
- Pain Management and Neuromodulation, Mater Private Hospital, Cork, Ireland.,Department of Anesthesiology, School of Medicine, University College, Cork, Ireland
| | - Beatrice Bretherton
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK.,Pain Management Department, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| |
Collapse
|
18
|
Peña E, Pelot NA, Grill WM. Quantitative comparisons of block thresholds and onset responses for charge-balanced kilohertz frequency waveforms. J Neural Eng 2020; 17:046048. [PMID: 32777778 DOI: 10.1088/1741-2552/abadb5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE There is growing interest in delivering kilohertz frequency (KHF) electrical signals to block conduction in peripheral nerves for treatment of various diseases. Previous studies used different KHF waveforms to achieve block, and it remains unclear how waveform affects nerve block parameters. APPROACH We quantified the effects of waveform on KHF block of the rat tibial nerve in vivo and in computational models. We compared block thresholds and onset responses across current-controlled sinusoids and charge-balanced rectangular waveforms with different asymmetries and duty cycles. MAIN RESULTS Sine waves had higher block thresholds than square waves, but used less power at block threshold. Block threshold had an inverse relationship with duty cycle of rectangular waveforms irrespective of waveform asymmetry. Computational model results were consistent with relationships measured in vivo, although the models underestimated the effect of duty cycle on increasing thresholds. The axonal membrane substantially filtered waveforms, the filter transfer function was strikingly similar across waveforms, and filtering resulted in post-filtered rms block thresholds that were approximately constant across waveforms in silico and in vivo. Onset response was not consistently affected by waveform shape, but onset response was smaller at amplitudes well above block threshold. Therefore, waveforms with lower block thresholds (e.g. sine waves or square waves) could be more readily increased to higher amplitudes relative to block threshold to reduce onset response. We also observed a reduction in onset responses across consecutive trials after initial application of supra-block threshold amplitudes. SIGNIFICANCE Waveform had substantial effects on block thresholds, and the amplitude relative to block threshold had substantial effects on onset response. These data inform choice of waveform in subsequent studies and clinical applications, enhance effective use of block in therapeutic applications, and facilitate the design of parameters that achieve block with minimal onset responses.
Collapse
Affiliation(s)
- Edgar Peña
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, United States of America
| | | | | |
Collapse
|
19
|
Kilohertz waveforms optimized to produce closed-state Na+ channel inactivation eliminate onset response in nerve conduction block. PLoS Comput Biol 2020; 16:e1007766. [PMID: 32542050 PMCID: PMC7316353 DOI: 10.1371/journal.pcbi.1007766] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 06/25/2020] [Accepted: 03/02/2020] [Indexed: 02/01/2023] Open
Abstract
The delivery of kilohertz frequency alternating current (KHFAC) generates rapid, controlled, and reversible conduction block in motor, sensory, and autonomic nerves, but causes transient activation of action potentials at the onset of the blocking current. We implemented a novel engineering optimization approach to design blocking waveforms that eliminated the onset response by moving voltage-gated Na+ channels (VGSCs) to closed-state inactivation (CSI) without first opening. We used computational models and particle swarm optimization (PSO) to design a charge-balanced 10 kHz biphasic current waveform that produced conduction block without onset firing in peripheral axons at specific locations and with specific diameters. The results indicate that it is possible to achieve onset-free KHFAC nerve block by causing CSI of VGSCs. Our novel approach for designing blocking waveforms and the resulting waveform may have utility in clinical applications of conduction block of peripheral nerve hyperactivity, for example in pain and spasticity. Many neurological disorders, including pain and spasticity, are characterized by undesirable increases in sensory, motor, or autonomic nerve activity. Local application of kilohertz frequency alternating currents (KHFAC) can effectively and completely block the conduction of undesired hyperactivity through peripheral nerves and could be a therapeutic approach for alleviating disease symptoms. However, KHFAC nerve block produces an undesirable initial burst of action potentials prior to achieving block. This onset firing may result in muscle contraction and pain and is a significant impediment to potential clinical applications of KHFAC nerve block. We present a novel engineering optimization approach for designing a blocking waveform that completely eliminated the onset firing in peripheral axons by moving voltage-gated Na+ channels to closed-state inactivation. Our results suggest that the resulting KHFAC waveform can generate electric nerve block without an onset response. Our approach for optimizing blocking waveforms represents a novel engineering design methodology with myriad potential applications and has relevance for the conduction block of peripheral nerve hyperactivity.
Collapse
|
20
|
Pelot NA, Grill WM. In vivo quantification of excitation and kilohertz frequency block of the rat vagus nerve. J Neural Eng 2020; 17:026005. [PMID: 31945746 DOI: 10.1088/1741-2552/ab6cb6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE There is growing interest in treating diseases by electrical stimulation and block of peripheral autonomic nerves, but a paucity of studies on the excitation and block of small-diameter autonomic axons. We conducted in vivo quantification of the strength-duration properties, activity-dependent slowing (ADS), and responses to kilohertz frequency (KHF) signals for the rat vagus nerve (VN). APPROACH We conducted acute in vivo experiments in urethane-anaesthetized rats. We placed two cuff electrodes on the left cervical VN and one cuff electrode on the anterior subdiaphragmatic VN. The rostral cervical cuff was used to deliver pulses to quantify recruitment and ADS. The caudal cervical cuff was used to deliver KHF signals. The subdiaphragmatic cuff was used to record compound action potentials (CAPs). MAIN RESULTS We quantified the input-output recruitment and strength-duration curves. Fits to the data using standard strength-duration equations were qualitatively similar, but the resulting chronaxie and rheobase estimates varied substantially. We measured larger thresholds for the slowest fibres (0.5-1 m s-1), especially at shorter pulse widths. Using a novel cross-correlation CAP-based analysis, we measured ADS of ~2.3% after 3 min of 2 Hz stimulation, which is comparable to the ADS reported for sympathetic efferents in somatic nerves, but much smaller than the ADS in cutaneous nociceptors. We found greater ADS with higher stimulation frequency and non-monotonic changes in CV in select cases. We found monotonically increasing block thresholds across frequencies from 10 to 80 kHz for both fast and slow fibres. Further, following 25 s of KHF signal, neural conduction could require tens of seconds to recover. SIGNIFICANCE The quantification of mammalian autonomic nerve responses to conventional and KHF signals provides essential information for the development of peripheral nerve stimulation therapies and for understanding their mechanisms of action.
Collapse
Affiliation(s)
- N A Pelot
- Department of Biomedical Engineering, Duke University, Room 1427, Fitzpatrick CIEMAS, 101 Science Drive, Campus Box 90281, Durham, NC 27708, United States of America
| | | |
Collapse
|
21
|
Ntiloudi D, Qanud K, Tomaio JN, Giannakoulas G, Al-Abed Y, Zanos S. Pulmonary arterial hypertension: the case for a bioelectronic treatment. Bioelectron Med 2019; 5:20. [PMID: 32232109 PMCID: PMC7098229 DOI: 10.1186/s42234-019-0036-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a rare disease of unknown etiology that progresses to right ventricular failure. It has a complex pathophysiology, which involves an imbalance between vasoconstrictive and vasodilative processes in the pulmonary circulation, pulmonary vasoconstriction, vascular and right ventricular remodeling, systemic inflammation, and autonomic imbalance, with a reduced parasympathetic and increased sympathetic tone. Current pharmacological treatments for PAH include several classes of drugs that target signaling pathways in vascular biology and cardiovascular physiology, but they can have severe unwanted effects and they do not typically stop the progression of the disease. Pulmonary artery denervation has been tested clinically as a method to suppress sympathetic overactivation, however it is a nonspecific and irreversible intervention. Bioelectronic medicine, in particular vagus nerve stimulation (VNS), has been used in cardiovascular disorders like arrhythmias, heart failure and arterial hypertension and could, in principle, be tested as a treatment in PAH. VNS can produce pulmonary vasodilation and renormalize right ventricular function, via activation of pulmonary and cardiac vagal fibers. It can suppress systemic inflammation, via activation of fibers that innervate the spleen. Finally, VNS can gradually restore the balance between parasympathetic and sympathetic tone by regulating autonomic reflexes. Preclinical studies support the feasibility of using VNS in PAH. However, there are challenges with such an approach, arising from the need to affect a relatively small number of relevant vagal fibers, and the potential for unwanted cardiac and noncardiac effects of VNS in this sensitive patient population.
Collapse
Affiliation(s)
- Despοina Ntiloudi
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA.,2Department of Cardiology, AHEPA University Hospital, Thessaloniki, Greece
| | - Khaled Qanud
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| | - Jacquelyn-Nicole Tomaio
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| | | | - Yousef Al-Abed
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| | - Stavros Zanos
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY 11030 USA
| |
Collapse
|
22
|
Noller CM, Levine YA, Urakov TM, Aronson JP, Nash MS. Vagus Nerve Stimulation in Rodent Models: An Overview of Technical Considerations. Front Neurosci 2019; 13:911. [PMID: 31551679 PMCID: PMC6738225 DOI: 10.3389/fnins.2019.00911] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/16/2019] [Indexed: 12/15/2022] Open
Abstract
Over the last several decades, vagus nerve stimulation (VNS) has evolved from a treatment for select neuropsychiatric disorders to one that holds promise in treating numerous inflammatory conditions. Growing interest has focused on the use of VNS for other indications, such as heart failure, rheumatoid arthritis, inflammatory bowel disease, ischemic stroke, and traumatic brain injury. As pre-clinical research often guides expansion into new clinical avenues, animal models of VNS have also increased in recent years. To advance this promising treatment, however, there are a number of experimental parameters that must be considered when planning a study, such as physiology of the vagus nerve, electrical stimulation parameters, electrode design, stimulation equipment, and microsurgical technique. In this review, we discuss these important considerations and how a combination of clinically relevant stimulation parameters can be used to achieve beneficial therapeutic results in pre-clinical studies of sub-acute to chronic VNS, and provide a practical guide for performing this work in rodent models. Finally, by integrating clinical and pre-clinical research, we present indeterminate issues as opportunities for future research.
Collapse
Affiliation(s)
- Crystal M. Noller
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, United States
- Section of Neurosurgery, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | | | - Timur M. Urakov
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- Jackson Memorial Hospital, Miami, FL, United States
| | - Joshua P. Aronson
- Section of Neurosurgery, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States
- Geisel School of Medicine, Dartmouth College, Hanover, NH, United States
| | - Mark S. Nash
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- Department of Physical Medicine and Rehabilitation, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
23
|
FallahRad M, Zannou AL, Khadka N, Prescott SA, Ratté S, Zhang T, Esteller R, Hershey B, Bikson M. Electrophysiology equipment for reliable study of kHz electrical stimulation. J Physiol 2019; 597:2131-2137. [PMID: 30816558 DOI: 10.1113/jp277654] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 02/19/2019] [Indexed: 12/27/2022] Open
Abstract
Characterizing the cellular targets of kHz (1-10 kHz) electrical stimulation remains a pressing topic in neuromodulation because expanding interest in clinical application of kHz stimulation has surpassed mechanistic understanding. The presumed cellular targets of brain stimulation do not respond to kHz frequencies according to conventional electrophysiology theory. Specifically, the low-pass characteristics of cell membranes are predicted to render kHz stimulation inert, especially given the use of limited-duty-cycle biphasic pulses. Precisely because kHz frequencies are considered supra-physiological, conventional instruments designed for neurophysiological studies such as stimulators, amplifiers and recording microelectrodes do not operate reliably at these high rates. Moreover, for pulsed waveforms, the signal frequency content is well above the pulse repetition rate. Thus, the very tools used to characterize the effects of kHz electrical stimulation may themselves be confounding factors. We illustrate custom equipment design that supports reliable electrophysiological recording during kHz-rate stimulation. Given the increased importance of kHz stimulation in clinical domains and compelling possibilities that mechanisms of actions may reflect yet undiscovered neurophysiological phenomena, attention to suitable performance of electrophysiological equipment is pivotal.
Collapse
Affiliation(s)
- Mohamad FallahRad
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, USA
| | - Adantchede Louis Zannou
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, USA
| | - Niranjan Khadka
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, USA
| | - Steven A Prescott
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology and Institute of Biomaterials and Biomedical Engineering, University of Toronto, ON, Canada
| | - Stéphanie Ratté
- Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology and Institute of Biomaterials and Biomedical Engineering, University of Toronto, ON, Canada
| | - Tianhe Zhang
- Boston Scientific Neuromodulation, Valencia, CA, USA
| | | | - Brad Hershey
- Boston Scientific Neuromodulation, Valencia, CA, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, NY, USA
| |
Collapse
|